化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1118-1128.DOI: 10.16085/j.issn.1000-6613.2022-1008
闫兴清1(), 戴行涛2, 喻健良1(), 李岳1, 韩冰2, 胡军2
收稿日期:
2022-05-30
修回日期:
2022-08-27
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
喻健良
作者简介:
闫兴清(1983—),男,博士,研究方向为化工过程及装备安全。E-mail:yanxingqing@dlut.edu.cn。
基金资助:
YAN Xingqing1(), DAI Xingtao2, YU Jianliang1(), LI Yue1, HAN Bing2, HU Jun2
Received:
2022-05-30
Revised:
2022-08-27
Online:
2023-03-15
Published:
2023-04-10
Contact:
YU Jianliang
摘要:
叙述了高压氢气泄漏射流研究进展,重点对氢气状态方程、欠膨胀射流结构及模型、射流区域氢气浓度预测、基于计算流体动力学的泄漏射流模拟等方面进行了归纳、总结和评述,并对未来研究方向进行了展望。文中总结:现有研究表明已有多种适用于高压氢气的实际状态方程,Peng-Robinson、Abel-Noble等方程兼具便捷性及精度;高压氢气泄漏时在泄漏口呈现高度欠膨胀射流结构,Molkov模型可用于预测欠膨胀射流特性参数;高压氢气泄漏射流区为动量控制或动量与浮力联合控制,区域内氢气浓度与泄漏口径、泄漏口距离、介质密度组成的量纲为1参数有量化关系;主流计算流体动力学软件如ANSYS-Fluent、FLACS等在模拟高压氢气泄漏时均被证实具有较好精度。未来研究方向包括大尺度实验、不规则泄漏口、成果工程化应用以及高效数值模拟方法等。
中图分类号:
闫兴清, 戴行涛, 喻健良, 李岳, 韩冰, 胡军. 高压氢气泄漏射流研究进展[J]. 化工进展, 2023, 42(3): 1118-1128.
YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128.
研究人员 | p/MPa | T/K | d/mm | 泄放流动状态 | Fr数① |
---|---|---|---|---|---|
Chaineaux等 [ | 3.6 | 207 | 6 | 临界 | 695 |
1.8 | 174 | 12 | 临界 | 591 | |
Ruffin等 [ | 3.24 | 288 | 25 | 临界 | 343 |
1.8 | 288 | 50 | 临界 | 281 | |
0.75 | 288 | 75 | 临界 | 286 | |
0.26 | 288 | 100 | 临界 | 321 | |
Okabaysshi等 [ | 20 | 288 | 2 | 临界 | 783 |
40 | 288 | 0.25 | 临界 | 1896 | |
40 | 288 | 0.5 | 临界 | 1341 | |
40 | 288 | 1 | 临界 | 948 | |
40 | 288 | 2 | 临界 | 670 | |
Roberts等 [ | 10 | 287 | 3 | 临界 | 753 |
13.5 | 287 | 3 | 临界 | 702 | |
2.5 | 287 | 12 | 临界 | 528 | |
Kuznetsov等 [ | 16.1 | 287 | 0.25 | 临界 | 2324 |
10.6 | 287 | 0.75 | 临界 | 1485 | |
9.7 | 287 | 1 | 临界 | 1314 | |
5.3 | 287 | 1 | 临界 | 1522 | |
Veser等 [ | 5.43 | 298 | 1 | 临界 | 1511 |
2.99 | 298 | 1 | 临界 | 1749 | |
1.01 | 298 | 2 | 临界 | 1622 | |
1.81 | 298 | 2 | 临界 | 1402 |
表1 氢气泄漏膨胀射流实验研究结果
研究人员 | p/MPa | T/K | d/mm | 泄放流动状态 | Fr数① |
---|---|---|---|---|---|
Chaineaux等 [ | 3.6 | 207 | 6 | 临界 | 695 |
1.8 | 174 | 12 | 临界 | 591 | |
Ruffin等 [ | 3.24 | 288 | 25 | 临界 | 343 |
1.8 | 288 | 50 | 临界 | 281 | |
0.75 | 288 | 75 | 临界 | 286 | |
0.26 | 288 | 100 | 临界 | 321 | |
Okabaysshi等 [ | 20 | 288 | 2 | 临界 | 783 |
40 | 288 | 0.25 | 临界 | 1896 | |
40 | 288 | 0.5 | 临界 | 1341 | |
40 | 288 | 1 | 临界 | 948 | |
40 | 288 | 2 | 临界 | 670 | |
Roberts等 [ | 10 | 287 | 3 | 临界 | 753 |
13.5 | 287 | 3 | 临界 | 702 | |
2.5 | 287 | 12 | 临界 | 528 | |
Kuznetsov等 [ | 16.1 | 287 | 0.25 | 临界 | 2324 |
10.6 | 287 | 0.75 | 临界 | 1485 | |
9.7 | 287 | 1 | 临界 | 1314 | |
5.3 | 287 | 1 | 临界 | 1522 | |
Veser等 [ | 5.43 | 298 | 1 | 临界 | 1511 |
2.99 | 298 | 1 | 临界 | 1749 | |
1.01 | 298 | 2 | 临界 | 1622 | |
1.81 | 298 | 2 | 临界 | 1402 |
研究人员 | 模拟的泄漏场景 | CFD软件平台 | 泄漏压力①/MPa | 泄漏温度/℃ |
---|---|---|---|---|
Heitsch等(2010)[ | 实验室内氢气瓶泄漏 | ANSYS-CFX | 20 | 15 |
Middha等(2010)[ | 气瓶内氢气泄漏 | FLACS | — | 25 |
Sully等(2011)[ | 核电站附近的制氢工厂管道泄漏 | ANSYS-CFX | 2.4 | 100 |
Salva等(2012)[ | 燃料电池车氢气罐泄漏 | ANSYS-Fluent | 20 | 25 |
Han等(2013)[ | 高压储氢容器泄漏 | FLUENT | 10~40 | 20 |
Choi等(2013)[ | 地下车库氢燃料电池车氢气泄漏 | STAR-CCM | — | 25 |
Hajji等(2015)[ | 车库内氢能源车泄漏 | FLUENT | — | 25 |
Keenan等(2017)[ | 高压储氢容器泄漏 | OpenFOAM | — | -34 |
Han等(2018)[ | 氢气充装平台设备泄漏 | FLUENT | 1~90 | -40~85 |
Li等(2018)[ | 氢燃料电池船内氢气泄漏 | FLUNET | 10 | 27 |
Yu等(2019)[ | 氢动力车辆气瓶泄漏 | OpenFOAM | 70 | 14.5 |
Liang等(2019)[ | 加氢站内储氢罐泄漏 | FLACS | 20~90 | 25 |
Hussein等(2020)[ | 停车场车载氢气瓶超压泄放装置泄漏 | ANSYS-Fluent | 70 | 25 |
Malakhov等(2020)[ | 模拟巷道内氢气泄漏 | STAR-CCM+ | 2 | 15 |
Afghan等(2020)[ | 氢气向密闭罐内泄漏 | FLUENT | — | 20 |
Qian等(2020)[ | 加氢站内氢气泄漏 | ANSYS Fluent | 40 | 25 |
Stewart等(2020)[ | 高压氢气通过矩形孔泄漏 | ANSYS-CFX | 30 | 22 |
Mao等(2021)[ | 氢燃料电池船内氢气泄漏 | ANSYS-Fluent | — | 27 |
Park等(2021)[ | 加氢站内储氢设施泄漏 | HyRAM | 20~82 | 25 |
Zhang等(2021)[ | 工厂反应器内含氢气体泄漏 | GASFLOW-MPI | 2.5 | 20 |
Li等(2021)[ | 隧道内燃料电池车氢气泄漏 | GASFLOW-MPI | 70 | 15 |
Wang等(2022)[ | 卡套接头氢气泄漏 | ANSYS-Fluent | 0.2 | 25 |
Gao等(2022)[ | 核电站附近氢储罐泄漏 | In:Flux | 8 | 25 |
Huang等(2022)[ | 地下停车场氢燃料电池车氢气泄漏 | ANSYS-Fluent | — | 25 |
表2 2010年后至今氢气泄漏数值模拟工作汇总
研究人员 | 模拟的泄漏场景 | CFD软件平台 | 泄漏压力①/MPa | 泄漏温度/℃ |
---|---|---|---|---|
Heitsch等(2010)[ | 实验室内氢气瓶泄漏 | ANSYS-CFX | 20 | 15 |
Middha等(2010)[ | 气瓶内氢气泄漏 | FLACS | — | 25 |
Sully等(2011)[ | 核电站附近的制氢工厂管道泄漏 | ANSYS-CFX | 2.4 | 100 |
Salva等(2012)[ | 燃料电池车氢气罐泄漏 | ANSYS-Fluent | 20 | 25 |
Han等(2013)[ | 高压储氢容器泄漏 | FLUENT | 10~40 | 20 |
Choi等(2013)[ | 地下车库氢燃料电池车氢气泄漏 | STAR-CCM | — | 25 |
Hajji等(2015)[ | 车库内氢能源车泄漏 | FLUENT | — | 25 |
Keenan等(2017)[ | 高压储氢容器泄漏 | OpenFOAM | — | -34 |
Han等(2018)[ | 氢气充装平台设备泄漏 | FLUENT | 1~90 | -40~85 |
Li等(2018)[ | 氢燃料电池船内氢气泄漏 | FLUNET | 10 | 27 |
Yu等(2019)[ | 氢动力车辆气瓶泄漏 | OpenFOAM | 70 | 14.5 |
Liang等(2019)[ | 加氢站内储氢罐泄漏 | FLACS | 20~90 | 25 |
Hussein等(2020)[ | 停车场车载氢气瓶超压泄放装置泄漏 | ANSYS-Fluent | 70 | 25 |
Malakhov等(2020)[ | 模拟巷道内氢气泄漏 | STAR-CCM+ | 2 | 15 |
Afghan等(2020)[ | 氢气向密闭罐内泄漏 | FLUENT | — | 20 |
Qian等(2020)[ | 加氢站内氢气泄漏 | ANSYS Fluent | 40 | 25 |
Stewart等(2020)[ | 高压氢气通过矩形孔泄漏 | ANSYS-CFX | 30 | 22 |
Mao等(2021)[ | 氢燃料电池船内氢气泄漏 | ANSYS-Fluent | — | 27 |
Park等(2021)[ | 加氢站内储氢设施泄漏 | HyRAM | 20~82 | 25 |
Zhang等(2021)[ | 工厂反应器内含氢气体泄漏 | GASFLOW-MPI | 2.5 | 20 |
Li等(2021)[ | 隧道内燃料电池车氢气泄漏 | GASFLOW-MPI | 70 | 15 |
Wang等(2022)[ | 卡套接头氢气泄漏 | ANSYS-Fluent | 0.2 | 25 |
Gao等(2022)[ | 核电站附近氢储罐泄漏 | In:Flux | 8 | 25 |
Huang等(2022)[ | 地下停车场氢燃料电池车氢气泄漏 | ANSYS-Fluent | — | 25 |
1 | CHAPMAN Andrew, ITAOKA Kenshi, Hadi FARABI-ASL, et al. Societal penetration of hydrogen into the future energy system: impacts of policy, technology and carbon targets[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3883-3898. |
2 | FIELD R A, DERWENT R G. Global warming consequences of replacing natural gas with hydrogen in the domestic energy sectors of future low-carbon economies in the United Kingdom and the United States of America[J]. International Journal of Hydrogen Energy, 2021, 46(58): 30190-30203. |
3 | Benjamin LUX, PFLUGER Benjamin. A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050[J]. Applied Energy, 2020, 269: 115011. |
4 | OZAWA Akito, KUDOH Yuki, MURATA Akinobu, et al. Hydrogen in low-carbon energy systems in Japan by 2050: the uncertainties of technology development and implementation[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18083-18094. |
5 | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
ZHOU Ying, ZHOU Hongjun, XU Chunming. Exploration of the development path for the hydrogen energy[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4587-4592. | |
6 | 国家发展与改革委员会, 国家能源局. 氢能产业发展中长期规划(2021—2035)[R]. 2022. |
National Development and Reform Commission, National Energy Administration. Medium and long planning for the development of hydrogen energy industry(2021—2035)[R]. 2022. | |
7 | ARSAD A Z, HANNAN M A, AL-SHETWI A Q, et al. Hydrogen energy storage integrated hybrid renewable energy systems: a review analysis for future research directions[J]. International Journal of Hydrogen Energy, 2022, 47(39): 17285-17312. |
8 | TARHAN Cevahir, ÇIL Mehmet Ali. A study on hydrogen, the clean energy of the future: hydrogen storage methods[J]. Journal of Energy Storage, 2021, 40: 102676. |
9 | ZHENG Jinyang, LIU Xianxin, XU Ping, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1048-1057. |
10 | 邝辰, 刘迪, 杨昊, 等. 氢气泄漏后燃爆风险研究现状综述[J]. 安全、健康和环境, 2021, 21(9): 1-5. |
KUANG Chen, LIU Di, YANG Hao, et al. Review on research status of combustion and explosion risk after hydrogen leakage[J]. Safety Health & Environment, 2021, 21(9): 1-5. | |
11 | WEST Madison, Ahmad AL-DOURI, HARTMANN Kevin, et al. Critical review and analysis of hydrogen safety data collection tools[J]. International Journal of Hydrogen Energy, 2022, 47(40): 17845-17858. |
12 | 郑津洋, 张俊峰, 陈霖新, 等. 氢安全研究现状[J]. 安全与环境学报, 2016, 16(6): 144-152. |
ZHENG Jinyang, ZHANG Junfeng, CHEN Linxin, et al. Research status in situ of hydrogen safety[J]. Journal of Safety and Environment, 2016, 16(6): 144-152. | |
13 | 汪志雷, 潘旭海, 蒋军成. 高压氢气泄漏自燃研究进展[J]. 南京工业大学学报(自然科学版), 2019, 41(5): 656-663. |
WANG Zhilei, PAN Xuhai, JIANG Juncheng. Research challenges in high-pressure hydrogen spontaneous ignition[J]. Journal of Nanjing Tech University (Natural Science Edition), 2019, 41(5): 656-663. | |
14 | YANG Fuyuan, WANG Tianze, DENG Xintao, et al. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31467-31488. |
15 | LI Hao, CAO Xuewen, LIU Yang, et al. Safety of hydrogen storage and transportation: an overview on mechanisms, techniques, and challenges[J]. Energy Reports, 2022, 8: 6258-6269. |
16 | 沈晓波, 章雪凝, 刘海峰. 高压氢气泄漏相关安全问题研究与进展[J]. 化工学报, 2021, 72(3): 1217-1229. |
SHEN Xiaobo, ZHANG Xuening, LIU Haifeng. Research and progress on safety issues related to high-pressure hydrogen leakage[J]. CIESC Journal, 2021, 72(3): 1217-1229. | |
17 | EKOTO I W, MERILO E G, DEDRICK D E, et al. Performance-based testing for hydrogen leakage into passenger vehicle compartments[J]. International Journal of Hydrogen Energy, 2011, 36(16): 10169-10178. |
18 | 徐钟平, 周敏莉, 虞利强, 等. 燃料电池汽车及氢能源的发展现状与安全对策[J]. 消防科学与技术, 2010, 29(11): 1019-1021. |
XU Zhongping, ZHOU Minli, YU Liqiang, et al. Present situation and safety measures of fuel cell powered vehicle and hydrogen energy source[J]. Fire Science and Technology, 2010, 29(11): 1019-1021. | |
19 | Hye Ri GYE, SEO Seung Kwon, BACH Quang Vu, et al. Quantitative risk assessment of an urban hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2019, 44(2): 1288-1298. |
20 | SUZUKI Tomoya, SHIOTA Kento, IZATO Yu Ichiro, et al. Quantitative risk assessment using a Japanese hydrogen refueling station model[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8329-8343. |
21 | ZHAO Mingbin, HUANG Teng, LIU Chenhui, et al. Leak localization using distributed sensors and machine learning for hydrogen releases from a fuel cell vehicle in a parking garage[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1420-1433. |
22 | 李云浩, 喻源, 张庆武. 车库内氢气扩散和分布状态的数值模拟[J]. 安全与环境学报, 2017, 17(5): 1884-1889. |
LI Yunhao, YU Yuan, ZHANG Qingwu. Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment, 2017, 17(5): 1884-1889. | |
23 | KUDRIAKOV S, STUDER E, BERNARD-MICHEL G, et al. Full-scale tunnel experiments: blast wave and fireball evolution following hydrogen tank rupture[J]. International Journal of Hydrogen Energy, 2022, 47(43): 18911-18933. |
24 | WU Y. Assessment of the impact of jet flame hazard from hydrogen cars in road tunnels[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(2): 246-254. |
25 | 张来斌, 胡瑾秋, 张曦月, 等. 氢能制-储-运安全与应急保障技术现状与发展趋势[J]. 石油科学通报, 2021, 6(2): 167-180. |
ZHANG Laibin, HU Jinqiu, ZHANG Xiyue, et al. Research status and development trends of safety and emergency guarantee technology for production, storage and transportation of hydrogen[J]. Petroleum Science Bulletin, 2021, 6(2): 167-180. | |
26 | 王振华, 蒋军成, 尤飞, 等. 高压氢气储运设施泄漏喷射火过程预测模型及其验证[J]. 化工学报, 2021, 72(10): 5412-5423. |
WANG Zhenhua, JIANG Juncheng, YOU Fei, et al. Prediction model for the process of jet fire induced by the leakage of high-pressure hydrogen storage and transportation facilities and its validation[J]. CIESC Journal, 2021, 72(10): 5412-5423. | |
27 | MÜLLER E A, GUBBINS K E. Molecular-based equations of state for associating fluids: a review of SAFT and related approaches[J]. Industrial & Engineering Chemistry Research, 2001, 40(10): 2193-2211. |
28 | LEACHMAN J W, JACOBSEN R T, PENONCELLO S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J]. Journal of Physical and Chemical Reference Data, 2009, 38(3): 721-748. |
29 | YOUNGLOVE B A. Erratum: thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen[J]. Journal of Physical and Chemical Reference Data, 1985, 14(2): 619. |
30 | SOAVE Giorgio. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203. |
31 | PENG Dingyu, ROBINSON Donald B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
32 | CHENOWETH D R. Gas-transfer analysis. Section H-real gas results via the Van der Waals equation of state and virial expansion extension of its limiting Abel-Noble form[R]. Office of Scientific and Technical Information (OSTI), 1983. |
33 | ISHII R, FUJIMOTO H, HATTA N, et al. Experimental and numerical analysis of circular pulse jets[J]. Journal of Fluid Mechanics, 1999, 392: 129-153. |
34 | DULOV V G, LUK’YANOV G A. Gas dynamics of outflow processes[M]. Novosibirsk: Nauka Press, 1984: 50. |
35 | PANDA J, SEASHOLTZ R G. Measurement of shock structure and shock-vortex interaction in underexpanded jets using Rayleigh scattering[J]. Physics of Fluids, 1999, 11(12): 3761-3777. |
36 | ALKISLAR M B, KROTHAPALLI A, LOURENCO L M. Structure of a screeching rectangular jet: a stereoscopic particle image velocimetry study[J]. Journal of Fluid Mechanics, 2003, 489: 121-154. |
37 | RUGGLES A J, EKOTO I W. Ignitability and mixing of underexpanded hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17549-17560. |
38 | RUGGLES A J, EKOTO I W. Experimental investigation of nozzle aspect ratio effects on underexpanded hydrogen jet release characteristics[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20331-20338. |
39 | Benoît ANDRÉ, CASTELAIN Thomas, BAILLY Christophe. Investigation of the mixing layer of underexpanded supersonic jets by particle image velocimetry[J]. International Journal of Heat and Fluid Flow, 2014, 50: 188-200. |
40 | Benoît ANDRÉ, CASTELAIN Thomas, BAILLY Christophe. Experimental exploration of underexpanded supersonic jets[J]. Shock Waves, 2014, 24(1): 21-32. |
41 | 李雪芳, 何倩, 柯道友, 等. 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1095-1100. |
LI Xuefang, HE Qian, CHRISTOPHER D M, et al. Validation of flow partitioning model for high pressure hydrogen jets through small orifices[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(12): 1095-1100. | |
42 | BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combustion Science and Technology, 1984, 36(5/6): 249-261. |
43 | BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combustion Science and Technology, 1987, 52(1/2/3): 161-171. |
44 | EWAN B C R, MOODIE K. Structure and velocity measurements in underexpanded jets[J]. Combustion Science and Technology, 1986, 45(5/6): 275-288. |
45 | YÜCEIL K B, ÖTÜGEN M V. Scaling parameters for underexpanded supersonic jets[J]. Physics of Fluids, 2002, 14(12): 4206-4215. |
46 | SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081-2093. |
47 | MOLKOV V, MAKAROV D, BRAGIN M. Physics and modelling of underexpanded jets and hydrogen dispersion in atmosphere[M]. Physics of Extreme States of Matter. Moscow: Russian Academy of Sciences, 2009: 146-149. |
48 | MOLKOV Vladimir, SAFFERS Jean-bernard. The correlation for non-premixed hydrogen jet flame length in still air[C]//SPEARPOINT M. Proceedings of the 10th International Symposium on Fire Safety Science. Maryland, USA, International Association for Fire Safety Science: 2011: 933-944. |
49 | 李雪芳, 毕景良, 柯道友. 高压氢气储存系统泄漏的热力学模型[J]. 清华大学学报(自然科学版), 2013, 53(4): 503-508. |
LI Xuefang, BI Jingliang, CHRISTOPHER David M. Thermodynamic models of leaks from high-pressure hydrogen storage systems[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4): 503-508. | |
50 | 柯道友, 毕景良, 李雪芳. 氢气泄漏过程的理论模型计算及CFD模拟[J]. 化工学报, 2013, 64(9): 3088-3095. |
CHRISTOPHER David M, BI Jingliang, LI Xuefang. Integral model and CFD simulations for hydrogen leaks[J]. CIESC Journal, 2013, 64(9): 3088-3095. | |
51 | RICOU F P, SPALDING D B. Measurements of entrainment by axisymmetrical turbulent jets[J]. Journal of Fluid Mechanics, 1961, 11(1): 21-32. |
52 | CHEN C J, RODI W. Vertical turbulent buoyant jets: a review of experimental data[M]. Oxford and New York: Pergamon Press, 1980, 94-99. |
53 | HOUF W, SCHEFER R. Analytical and experimental investigation of small-scale unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1435-1444. |
54 | CHAINEAUX J, MAVROTHALASSITIS G, PINEAU J. Modelization and validation of the discharge in air of a vessel pressurized by flammable gas[J]. Progress in Astronautics and Aeronautics, 1991, 134: 104-137. |
55 | RUFFIN E, MOUILLEAU Y, CHAINEAUX J. Large scale characterization of the concentration field of supercritical jets of hydrogen and methane[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(4): 279-284. |
56 | OKABAYASHI K, NONAKA T, SAKATA N, et al. Characteristics of dispersion for leakage of high-pressurized hydrogen gas[J]. Japan Society for Safety Engineering, 2005, 44: 391-397. |
57 | ROBERTS P T, SHIRVILL L C, ROBERTS T A, et al. Dispersion of hydrogen from high-pressure sources[C]//PANTONY M F. Proceedings of the IChemE Symposium Hazards XIX. Manchester, UK: Institution of Chemical Engineers, 2006, 151:1-12. |
58 | KUZNETSOV M, Hydrogen distribution tests in free turbulent jet[R]. SBEP V4. NoReport.: SBEP V4, 2007. |
59 | VESER A, KUZNETSOV M, FAST G, et al. The structure and flame propagation regimes in turbulent jets[C]//Proceedings of the Third International Conference on Hydrogen Safety, Ajaccio, France: 2009. |
60 | MOLKOV V, BRAGIN M, BRENNAN S, et al. Hydrogen safety engineering: overview of recent progress and unresolved issues[C]//Proceedings of the International Congress on Combustion and Fire Dynamics, Santander, Spain, 2010. |
61 | GALLEGO E, MIGOYA E, MARTÍN-VALDEPEÑAS J M, et al. An intercomparison exercise on the capabilities of CFD models to predict distribution and mixing of H2 in a closed vessel[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2235-2245. |
62 | VENETSANOS A G, PAPANIKOLAOU E, DELICHATSIOS M, et al. An inter-comparison exercise on the capabilities of CFD models to predict the short and long term distribution and mixing of hydrogen in a garage[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5912-5923. |
63 | OLVERA H A, CHOUDHURI A R. Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2356-2369. |
64 | HEITSCH M, BARALDI D, MORETTO P. Numerical analysis of accidental hydrogen release in a laboratory[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4409-4419. |
65 | MIDDHA P, HANSEN O R, GRUNE J, et al. CFD calculations of gas leak dispersion and subsequent gas explosions: validation against ignited impinging hydrogen jet experiments[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 84-94. |
66 | SULLY A, HEITSCH M, BARALDI D, et al. Numerical simulations of hydrogen and hydrogen chloride releases in a nuclear hydrogen production facility[J]. International Journal of Hydrogen Energy, 2011, 36(1): 1083-1093. |
67 | SALVA José Antonio, TAPIA Elvira, IRANZO Alfredo, et al. Safety study of a hydrogen leak in a fuel cell vehicle using computational fluid dynamics[J]. International Journal of Hydrogen Energy, 2012, 37(6): 5299-5306. |
68 | HAN Sang Heon, CHANG Daejun, KIM Jong Soo. Release characteristics of highly pressurized hydrogen through a small hole[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3503-3512. |
69 | CHOI Jongrak, Nahmkeon HUR, KANG Seongwon, et al. A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8084-8091. |
70 | HAJJI Yassine, JOUINI Belgacem, BOUTERAA Mourad, et al. Numerical study of hydrogen release accidents in a residential garage[J]. International Journal of Hydrogen Energy, 2015, 40(31): 9747-9759. |
71 | KEENAN J J, MAKAROV D V, MOLKOV V V. Modelling and simulation of high-pressure hydrogen jets using notional nozzle theory and open source code OpenFOAM[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7447-7456. |
72 | HAN Ukmin, Jinwoo OH, LEE Hoseong. Safety investigation of hydrogen charging platform package with CFD simulation[J]. International Journal of Hydrogen Energy, 2018, 43(29): 13687-13699. |
73 | LI Feng, YUAN Yupeng, YAN Xinping, et al. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 177-185. |
74 | YU Xing, WANG Changjian, HE Qize. Numerical study of hydr ogen dispersion in a fuel cell vehicle under the effect of ambient wind[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22671-22680. |
75 | LIANG Yang, PAN Xiangmin, ZHANG Cunman, et al. The simulation and analysis of leakage and explosion at a renewable hydrogen refuelling station[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22608-22619. |
76 | HUSSEIN H, BRENNAN S, MOLKOV V. Dispersion of hydrogen release in a naturally ventilated covered car park[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23882-23897. |
77 | MALAKHOV A A, AVDEENKOV A V, DU TOIT M H, et al. CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9231-9240. |
78 | AFGHAN HAJI ABBAS Mohammad, KHERADMAND Saeid, SADOUGHIPOUR Hossein. Numerical study of the effect of hydrogen leakage position and direction on hydrogen distribution in a closed enclosure[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23872-23881. |
79 | QIAN Jinyuan, LI Xiaojuan, GAO Zhixin, et al. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14428-14439. |
80 | STEWART J R. CFD modelling of underexpanded hydrogen jets exiting rectangular shaped openings[J]. Process Safety and Environmental Protection, 2020, 139: 283-296. |
81 | MAO Xiaobing, YING Rushun, YUAN Yupeng, et al. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6857-6872. |
82 | PARK Byoungjik, KIM Yangkyun, PAIK Shinwon, et al. Numerical and experimental analysis of jet release and jet flame length for qualitative risk analysis at hydrogen refueling station[J]. Process Safety and Environmental Protection, 2021, 155: 145-154. |
83 | ZHANG Han, SAUERSCHELL Simon, BA Qingxin, et al. Numerical simulation of accidental released hazardous gas dispersion at a methanation plant using GASFLOW-MPI[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2804-2823. |
84 | LI Yabing, XIAO Jianjun, ZHANG Han, et al. Numerical analysis of hydrogen release, dispersion and combustion in a tunnel with fuel cell vehicles using all-speed CFD code GASFLOW-MPI[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12474-12486. |
85 | WANG Tianze, YANG Fuyuan, HU Qixiang, et al. Experimental and simulation research on hydrogen leakage of double ferrule joints[J]. Process Safety and Environmental Protection, 2022, 160: 839-846. |
86 | GAO Qunxiang, WANG Laijun, PENG Wei, et al. Safety analysis of leakage in a nuclear hydrogen production system[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4916-4931. |
87 | HUANG Teng, ZHAO Mingbin, BA Qingxin, et al. Modeling of hydrogen dispersion from hydrogen fuel cell vehicles in an underground parking garage[J]. International Journal of Hydrogen Energy, 2022, 47(1): 686-696. |
88 | DICKEN C J B, MÉRIDA W. Modeling the transient temperature distribution within a hydrogen cylinder during refueling[J]. Numerical Heat Transfer, Part A: Applications, 2007, 53(7): 685-708. |
89 | SURYAN Abhilash, KIM Heuy Dong, SETOGUCHI Toshiaki. Three dimensional numerical computations on the fast filling of a hydrogen tank under different conditions[J]. International Journal of Hydrogen Energy, 2012, 37(9): 7600-7611. |
90 | 李雪芳. 储氢系统意外氢气泄漏和扩散研究[D]. 北京: 清华大学, 2015. |
LI Xuefang. Dispersion of unintended subsonic and supersonic hydrogen releases from hydrogen storage systems[D]. Beijing: Tsinghua University, 2015. | |
91 | ROTHUIZEN E, ELMEGAARD B, ROKNI M. Dynamic simulation of the effect of vehicle-side pressure loss of hydrogen fueling process[J]. International Journal of Hydrogen Energy, 2020, 45(15): 9025-9038. |
[1] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[5] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[6] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[7] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[8] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[9] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[10] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[11] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[12] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[13] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[14] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[15] | 于姗, 段元刚, 张怡欣, 唐春, 付梦瑶, 黄靖元, 周莹. 分步法分解硫化氢制氢和硫黄催化剂研究进展[J]. 化工进展, 2023, 42(7): 3780-3790. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |