化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3235-3248.DOI: 10.16085/j.issn.1000-6613.2021-1365
收稿日期:
2021-06-29
修回日期:
2021-08-08
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
廖兵
作者简介:
廖兵(1989—),男,副教授,硕士生导师,研究方向为水土污染控制与修复。E-mail:基金资助:
LIAO Bing1,2,3(), XU Wen1,2,3, YE Qiuyue1,2,3
Received:
2021-06-29
Revised:
2021-08-08
Online:
2022-06-10
Published:
2022-06-21
Contact:
LIAO Bing
摘要:
近年来,活化过碳酸盐(SPC)和过氧碳酸氢盐(PMC)高级氧化体系在水处理中的应用受到了学者们的广泛关注。本文通过调研大量国内外文献,系统总结了目前活化SPC体系及活化PMC体系在水处理中的应用,梳理了在SPC体系中常见的活化剂,如铁基材料、生物炭及金属复合体系等,在PMC体系常见的过渡金属离子以及金属复合物活化剂等,对比分析了活化SPC及活化PMC体系降解污染物的影响因素及其反应机理,影响因素包括溶液初始pH、氧化剂、活化剂、污染物浓度以及共存离子等,在SPC和PMC体系中添加活化剂均会促进HO·的生成,并对污染物的降解发挥作用,最后对未来相关研究的发展趋势提出了建议,可进一步探究活化SPC和PMC体系对水体的修复性能以及利用其进行实际水处理时的稳定性和安全性,厘清体系中产生的自由基对水体中污染物的去除机制。
中图分类号:
廖兵, 胥雯, 叶秋月. 活化过碳酸盐及过氧碳酸氢盐在水处理领域中的研究进展[J]. 化工进展, 2022, 41(6): 3235-3248.
LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248.
活化类型 | 活化剂 | 活化剂浓度 | 目标污染物 | 污染物浓度 | 反应时间 /min | 降解率 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
铁基材料 | Fe(Ⅱ) | 1.0mmol/L | PCE | 0.12mmol/L | 1 | 90 | [ |
Fe(Ⅱ) | 0.3mmol/L | SMT | 0.02mmol/L | 1 | 84 | [ | |
Fe(Ⅲ) | 1.0mmol/L | PCE | 0.12mmol/L | 60 | 28 | [ | |
Fe2+ | 3.0mmol/L | 苯 | 1.0mmol/L | 20 | 100 | [ | |
CIT-Fe2+ | 1mmol/L、5mmol/L | PCE | 0.12mmol/L | 20 | 99.99 | [ | |
OA-Fe2+ | 5mmol/L、5mmol/L | PCE | 0.12mmol/L | 20 | >90 | [ | |
CA-Fe2+ | 1.0mmol/L、0.45mmol/L | TCE | 0.15mmol/L | 90 | 98 | [ | |
CIA-Fe2+ | 1mmol/L、2mmol/L | 苯 | 1mmol/L | 30 | 96.3 | [ | |
Z-nZVI-Ni | 250mg/L | TCE | 0.15mmol/L | 180 | 99.8 | [ | |
Z-nZVI-Cu | 200mg/L | TCE | 0.15mmol/L | 180 | >95 | [ | |
G-nZVI | 0.8g/L | 1,1,1-三氯乙烷(TCA) | 0.15mmol/L | 120 | 90 | [ | |
NZ-nZVI | — | 酸橙52(AO52) | 25mg/L | 18 | 100 | [ | |
生物炭 | 红藻生物炭 | 3.0g/L | 邻苯二甲酸二(2-乙基己基)酯(DEHP) | 0.02mmol/L | 12 | 63 | [ |
富含铁锰的生物炭 | 1.67g/L | 多环芳烃(PAHs) | 1.67g/L | 6 | >80 | [ | |
光活化 | UV | — | 2-羟基-4-甲氧基二苯甲酮(BP-3) | 0.02mmol/L | 180 | >78 | [ |
UV | 0.1mW·cm-2 | 双酚A(BPA) | 0.002mmol/L | — | 87.8 | [ | |
其他 | Fe3O4@ZIF-8 | 1g/L | 亚甲蓝(MB) | 20mg/L | 120 | 98.5 | [ |
FeOCl/vis | 0.5g/L | 罗丹明B(RhB) | 20mg/L | 60 | 95.8 | [ | |
V(Ⅳ) | 1.0mmol/L | 苯胺 | 1.0mmol/L | 15 | 55.62 | [ | |
VOSO4 | 1.0mmol/L | 苯胺 | 1.0mmol/L | 15 | 41.29 | [ |
表1 不同活化剂活化SPC降解有机物
活化类型 | 活化剂 | 活化剂浓度 | 目标污染物 | 污染物浓度 | 反应时间 /min | 降解率 /% | 参考 文献 |
---|---|---|---|---|---|---|---|
铁基材料 | Fe(Ⅱ) | 1.0mmol/L | PCE | 0.12mmol/L | 1 | 90 | [ |
Fe(Ⅱ) | 0.3mmol/L | SMT | 0.02mmol/L | 1 | 84 | [ | |
Fe(Ⅲ) | 1.0mmol/L | PCE | 0.12mmol/L | 60 | 28 | [ | |
Fe2+ | 3.0mmol/L | 苯 | 1.0mmol/L | 20 | 100 | [ | |
CIT-Fe2+ | 1mmol/L、5mmol/L | PCE | 0.12mmol/L | 20 | 99.99 | [ | |
OA-Fe2+ | 5mmol/L、5mmol/L | PCE | 0.12mmol/L | 20 | >90 | [ | |
CA-Fe2+ | 1.0mmol/L、0.45mmol/L | TCE | 0.15mmol/L | 90 | 98 | [ | |
CIA-Fe2+ | 1mmol/L、2mmol/L | 苯 | 1mmol/L | 30 | 96.3 | [ | |
Z-nZVI-Ni | 250mg/L | TCE | 0.15mmol/L | 180 | 99.8 | [ | |
Z-nZVI-Cu | 200mg/L | TCE | 0.15mmol/L | 180 | >95 | [ | |
G-nZVI | 0.8g/L | 1,1,1-三氯乙烷(TCA) | 0.15mmol/L | 120 | 90 | [ | |
NZ-nZVI | — | 酸橙52(AO52) | 25mg/L | 18 | 100 | [ | |
生物炭 | 红藻生物炭 | 3.0g/L | 邻苯二甲酸二(2-乙基己基)酯(DEHP) | 0.02mmol/L | 12 | 63 | [ |
富含铁锰的生物炭 | 1.67g/L | 多环芳烃(PAHs) | 1.67g/L | 6 | >80 | [ | |
光活化 | UV | — | 2-羟基-4-甲氧基二苯甲酮(BP-3) | 0.02mmol/L | 180 | >78 | [ |
UV | 0.1mW·cm-2 | 双酚A(BPA) | 0.002mmol/L | — | 87.8 | [ | |
其他 | Fe3O4@ZIF-8 | 1g/L | 亚甲蓝(MB) | 20mg/L | 120 | 98.5 | [ |
FeOCl/vis | 0.5g/L | 罗丹明B(RhB) | 20mg/L | 60 | 95.8 | [ | |
V(Ⅳ) | 1.0mmol/L | 苯胺 | 1.0mmol/L | 15 | 55.62 | [ | |
VOSO4 | 1.0mmol/L | 苯胺 | 1.0mmol/L | 15 | 41.29 | [ |
活化类型 | 活化剂 | 活化剂浓度/投加量 | 目标污染物 | 污染物浓度 | 反应时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|---|---|---|
过渡金属离子 | Co2+ | 0.02mmol/L | MB | 0.134mmol/L | 50 | 100 | [ |
Co2+ | 0.005mmol/L | 酸性橙Ⅱ(AOII) | 0.05mmol/L | 10 | >90 | [ | |
Co2+ | 0.005mmol/L | AOII | 0.25mmol/L | 180 | >90 | [ | |
Cu(Ⅱ) | 0.03mmol/L | AOII | 0.05mmol/L | 10 | >90 | [ | |
Cu(Ⅱ) | 0.01mmol/L | 三氯生(TCS) | 0.01mmol/L | 40 | >65 | [ | |
复合材料 | S-CoFe2O4 | 0.1g/L | AOII | 50mg/L | 60 | 98 | [ |
CoMgAl | 0.03g | 亚甲基橙(MO) | 49.8mg/L | 60 | >95 | [ | |
CuFeS2 | 200mg/L | 2,4-DCP | 10mg/L | 120 | >80 | [ | |
Co x Mn3-x O4 | 0.1g/L | 2,4-DCP | 10mg/L | 120 | >85 | [ |
表2 不同活化剂活化PMC降解有机物
活化类型 | 活化剂 | 活化剂浓度/投加量 | 目标污染物 | 污染物浓度 | 反应时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|---|---|---|
过渡金属离子 | Co2+ | 0.02mmol/L | MB | 0.134mmol/L | 50 | 100 | [ |
Co2+ | 0.005mmol/L | 酸性橙Ⅱ(AOII) | 0.05mmol/L | 10 | >90 | [ | |
Co2+ | 0.005mmol/L | AOII | 0.25mmol/L | 180 | >90 | [ | |
Cu(Ⅱ) | 0.03mmol/L | AOII | 0.05mmol/L | 10 | >90 | [ | |
Cu(Ⅱ) | 0.01mmol/L | 三氯生(TCS) | 0.01mmol/L | 40 | >65 | [ | |
复合材料 | S-CoFe2O4 | 0.1g/L | AOII | 50mg/L | 60 | 98 | [ |
CoMgAl | 0.03g | 亚甲基橙(MO) | 49.8mg/L | 60 | >95 | [ | |
CuFeS2 | 200mg/L | 2,4-DCP | 10mg/L | 120 | >80 | [ | |
Co x Mn3-x O4 | 0.1g/L | 2,4-DCP | 10mg/L | 120 | >85 | [ |
活化剂 | 污染物 | 初始pH | 反应后pH | 降解率/% | 参考文献 |
---|---|---|---|---|---|
Fe(Ⅱ) | SMT | 4.0 | 3.05 | 88 | [ |
CA-Fe2+ | TCE | 3.01 | 2.85 | 93 | [ |
Fe3O4@ZIF-8 | MB | 3 | — | 98.5 | [ |
CA-Fe(Ⅱ) | TCE | 3.0 | 2.9 | 93.1 | [ |
HAH/CA-Fe(Ⅱ) | TCE | 3 | 2.5 | >99 | [ |
CIT/Fe(Ⅱ) | PCE | <4 | 3.35 | 92.6 | [ |
nZVI | BPA | 3 | — | 100 | [ |
Fe2+ | PCE | 6.5 | 3.44 | 98 | [ |
g-C3N4/Vis | MB | 7 | — | 90 | [ |
富含铁锰的生物炭 | PAHs | 11.0 | — | 85 | [ |
O3 | SMX | 10.3 | 8.0 | >70 | [ |
表3 不同活化剂活化SPC降解污染物的初始pH
活化剂 | 污染物 | 初始pH | 反应后pH | 降解率/% | 参考文献 |
---|---|---|---|---|---|
Fe(Ⅱ) | SMT | 4.0 | 3.05 | 88 | [ |
CA-Fe2+ | TCE | 3.01 | 2.85 | 93 | [ |
Fe3O4@ZIF-8 | MB | 3 | — | 98.5 | [ |
CA-Fe(Ⅱ) | TCE | 3.0 | 2.9 | 93.1 | [ |
HAH/CA-Fe(Ⅱ) | TCE | 3 | 2.5 | >99 | [ |
CIT/Fe(Ⅱ) | PCE | <4 | 3.35 | 92.6 | [ |
nZVI | BPA | 3 | — | 100 | [ |
Fe2+ | PCE | 6.5 | 3.44 | 98 | [ |
g-C3N4/Vis | MB | 7 | — | 90 | [ |
富含铁锰的生物炭 | PAHs | 11.0 | — | 85 | [ |
O3 | SMX | 10.3 | 8.0 | >70 | [ |
活化类型 | 反应式 | 编号 | 参考文献 |
---|---|---|---|
铁基材料 | H2O2 + Fe(Ⅱ) | (8) | [ |
HO·+ H2O2 | (9) | ||
HO·+ Fe(Ⅱ) | (10) | ||
COOH- + HO· | (11) | [ | |
COOH- + H· | (12) | ||
HO· + HO· | (13) | [ | |
HO·+ Fe(Ⅱ) | (10) | ||
H2O2 + HO· | (14) | ||
HO· + CO | (7) | [ | |
HO· + HCO | (15) | ||
Fe0 + O2 + 2H+ | (16) | ||
Fe0 + H2O2 + 2H+ | (17) | ||
Fe2+ + H2O2 | (18) | ||
2Fe3+ + Fe0 | (19) | ||
Ni+ + H2O2 | (20) | [ | |
Ni2+ + H2O2 | (21) | ||
Fe3+ + Ni+ | (22) | ||
生物炭材料 | RSB-π+ +H2O2 | (23) | [ |
Fe3+ + H2O2 | (24) | [ | |
Fe3+ + O | (25) | ||
Fe3+ + HO2· | (26) | ||
Mn2+ + H2O2 | (27) | ||
Mn3+ + H2O2 | (28) | ||
Mn3+ + H2O2 | (29) | ||
Mn3+ + O | (30) | ||
Mn3+ + HO2· | (31) | ||
Fe2+ + Mn3+ | (32) | ||
PAHs + HO· + O | (33) | ||
光活化 | H2O2 + hv | (34) | [ |
HO· + HCO3- | (15) | [ | |
HO· + CO32- | (7) | ||
其他 | VO2+ + H2O | (35) | [ |
[VOOH]+ + H2O + H2O2 | (36) | ||
HVO42- + H2O2 + 3H+ | (37) | ||
HO· + CO | (7) | ||
H2O2 + CO | (38) | ||
HO2· | (39) |
表4 活化SPC反应式
活化类型 | 反应式 | 编号 | 参考文献 |
---|---|---|---|
铁基材料 | H2O2 + Fe(Ⅱ) | (8) | [ |
HO·+ H2O2 | (9) | ||
HO·+ Fe(Ⅱ) | (10) | ||
COOH- + HO· | (11) | [ | |
COOH- + H· | (12) | ||
HO· + HO· | (13) | [ | |
HO·+ Fe(Ⅱ) | (10) | ||
H2O2 + HO· | (14) | ||
HO· + CO | (7) | [ | |
HO· + HCO | (15) | ||
Fe0 + O2 + 2H+ | (16) | ||
Fe0 + H2O2 + 2H+ | (17) | ||
Fe2+ + H2O2 | (18) | ||
2Fe3+ + Fe0 | (19) | ||
Ni+ + H2O2 | (20) | [ | |
Ni2+ + H2O2 | (21) | ||
Fe3+ + Ni+ | (22) | ||
生物炭材料 | RSB-π+ +H2O2 | (23) | [ |
Fe3+ + H2O2 | (24) | [ | |
Fe3+ + O | (25) | ||
Fe3+ + HO2· | (26) | ||
Mn2+ + H2O2 | (27) | ||
Mn3+ + H2O2 | (28) | ||
Mn3+ + H2O2 | (29) | ||
Mn3+ + O | (30) | ||
Mn3+ + HO2· | (31) | ||
Fe2+ + Mn3+ | (32) | ||
PAHs + HO· + O | (33) | ||
光活化 | H2O2 + hv | (34) | [ |
HO· + HCO3- | (15) | [ | |
HO· + CO32- | (7) | ||
其他 | VO2+ + H2O | (35) | [ |
[VOOH]+ + H2O + H2O2 | (36) | ||
HVO42- + H2O2 + 3H+ | (37) | ||
HO· + CO | (7) | ||
H2O2 + CO | (38) | ||
HO2· | (39) |
体系 | 反应式 | 编号 | 参考文献 |
---|---|---|---|
PMC | HCO | (3) | [ |
HCO | (40) | ||
HCO | (41) | ||
H2O2 + CO | (38) | ||
HO· + HO2· | (42) | ||
HO2· | (39) | ||
H2O2 | (43) | ||
O | (44) | ||
HO2· + HO2· | (45) | ||
活化PMC | HCO | (3) | [ |
≡≡ Fe(Ⅱ) + 2HCO | (52) | ||
≡≡ Fe(Ⅲ) + H2O2 | (53) | ||
CO | (54) | ||
O | (44) | ||
Co2+ + HCO | (46) | [ | |
[CoⅡ(HCO | (47) | ||
[CoⅡ(HCO | (48) | ||
[CoⅡ(HCO | (49) | ||
[CoⅢ(HCO | (50) | ||
[CoⅢ(HCO | (51) |
表5 PMC相关反应式
体系 | 反应式 | 编号 | 参考文献 |
---|---|---|---|
PMC | HCO | (3) | [ |
HCO | (40) | ||
HCO | (41) | ||
H2O2 + CO | (38) | ||
HO· + HO2· | (42) | ||
HO2· | (39) | ||
H2O2 | (43) | ||
O | (44) | ||
HO2· + HO2· | (45) | ||
活化PMC | HCO | (3) | [ |
≡≡ Fe(Ⅱ) + 2HCO | (52) | ||
≡≡ Fe(Ⅲ) + H2O2 | (53) | ||
CO | (54) | ||
O | (44) | ||
Co2+ + HCO | (46) | [ | |
[CoⅡ(HCO | (47) | ||
[CoⅡ(HCO | (48) | ||
[CoⅡ(HCO | (49) | ||
[CoⅢ(HCO | (50) | ||
[CoⅢ(HCO | (51) |
体系 | 活化类型 | 活化剂 | 污染物 | 体系中自由基种类 | 起主要作用的物质 | 参考文献 |
---|---|---|---|---|---|---|
SPC | 铁基材料 | Fe(Ⅱ) | SMX | HO·、O | HO· | [ |
Fe(Ⅱ) | PCE | [ | ||||
Fe(Ⅱ) | 苯 | [ | ||||
Fe(Ⅱ) | 四环素 | [ | ||||
Fe(Ⅲ) | 苯 | [ | ||||
螯合剂-Fe2+ | TCE | [ | ||||
Fe(Ⅱ)-CA | TCE | [ | ||||
Fe(Ⅱ)-OA | PCE | [ | ||||
FA/Fe(Ⅱ) | CT | HO·、CO | CO | [ | ||
生物炭材料 | 富含Fe、Mn的生物炭 | PAHs | O | HO· | [ | |
光活化 | UV | BP-3 | HO· | [ | ||
UV | BPA | HO·、CO | [ | |||
其他 | V(Ⅳ) | 苯胺 | HO·、O | O | [ | |
VOSO4 | 苯胺 | [ | ||||
PMC | 过渡金属 | Co2+ | MB | HO· | HO· | [ |
Co2+ | AOⅡ | 加密HO· | 加密HO· | [ | ||
Co2+ | AOⅡ | HO·、O | HO· | [ | ||
Cu(Ⅱ) | AOⅡ | HO·、O | Cu(Ⅲ) | [ | ||
Cu(Ⅱ) | TCS | O | O | [ | ||
金属复合材料 | S-CoFe2O4 | AOⅡ | 加密HO· | 加密HO· | [ | |
CoMgAl | MO | HO·、O | HO·、O | [ | ||
CuFeS2 | 2,4-DCP | HO·、1O2、O | HO·、1O2、O | [ | ||
Co x Mn3-x O4 | 2,4-DCP | HO·、O | HO·、O | [ |
表6 不同活化剂活化SPC和PMC体系产生的自由基种类
体系 | 活化类型 | 活化剂 | 污染物 | 体系中自由基种类 | 起主要作用的物质 | 参考文献 |
---|---|---|---|---|---|---|
SPC | 铁基材料 | Fe(Ⅱ) | SMX | HO·、O | HO· | [ |
Fe(Ⅱ) | PCE | [ | ||||
Fe(Ⅱ) | 苯 | [ | ||||
Fe(Ⅱ) | 四环素 | [ | ||||
Fe(Ⅲ) | 苯 | [ | ||||
螯合剂-Fe2+ | TCE | [ | ||||
Fe(Ⅱ)-CA | TCE | [ | ||||
Fe(Ⅱ)-OA | PCE | [ | ||||
FA/Fe(Ⅱ) | CT | HO·、CO | CO | [ | ||
生物炭材料 | 富含Fe、Mn的生物炭 | PAHs | O | HO· | [ | |
光活化 | UV | BP-3 | HO· | [ | ||
UV | BPA | HO·、CO | [ | |||
其他 | V(Ⅳ) | 苯胺 | HO·、O | O | [ | |
VOSO4 | 苯胺 | [ | ||||
PMC | 过渡金属 | Co2+ | MB | HO· | HO· | [ |
Co2+ | AOⅡ | 加密HO· | 加密HO· | [ | ||
Co2+ | AOⅡ | HO·、O | HO· | [ | ||
Cu(Ⅱ) | AOⅡ | HO·、O | Cu(Ⅲ) | [ | ||
Cu(Ⅱ) | TCS | O | O | [ | ||
金属复合材料 | S-CoFe2O4 | AOⅡ | 加密HO· | 加密HO· | [ | |
CoMgAl | MO | HO·、O | HO·、O | [ | ||
CuFeS2 | 2,4-DCP | HO·、1O2、O | HO·、1O2、O | [ | ||
Co x Mn3-x O4 | 2,4-DCP | HO·、O | HO·、O | [ |
1 | MA D S, YI H, LAI C, et al. Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275: 130104. |
2 | 赵霞, BAKHROM Ismoilov, 李亚斌, 等. 污水高级氧化技术的研究现状及其新进展[J]. 水处理技术, 2018, 44(4): 7-10, 16. |
ZHAO Xia, BAKHROM Ismoilov, LI Yabin, et al. Research status and new progress of advanced oxidation technology for wastewater treatment[J]. Technology of Water Treatment, 2018, 44(4): 7-10, 16. | |
3 | 邵圣娟, 焦纬洲, 刘有智. 超重力强化臭氧高级氧化技术的研究进展[J]. 化工进展, 2020, 39(12): 4798-4811. |
SHAO Shengjuan, JIAO Weizhou, LIU Youzhi. Research progress of high gravity enhanced ozone-based advanced oxidation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4798-4811. | |
4 | WANG N N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. |
5 | ZHANG Y H, XUE C M, GUO C H. Application sodium percarbonate to oxidative degradation trichloroethylene contamination in groundwater[J]. Procedia Environmental Sciences, 2011, 10: 1668-1673. |
6 | 徐劼, 王琳, 陈家斌, 等. 磁性Fe3O4-CuO非均相活化过碳酸钠降解AO7[J]. 环境科学, 2020, 41(4): 1734-1742. |
XU Jie, WANG Lin, CHEN Jiabin, et al. Degradation of AO7 with magnetic Fe3O4-CuO heterogeneous catalyzed sodium percarbonate system[J]. Environmental Science, 2020, 41(4): 1734-1742. | |
7 | XIAO Y L, LIU X, HUANG Y, et al. Roles of hydroxyl and carbonate radicals in bisphenol a degradation via a nanoscale zero-valent iron/percarbonate system: influencing factors and mechanisms[J]. RSC Advances, 2021, 11(6): 3636-3644. |
8 | GUO X J, LI H R, ZHAO S G. Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 90-100. |
9 | WALAWSKA B, GLUZIŃSKA J, MIKSCH K, et al. Solid inorganic peroxy compounds in environmental protection[J]. Polish Journal of Chemical Technology, 2007, 9(3): 68-72. |
10 | 傅晓日. Fe催化过碳酸钠技术修复苯污染地下水的研究[D]. 上海: 华东理工大学, 2018. |
FU Xiaori. Iron catalyzed percarbonate technologies for the remediation of benzene contaminated groundwater[D]. Shanghai: East China University of Science and Technology, 2018. | |
11 | 崔航, 傅晓日, 顾小钢, 等. 二价铁催化过碳酸钠处理水中乙苯[J]. 中国环境科学, 2016, 36(5): 1449-1455. |
CUI Hang, FU Xiaori, GU Xiaogang, et al. Degradation of ethylbenzene by Fe( Ⅱ ) activated sodium percarbonate process in aqueous solution[J]. China Environmental Science, 2016, 36(5): 1449-1455. | |
12 | CHENG L, WEI M Y, HUANG L H, et al. Efficient H2O2 oxidation of organic dyes catalyzed by simple copper( Ⅱ ) ions in bicarbonate aqueous solution[J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3478-3485. |
13 | BOKARE A D, CHOI W. Bicarbonate-induced activation of H2O2 for metal-free oxidative desulfurization[J]. Journal of Hazardous Materials, 2016, 304: 313-319. |
14 | BAKHMUTOVA-ALBERT E V, YAO H, DENEVAN D E, et al. Kinetics and mechanism of peroxymonocarbonate formation[J]. Inorganic Chemistry, 2010, 49(24): 11287-11296. |
15 | 陈智明. 基于铁离子活化过碳酸钠氧化降解磺胺二甲嘧啶的研究[D]. 广州: 广东工业大学, 2017. |
CHEN Zhiming. Study on the degradation of sulfamethazine by sodium percarbonate activated by iron ion[D]. Guangzhou: Guangdong University of Technology, 2017. | |
16 | 缪周伟. 铁催化过碳酸盐及其优化工艺处理四氯乙烯污染地下水的研究[D]. 上海: 华东理工大学, 2016. |
MIAO Zhouwei. The treatment of tetrachloroethylene contaminated groundwater using percarbonate catalyzed with iron and modified iron[D]. Shanghai: East China University of Science and Technology, 2016. | |
17 | LI Y F, ZHU Y Q, WANG D B, et al. Fe( Ⅱ ) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication[J]. Water Research, 2020, 174: 115626. |
18 | ZANG X K, GU X G, LU S G, et al. Enhanced degradation of trichloroethene by sodium percarbonate activated with Fe( Ⅱ ) in the presence of citric acid[J]. Water Supply, 2017, 17(3): 665-673. |
19 | 臧学轲. 羟胺促进柠檬酸-Fe2+活化过碳酸钠降解三氯乙烯[J]. 华东理工大学学报(自然科学版), 2018, 44(3): 454-462. |
ZANG Xueke. Enhanced degradation of trichloroethylene with hydroxylamine hydrochloride addition in citric-acid chelated Fe2+-catalyzed percarbonate system[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2018, 44(3): 454-462. | |
20 | DANISH M, GU X G, LU S G, et al. An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite[J]. Applied Catalysis A: General, 2017, 531: 177-186. |
21 | DANISH Muhammad. 沸石负载纳米复合材料催化过碳酸钠氧化氯代有机溶剂污染物的研究[D]. 上海: 华东理工大学, 2016. |
DANISH Muhammad. Oxidation of chlorinated organic solvents contaminants using sodium percarbonate catalyzed by zeolite supported nanocom posites[D]. Shanghai: East China University of Science and Technology, 2016. | |
22 | HUNG C M, HUANG C P, CHEN C W, et al. The degradation of di-(2-ethylhexyl) phthalate, DEHP, in sediments using percarbonate activated by seaweed biochars and its effects on the benthic microbial community[J]. Journal of Cleaner Production, 2021, 292: 126108. |
23 | YAN P P, SUI Q, LYU S G, et al. Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe( Ⅱ ) activated percarbonate treatment[J]. Science of the Total Environment, 2018, 640/641: 973-980. |
24 | 臧学轲, 吕树光, 顾小钢, 等. 泥浆系统中Fe2+活化过碳酸钠降解三氯乙烯[J]. 环境工程学报, 2015, 9(8): 4042-4046. |
ZANG Xueke, Shuguang LYU, GU Xiaogang, et al. Degradation of trichloroethylene using sodium percarbonate activated by ferrous ion in slurry system[J]. Chinese Journal of Environmental Engineering, 2015, 9(8): 4042-4046. | |
25 | MIAO Z W, GU X G, LU S G, et al. Enhancement effects of chelating agents on the degradation of tetrachloroethene in Fe( Ⅲ ) catalyzed percarbonate system[J]. Chemical Engineering Journal, 2015, 281: 286-294. |
26 | DANISH M, GU X G, LU S G, et al. Efficient transformation of trichloroethylene activated through sodium percarbonate using heterogeneous zeolite supported nano zero valent iron-copper bimetallic composite[J]. Chemical Engineering Journal, 2017, 308: 396-407. |
27 | RASHID T, IQBAL D, HAZAFA A, et al. Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 104023. |
28 | FAROOQ U, DANISH M, LYU S G, et al. The impact of surface properties and dominant ions on the effectiveness of G-nZVI heterogeneous catalyst for environmental remediation[J]. Science of the Total Environment, 2019, 651: 1182-1188. |
29 | 何迎东. 生物炭对污水典型污染物的去除机理与应用研究进展[J]. 农业与技术, 2020, 40(9): 109-114. |
HE Yingdong. Research progress on the removal mechanism and application of biochar to typical sewage pollutants [J]. Agriculture and Technology, 2020, 40(9): 109-114. | |
30 | HUNG C M, HUANG C P, CHEN C W, et al. Activation of percarbonate by water treatment sludge-derived biochar for the remediation of PAH-contaminated sediments[J]. Environmental Pollution, 2020, 265: 114914. |
31 | 王瀛洲. UV活化过硫酸盐处理印染废水的实验研究[D]. 包头: 内蒙古科技大学, 2019. |
WANG Yingzhou. The study on the treatment of printing and dyeing wastewater by the UV catalyzed persulfate[D]. Baotou: Inner Mongolia University of Science & Technology, 2019. | |
32 | 刘华英, 韩骐骏, 房岐, 等. 光助-过碳酸钠体系降解2-羟基-4-甲氧基二苯甲酮[J]. 环境化学, 2020, 39(3): 636-642. |
LIU Huaying, HAN Qijun, FANG Qi, et al. Photo-assisted degradation of benzophenone-3 by sodium percarbonate system[J]. Environmental Chemistry, 2020, 39(3): 636-642. | |
33 | GAO J, DUAN X D, O’SHEA K, et al. Degradation and transformation of bisphenol A in UV/sodium percarbonate: dual role of carbonate radical anion[J]. Water Research, 2020, 171: 115394. |
34 | SAJJADI S, KHATAEE A, DARVISHI CHESHMEH SOLTANI R, et al. Implementation of magnetic Fe3O4@ZIF-8 nanocomposite to activate sodium percarbonate for highly effective degradation of organic compound in aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2018, 68: 406-415. |
35 | CHEN M D, XU H M, WANG Q, et al. Activation mechanism of sodium percarbonate by FeOCl under visible-light-enhanced catalytic oxidation[J]. Chemical Physics Letters, 2018, 706: 415-420. |
36 | LI L, HUANG J, HU X B, et al. Activation of sodium percarbonate by vanadium for the degradation of aniline in water: mechanism and identification of reactive species[J]. Chemosphere, 2019, 215: 647-656. |
37 | 张赛. 过碳酸钠催化体系降解苯胺效能与机制研究[D]. 重庆: 重庆大学, 2018. |
ZHANG Sai. Study on the catalytic degradation of aniline by sodium percarbonate: efficiency and mechanism[D]. Chongqing: Chongqing University, 2018. | |
38 | LIN J M, LIU M L. Singlet oxygen generated from the decomposition of peroxymonocarbonate and its observation with chemiluminescence method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(1): 126-132. |
39 | ZHOU L, SONG W, CHEN Z, et al. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst[J]. Environmental Science & Technology, 2013, 47(8): 3833-3839. |
40 | JAWAD A, LU X, CHEN Z, et al. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide[J]. The Journal of Physical Chemistry A, 2014, 118(43): 10028-10035. |
41 | JAWAD A, LI Y B, LU X Y, et al. Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide[J]. Journal of Hazardous Materials, 2015, 289: 165-173. |
42 | XU A H, LI X X, YE S, et al. Catalyzed oxidative degradation of methylene blue by in situ generated cobalt ( Ⅱ )-bicarbonate complexes with hydrogen peroxide[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 37-43. |
43 | LONG X J, YANG Z, WANG H, et al. Selective degradation of orange Ⅱ with the cobalt( Ⅱ )–bicarbonate–hydrogen peroxide system[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 11998-12003. |
44 | MONFARED H H, AGHAPOOR V, GHORBANLOO M, et al. Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese(Ⅲ) meso-tetraphenylporphyrin complex: optimization of effective parameters using the Taguchi method[J]. Applied Catalysis A: General, 2010, 372(2): 209-216. |
45 | PENG J B, SHI H H, LI J H, et al. Bicarbonate enhanced removal of triclosan by copper( Ⅱ ) catalyzed Fenton-like reaction in aqueous solution[J]. Chemical Engineering Journal, 2016, 306: 484-491. |
46 | XU X J, TANG D D, CAI J H, et al. Heterogeneous activation of peroxymonocarbonate by chalcopyrite (CuFeS2) for efficient degradation of 2,4-dichlorophenol in simulated groundwater[J]. Applied Catalysis B: Environmental, 2019, 251: 273-282. |
47 | PI L, YANG N, HAN W, et al. Heterogeneous activation of peroxymonocarbonate by Co-Mn oxides for the efficient degradation of chlorophenols in the presence of a naturally occurring level of bicarbonate[J]. Chemical Engineering Journal, 2018, 334: 1297-1308. |
48 | LUO M X, LYU L, DENG G W, et al. The mechanism of bound hydroxyl radical formation and degradation pathway of Acid Orange Ⅱ in Fenton-like Co2+-HCO3- system[J]. Applied Catalysis A: General, 2014, 469: 198-205. |
49 | LYU Y C, LYU S G, TANG P, et al. Degradation of trichloroethylene in aqueous solution by sodium percarbonate activated with Fe( Ⅱ )-citric acid complex in the presence of surfactant Tween-80[J]. Chemosphere, 2020, 257: 127223. |
50 | FU X R, BRUSSEAU M L, ZANG X K, et al. Enhanced effect of HAH on citric acid-chelated Fe( Ⅱ )-catalyzed percarbonate for trichloroethene degradation[J]. Environmental Science and Pollution Research, 2017, 24(31): 24318-24326. |
51 | MIAO Z W, GU X G, LU S G, et al. Mechanism of PCE oxidation by percarbonate in a chelated Fe( Ⅱ )-based catalyzed system[J]. Chemical Engineering Journal, 2015, 275: 53-62. |
52 | GUO H, LI D S, LI Z, et al. Promoted elimination of antibiotic sulfamethoxazole in water using sodium percarbonate activated by ozone: mechanism, degradation pathway and toxicity assessment[J]. Separation and Purification Technology, 2021, 266: 118543. |
53 | MIAO Z W, GU X G, LU S G, et al. Perchloroethylene (PCE) oxidation by percarbonate in Fe2+-catalyzed aqueous solution: PCE performance and its removal mechanism[J]. Chemosphere, 2015, 119: 1120-1125. |
54 | FU X R, GU X G, LU S G, et al. Benzene depletion by Fe2+-catalyzed sodium percarbonate in aqueous solution[J]. Chemical Engineering Journal, 2015, 267: 25-33. |
55 | JIANG W C, TANG P, LU S G, et al. Comparative studies of H2O2/ Fe( Ⅱ )/formic acid, sodium percarbonate/Fe( Ⅱ )/formic acid and calcium peroxide/Fe( Ⅱ )/formic acid processes for degradation performance of carbon tetrachloride[J]. Chemical Engineering Journal, 2018, 344: 453-461. |
56 | LI D Y, XIAO Y, PU M J, et al. A metal-free protonated g-C3N4 as an effective sodium percarbonate activator at ambient pH conditions: efficiency, stability and mechanism[J]. Materials Chemistry and Physics, 2019, 231: 225-232. |
57 | 缪周伟. Fe2+/过碳酸盐催化氧化修复四氯乙烯污染地下水的机理及应用[J]. 净水技术, 2019, 38(S1): 222-229. |
MIAO Zhouwei. Mechanism and application of perchloroethylene contaminated groundwater remediation by Fe2+/percarbonate catalyzed oxidation[J]. Water Purification Technology, 2019, 38(S1): 222-229. | |
58 | FU X R, GU X G, LU S G, et al. Enhanced degradation of benzene by percarbonate activated with Fe( Ⅱ )-glutamate complex[J]. Environmental Science and Pollution Research, 2016, 23(7): 6758-6766. |
59 | PIMENTEL J A I, DONG C D, GARCIA-SEGURA S, et al. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation[J]. Science of the Total Environment, 2021, 781: 146411. |
60 | HUANG J Y, DANISH M, GU X G, et al. Mechanism of carbon tetrachloride reduction in Fe(Ⅱ) activated percarbonate system in the environment of sodium dodecyl sulfate[J]. Separation and Purification Technology, 2021, 266: 118549. |
61 | FU X R, GU X G, LU S G, et al. Benzene oxidation by Fe( Ⅲ )-activated percarbonate: matrix-constituent effects and degradation pathways[J]. Chemical Engineering Journal, 2017, 309: 22-29. |
62 | ESLAMI A, MEHDIPOUR F, LIN K Y A, et al. Sono-photo activation of percarbonate for the degradation of organic dye: the effect of water matrix and identification of by-products[J]. Journal of Water Process Engineering, 2020, 33: 100998. |
63 | CUI H, GU X G, LU S G, et al. Degradation of ethylbenzene in aqueous solution by sodium percarbonate activated with EDDS-Fe(Ⅲ) complex[J]. Chemical Engineering Journal, 2017, 309: 80-88. |
64 | GEORGI A, SCHIERZ A, TROMMLER U, et al. Humic acid modified Fenton reagent for enhancement of the working pH range[J]. Applied Catalysis B: Environmental, 2007, 72(1/2): 26-36. |
65 | XU A H, LI X X, XIONG H, et al. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide[J]. Chemosphere, 2011, 82(8): 1190-1195. |
66 | MONTEAGUDO J M, DURÁN A, CORRAL J M, et al. Ferrioxalate-induced solar photo-Fenton system for the treatment of winery wastewaters[J]. Chemical Engineering Journal, 2012, 181/182: 281-288. |
67 | LIN J M, LIU M. Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles[J]. The Journal of Physical Chemistry B, 2008, 112(26): 7850-7855. |
68 | LIU M L, ZHAO L X, LIN J M. Chemiluminescence energy transfer reaction for the on-line preparation of peroxymonocarbonate and Eu(Ⅱ)-dipicolinate complex[J]. The Journal of Physical Chemistry A, 2006, 110(23): 7509-7514. |
69 | ZHAO S P, XI H L, ZUO Y J, et al. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants[J]. Journal of Hazardous Materials, 2018, 344: 136-145. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
[4] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[5] | 孙千千, 刘阵, 李瑞, 张溪, 杨明德, 吴玉龙. 低温水热耦合亚铁离子活化过硫酸盐提高剩余污泥的脱水性能[J]. 化工进展, 2023, 42(2): 595-602. |
[6] | 应璐瑶, 王荣昌. 菌藻共生系统削减抗生素类污染物的去除途径及胁迫响应[J]. 化工进展, 2023, 42(1): 469-479. |
[7] | 胡锦文, 孟广源, 张之杰, 张宁, 张芯婉, 陈鹏, 李童, 刘勇弟, 张乐华. 人工智能在电化学水处理过程中的应用[J]. 化工进展, 2022, 41(S1): 497-506. |
[8] | 段毅, 邹烨, 周书葵, 杨柳. 过渡金属单原子催化剂活化H2O2/PMS/PDS降解有机污染物的研究进展[J]. 化工进展, 2022, 41(8): 4147-4158. |
[9] | 伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570. |
[10] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[11] | 唐娇娇, 谢军祥, 陈重军, 余成, 陈德超. 城镇污水处理厂碳中和技术及案例[J]. 化工进展, 2022, 41(5): 2662-2671. |
[12] | 张惠宁, 石中玉, 肖彦奎, 张晓琴, 尹鑫, 田丽红. 3D打印制备三维石墨烯及其在水处理中的应用[J]. 化工进展, 2022, 41(5): 2231-2242. |
[13] | 李海涛, 汪东. 精对苯二甲酸生产废水处理与CO2协同利用技术的实践与展望[J]. 化工进展, 2022, 41(3): 1132-1135. |
[14] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[15] | 陈简素璇, 戴若彬, 田晨昕, 王志伟. 多孔纳米材料改性水处理超滤膜的研究进展[J]. 化工进展, 2022, 41(1): 264-276. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |