化工进展 ›› 2022, Vol. 41 ›› Issue (1): 264-276.DOI: 10.16085/j.issn.1000-6613.2021-0160
收稿日期:
2021-01-22
修回日期:
2021-04-07
出版日期:
2022-01-05
发布日期:
2022-01-24
通讯作者:
王志伟
作者简介:
陈简素璇(1998—),女,博士研究生,研究方向为膜法污水处理与资源化技术。E-mail:基金资助:
CHEN Jiansuxuan1(), DAI Ruobin1, TIAN Chenxin1, WANG Zhiwei1,2()
Received:
2021-01-22
Revised:
2021-04-07
Online:
2022-01-05
Published:
2022-01-24
Contact:
WANG Zhiwei
摘要:
基于压力驱动的超滤膜面临渗透性和选择性的制衡及膜污染问题。多孔纳米材料是高性能超滤膜改性制备中一类重要的添加剂,是新型水处理功能膜的研究热点之一。多孔纳米材料的添加为膜提供了额外水通道,其可调的孔尺寸又为在膜内构建出具有高度选择性的纳米通道提供了潜在有利条件,进而突破膜渗透性和选择性的Trade-off效应。同时,亲水性多孔纳米材料的添加有利于提升膜的抗污染性能。本文综述了近年来多孔纳米材料对超滤膜的改性方法,总结了微孔沸石分子筛、介孔炭、介孔二氧化硅、金属有机骨架材料和共价有机骨架材料对超滤膜的改性研究进展,着重评价了不同改性材料对超滤膜在亲水性、渗透性、污染物截留和抗污染能力等方面的影响。最后对未来多孔纳米材料改性超滤膜的研究及应用的发展趋势进行了展望。
中图分类号:
陈简素璇, 戴若彬, 田晨昕, 王志伟. 多孔纳米材料改性水处理超滤膜的研究进展[J]. 化工进展, 2022, 41(1): 264-276.
CHEN Jiansuxuan, DAI Ruobin, TIAN Chenxin, WANG Zhiwei. Research progress of ultrafiltration membranes modified by porous nanomaterials for water treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 264-276.
改性膜 | 添加物质量 分数①/% | 纯水通量 /L·m-2·h-1 | 与改性前相比膜水通量增加百分比/% | 原始膜/改性膜接触角/(°) | 污染物 截留效果 | 抗污染性 | 参考文献 |
---|---|---|---|---|---|---|---|
SBA-15/AEAPTMS-15/PES | 0.6 | 63(0.3MPa) | 250.6 | 70.3/55.0 | 接近100%(BSA) | 可逆污染降低75%,不可逆污染降低95% | [ |
SBA-15/Triamine/PES | 0.6 | 620(0.3MPa) | 195.2 | 72/57 | 接近100%(BSA) | — | [ |
SBA-g-P(PEGMA)-1/PSf | 0.6 | 271.7(0.05MPa) | 309.2 | 89/51 | >98.5%(BSA) | 通量恢复率由51.4%增加至94.5% | [ |
Ti-SBA-15/PES | 0.3 | 354(0.069MPa) | 60.9 | 65/58 | >98%(BSA) | 通量恢复率由38%降低至34% | [ |
Zr-SBA-15/PES | 0.3 | 449(0.069MPa) | 104.1 | 65/56 | >98%(BSA) | 通量恢复率由38%降低至25% | [ |
pDA-SBA-15/PEI | 0.075 | 196(0.2MPa) | 120.4 | 73.5/37.2 | 99.8%(油脂) | 经四次循环后通量恢复率仍达93% | [ |
AgTriSBA/PES | 0.3Ag/SBA-15+ 0.3Triamine/SBA-15 | 168(0.2MPa) | 46.9 | 65.2/64.3 | 约97%(BSA) | BSA过滤后纯水通量的下降率增加28.6% | [ |
表1 功能化SBA-15改性有机超滤膜性能
改性膜 | 添加物质量 分数①/% | 纯水通量 /L·m-2·h-1 | 与改性前相比膜水通量增加百分比/% | 原始膜/改性膜接触角/(°) | 污染物 截留效果 | 抗污染性 | 参考文献 |
---|---|---|---|---|---|---|---|
SBA-15/AEAPTMS-15/PES | 0.6 | 63(0.3MPa) | 250.6 | 70.3/55.0 | 接近100%(BSA) | 可逆污染降低75%,不可逆污染降低95% | [ |
SBA-15/Triamine/PES | 0.6 | 620(0.3MPa) | 195.2 | 72/57 | 接近100%(BSA) | — | [ |
SBA-g-P(PEGMA)-1/PSf | 0.6 | 271.7(0.05MPa) | 309.2 | 89/51 | >98.5%(BSA) | 通量恢复率由51.4%增加至94.5% | [ |
Ti-SBA-15/PES | 0.3 | 354(0.069MPa) | 60.9 | 65/58 | >98%(BSA) | 通量恢复率由38%降低至34% | [ |
Zr-SBA-15/PES | 0.3 | 449(0.069MPa) | 104.1 | 65/56 | >98%(BSA) | 通量恢复率由38%降低至25% | [ |
pDA-SBA-15/PEI | 0.075 | 196(0.2MPa) | 120.4 | 73.5/37.2 | 99.8%(油脂) | 经四次循环后通量恢复率仍达93% | [ |
AgTriSBA/PES | 0.3Ag/SBA-15+ 0.3Triamine/SBA-15 | 168(0.2MPa) | 46.9 | 65.2/64.3 | 约97%(BSA) | BSA过滤后纯水通量的下降率增加28.6% | [ |
改性膜 | 添加物质量分数①/% | 纯水通量 /L·m-2·h-1 | 与改性前相比膜水通量增加百分比/% | 原始膜/改性膜 接触角/(°) | 污染物 截留效果 | 抗污染性 | 参考文献 |
---|---|---|---|---|---|---|---|
ZIF-8/PES | 0.4 | 约119(0.3MPa) | 10.2 | 约52.5/约47.5 | 约69%(BSA) | — | [ |
ZIF-8/PVDF | 0.036 | 约345(0.2MPa) | 33.4 | 75.1/70.5 | >98%(BSA) | 通量恢复率由约58.5% 增加至约70.5% | [ |
ZIF-8/PVB | 3 | 135(0.2MPa) | 107 | 约42.58/约32.57 | 98%(BSA) | 通量恢复率由75%增加至95% | [ |
ZIF-8/PVDF | 0.1 | 65(0.1MPa) | 70.5 | 58.23/77.81 | 87.44%(BSA) 91.96%(HA) | — | [ |
ZIF-8/PAN | — | 140(0.2MPa) | — | 约72.5/约71.0 | 93.1%(伊文思蓝) | 通量恢复率由约46%增加至约82% | [ |
ZIF-8/PVDF | — | 134.56(0.2MPa) | 104.4 | 71.00/48.20 | >98%(BSA) | 通量恢复率由62.0%增加至74.5% | [ |
表2 ZIF-8改性有机超滤膜性能
改性膜 | 添加物质量分数①/% | 纯水通量 /L·m-2·h-1 | 与改性前相比膜水通量增加百分比/% | 原始膜/改性膜 接触角/(°) | 污染物 截留效果 | 抗污染性 | 参考文献 |
---|---|---|---|---|---|---|---|
ZIF-8/PES | 0.4 | 约119(0.3MPa) | 10.2 | 约52.5/约47.5 | 约69%(BSA) | — | [ |
ZIF-8/PVDF | 0.036 | 约345(0.2MPa) | 33.4 | 75.1/70.5 | >98%(BSA) | 通量恢复率由约58.5% 增加至约70.5% | [ |
ZIF-8/PVB | 3 | 135(0.2MPa) | 107 | 约42.58/约32.57 | 98%(BSA) | 通量恢复率由75%增加至95% | [ |
ZIF-8/PVDF | 0.1 | 65(0.1MPa) | 70.5 | 58.23/77.81 | 87.44%(BSA) 91.96%(HA) | — | [ |
ZIF-8/PAN | — | 140(0.2MPa) | — | 约72.5/约71.0 | 93.1%(伊文思蓝) | 通量恢复率由约46%增加至约82% | [ |
ZIF-8/PVDF | — | 134.56(0.2MPa) | 104.4 | 71.00/48.20 | >98%(BSA) | 通量恢复率由62.0%增加至74.5% | [ |
种类 | 优点 | 缺点 |
---|---|---|
微孔沸石分子筛 | 共混不易引起膜缺陷,部分已商用 | 孔径较小,没有被截留的污染物经过膜时很可能造成孔堵塞,加剧膜污染 |
介孔炭 | 孔径可在较大范围内调节,界面相容性好,可作为功能化纳米颗粒的载体,部分已商用 | 材料制备过程需考虑模板剂去除问题,增大能耗或增加污染 |
介孔二氧化硅 | 孔径可在较大范围内调节,表面含有大量羟基,亲水性好,可作为功能化纳米颗粒的载体,部分已商用 | 材料制备过程需考虑模板剂去除问题,增大能耗或增加污染 |
MOFs | 有机无机杂化结构增强了界面相容性;含有特定功能的金属离子赋予膜抗菌活性或光催化活性 | 部分MOFs水稳定性差;制备过程复杂,目前难以规模化工业应用 |
COFs | 纯有机结构,在聚合物基质中具有优良的界面相容性和分散性 | 部分COFs化学稳定性差,在水环境中极易分解,制备过程复杂,目前难以规模化工业应用 |
表3 不同多孔纳米材料的特点比较
种类 | 优点 | 缺点 |
---|---|---|
微孔沸石分子筛 | 共混不易引起膜缺陷,部分已商用 | 孔径较小,没有被截留的污染物经过膜时很可能造成孔堵塞,加剧膜污染 |
介孔炭 | 孔径可在较大范围内调节,界面相容性好,可作为功能化纳米颗粒的载体,部分已商用 | 材料制备过程需考虑模板剂去除问题,增大能耗或增加污染 |
介孔二氧化硅 | 孔径可在较大范围内调节,表面含有大量羟基,亲水性好,可作为功能化纳米颗粒的载体,部分已商用 | 材料制备过程需考虑模板剂去除问题,增大能耗或增加污染 |
MOFs | 有机无机杂化结构增强了界面相容性;含有特定功能的金属离子赋予膜抗菌活性或光催化活性 | 部分MOFs水稳定性差;制备过程复杂,目前难以规模化工业应用 |
COFs | 纯有机结构,在聚合物基质中具有优良的界面相容性和分散性 | 部分COFs化学稳定性差,在水环境中极易分解,制备过程复杂,目前难以规模化工业应用 |
1 | World Health Organization. WHO global water, sanitation and hygiene annual report 2018[R/OL]. World Health Organization, 2019[2020-12-30]. . |
2 | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
3 | DREWS A. Membrane fouling in membrane bioreactors: characterisation, contradictions, cause and cures[J]. Journal of Membrane Science, 2010, 363(1): 1-28. |
4 | WANG H, PARK M, LIANG H, et al. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation[J]. Water Research, 2017, 125: 42-51. |
5 | MENG F G, ZHANG S Q, OH Y, et al. Fouling in membrane bioreactors: an updated review[J]. Water Research, 2017, 114: 151-180. |
6 | 刘志晓. 聚芳醚砜类复合超滤膜的制备及性能研究[D]. 长春: 吉林大学, 2019. |
LIU Z X. Preparation and properties of poly(aryl ether sulfone) composite ultrafiltration membranes[D]. Changchun: Jilin University, 2019. | |
7 | LIU F, MA B R, ZHOU D, et al. Breaking through tradeoff of polysulfone ultrafiltration membranes by zeolite 4A[J]. Microporous and Mesoporous Materials, 2014, 186: 113-120. |
8 | OROOJI Y, FAGHIH M, RAZMJOU A, et al. Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion[J]. Carbon, 2017, 111: 689-704. |
9 | DULEBOHN J, AHMADIANNAMINI P, WANG T, et al. Polymer mesocomposites: ultrafiltration membrane materials with enhanced permeability, selectivity and fouling resistance[J]. Journal of Membrane Science, 2014, 453: 478-488. |
10 | SAMARI M, ZINADINI S, ZINATIZADEH A A, et al. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF)[J]. Separation and Purification Technology, 2020, 251: 117010. |
11 | XU L N, XU J, SHAN B T, et al. TpPa-2-incorporated mixed matrix membranes for efficient water purification[J]. Journal of Membrane Science, 2017, 526: 355-366. |
12 | ZINADINI S, ZINATIZADEH A A, RAHIMI M, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J]. Journal of Membrane Science, 2014, 453: 292-301. |
13 | DU R K, GAO B J, LI Y B. Hydrophilic polysulfone film prepared from polyethylene glycol monomethylether via coupling graft[J]. Applied Surface Science, 2013, 274: 288-294. |
14 | LIU Y, YUE X G, ZHANG S L, et al. Synthesis of sulfonated polyphenylsulfone as candidates for antifouling ultrafiltration membrane[J]. Separation and Purification Technology, 2012, 98: 298-307. |
15 | ZHANG Q F, ZHANG S B, DAI L, et al. Novel zwitterionic poly(arylene ether sulfone)s as antifouling membrane material[J]. Journal of Membrane Science, 2010, 349(1): 217-224. |
16 | CHENG X X, ZHOU W W, WU D J, et al. Pre-deposition layers for alleviating ultrafiltration membrane fouling by organic matter: role of hexagonally and cubically ordered mesoporous carbons[J]. Separation and Purification Technology, 2020, 240: 116599. |
17 | LONG X, CHEN Y S, ZHENG Q, et al. Removal of iodine from aqueous solution by PVDF/ZIF-8 nanocomposite membranes[J]. Separation and Purification Technology, 2020, 238: 116488. |
18 | MILLER D J, DREYER D R, BIELAWSKI C W, et al. Surface modification of water purification membranes[J]. Angewandte Chemie International Edition, 2017, 56(17): 4662-4711. |
19 | OROOJI Y, LIANG F, RAZMJOU A, et al. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon[J]. Separation and Purification Technology, 2018, 205: 273-283. |
20 | HUANG J, ZHANG K S, WANG K, et al. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties[J]. Journal of Membrane Science, 2012, 423/424: 362-370. |
21 | BABEL S, KURNIAWAN T A. Low-cost adsorbents for heavy metals uptake from contaminated water: a review[J]. Journal of Hazardous Materials, 2003, 97(1): 219-243. |
22 | CHUNG T S, JIANG L Y, LI Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation[J]. Progress in Polymer Science, 2007, 32(4): 483-507. |
23 | LI S G, ALVARADO G, NOBLE R D, et al. Effects of impurities on CO2/CH4 separations through SAPO-34 membranes[J]. Journal of Membrane Science, 2005, 251(1): 59-66. |
24 | VATANPOUR V, YEKAVALANGI M E, SAFARPOUR M. Preparation and characterization of nanocomposite PVDF ultrafiltration membrane embedded with nanoporous SAPO-34 to improve permeability and antifouling performance[J]. Separation and Purification Technology, 2016, 163: 300-309. |
25 | JUNAIDI M U M, LEO C P, KAMAL S N M, et al. Fouling mitigation in humic acid ultrafiltration using polysulfone/SAPO-34 mixed matrix membrane[J]. Water Science and Technology, 2013, 67(9): 2102-2109. |
26 | LEO C P, AHMAD KAMIL N H, JUNAIDI M U M, et al. The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane[J]. Separation and Purification Technology, 2013, 103: 84-91. |
27 | URTIAGA A, GORRI E D, CASADO C, et al. Pervaporative dehydration of industrial solvents using a zeolite NaA commercial membrane[J]. Separation and Purification Technology, 2003, 32(1): 207-213. |
28 | NAYAK M C, ISLOOR A M, MOSLEHYANI A, et al. Fabrication of novel PPSU/ZSM-5 ultrafiltration hollow fiber membranes for separation of proteins and hazardous reactive dyes[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82: 342-350. |
29 | ANIS S F, LALIA B S, HASHAIKEH R, et al. Breaking through the selectivity-permeability tradeoff using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection application[J]. Separation and Purification Technology, 2020, 242: 116824. |
30 | LIAO Z P, NGUYEN M N, WAN G J, et al. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants[J]. Journal of Hazardous Materials, 2020, 397: 122779. |
31 | 刘姿铔, 曹如雅, 张曼莹. 介孔石墨相氮化碳载银聚醚砜膜制备及性能研究[J]. 无机材料学报, 2019, 34(5): 478-486. |
LIU Z Y, CAO R Y, ZHANG M Y. Preparation and property of polyethersulfone ultrafiltration membranes with mesoporous-graphitic-C3N4/Ag[J]. Journal of Inorganic Materials, 2019, 34(5): 478-486. | |
32 | JIAO J, SUN X, PINNAVAIA T J. Mesostructured silica for the reinforcement and toughening of rubbery and glassy epoxy polymers[J]. Polymer, 2009, 50(4): 983-989. |
33 | ZHANG F A, LEE D K, PINNAVAIA T J. PMMA/mesoporous silica nanocomposites: effect of framework structure and pore size on thermomechanical properties[J]. Polymer Chemistry, 2010, 1(1): 107-113. |
34 | 邹振. 基于多孔纳米材料的刺激响应性药物载体构建及其性能研究[D]. 长沙: 湖南大学, 2016. |
ZOU Z. Study on the construction and performance of a stimuli-responsive drug delivery system based on nanoporous materials[D]. Changsha: Hunan University, 2016. | |
35 | GHOSH A K, BINDAL R C, TEWARI P K. Preparation of silica-polysulfone based high flux fouling resistant nanocomposite ultrafiltration membranes for separation of proteins, polysaccharides and humic substances[J]. Journal of Macromolecular Science, Part A, 2015, 52(4): 299-306. |
36 | 黄健, 舒增年, 张四海. 亲水荷电超滤膜的制备及对腐殖酸的分离性能[J]. 中国环境科学, 2014, 34(11): 2831-2837. |
HUANG J, SHU Z N, ZHANG S H. Fabrication and humic acid separation performance of hydrophilic negatively charged ultrafiltration membrane[J]. China Environmental Science, 2014, 34(11): 2831-2837. | |
37 | 喻文娟, 金亚铃, 胡滋苗, 等. 纳米Cu-SiO2复合粒子改性聚醚砜超滤膜的制备及分离性能研究[J]. 化工新型材料, 2018, 46(7): 118-122. |
YU W J, JIN Y L, Hu Z M, et al. Research on fabrication and separation performance of polyethersulfone ultrafiltration membrane incorporated by mCu-SiO2 nanocomposite[J]. New Chemical Materials, 2018, 46(7): 118-122. | |
38 | 罗劭娟. 有序介孔材料的制备及其应用研究[D]. 广州: 华南理工大学, 2010. |
LUO S J. The preparation of the ordered mesporous materials and their applications[D]. Guangzhou: South China University of Technology, 2010. | |
39 | LIU W, ZHANG Y Q, ZHANG L F, et al. Polysulfone ultrafiltration membrane promoted by brownmillerite SrCuxCo1-xO3-λ-deposited MCM-41 for industrial wastewater decontamination: catalytic oxidation and antifouling properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7805-7815. |
40 | RAZVAN A, POPA D F, OPREA O, et al. Ultrafiltration mixed matrix membranes based on mesoporous silica (MCM-41, HMS) embedded in polysulfone[J]. Revista De Chimie, Bucharest: Chiminform Data S A, 2019, 70(9): 3089-3093. |
41 | LIAO C J, ZHAO J Q, YU P, et al. Synthesis and characterization of SBA-15/poly (vinylidene fluoride) (PVDF) hybrid membrane[J]. Desalination, 2010, 260(1): 147-152. |
42 | 王海东, 鹿晓菲, 马军. 介孔SBA-15掺杂聚砜超滤复合膜的制备与性能研究[J]. 中国给水排水, 2017, 33(13): 1-5. |
WANG H D, LU X F, MA J. Preparation and filtration performance of mesoporous SBA-15 mixed polysulfone ultrafiltration composite membrane[J]. China Water & Wastewater, 2017, 33(13): 1-5. | |
43 | 马晶. SBA-15(16)介孔分子筛的功能化修饰及其在多相催化中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
MA J. Functional modification of SBA-15(16) mesoporous materials and their application in heterogeneous catalysis[D]. Harbin: Harbin Institute of Technology, 2011. | |
44 | VATANPOUR V, RABIEE H, DAVOOD ABADI FARAHANI M H, et al. Preparation and characterization of novel nanoporous SBA-16-COOH embedded polysulfone ultrafiltration membrane for protein separation[J]. Chemical Engineering Research and Design, 2020, 156: 240-250. |
45 | MARTÍN A, ARSUAGA J M, ROLDÁN N, et al. Enhanced ultrafiltration PES membranes doped with mesostructured functionalized silica particles[J]. Desalination, 2015, 357: 16-25. |
46 | MARTÍN A, ARSUAGA J M, ROLDÁN N, et al. Effect of amine functionalization of SBA-15 used as filler on the morphology and permeation properties of polyethersulfone-doped ultrafiltration membranes[J]. Journal of Membrane Science, 2016, 520: 8-18. |
47 | WANG H D, LU X F, LU D W, et al. Development of a high-performance polysulfone hybrid ultrafiltration membrane using hydrophilic polymer-functionalized mesoporous SBA-15 as filler[J]. Journal of Applied Polymer Science, 2019, 136(18): 47353. |
48 | GUO J, SOTTO A, MARTÍN A, et al. Preparation and characterization of polyethersulfone mixed matrix membranes embedded with Ti-or Zr-incorporated SBA-15 materials[J]. Journal of Industrial and Engineering Chemistry, 2017, 45: 257-265. |
49 | KALEEKKAL N J, RADHAKRISHNAN R, SUNIL V, et al. Performance evaluation of novel nanostructured modified mesoporous silica/polyetherimide composite membranes for the treatment of oil/water emulsion[J]. Separation and Purification Technology, 2018, 205: 32-47. |
50 | DÍEZ B, ROLDÁN N, MARTÍN A, et al. Fouling and biofouling resistance of metal-doped mesostructured silica/polyethersulfone ultrafiltration membranes[J]. Journal of Membrane Science, 2017, 526: 252-263. |
51 | MORRIS W, VOLOSSKIY B, DEMIR S, et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks[J]. Inorganic Chemistry, 2012, 51(12): 6443-6445. |
52 | FURUKAWA H, CORDOVA K E, O’KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149). |
53 | 刘浩驰. 磁性MOF的设计制备及其在水污染物分离分析中的应用研究[D]. 哈尔滨: 东北林业大学, 2017. |
LIU H C. Design and preparation of magnetic MOF and its application in separation and analysis of water polluants[D]. Harbin: Northeast Forestry University, 2017. | |
54 | LI B, WEN H M, CUI Y J, et al. Emerging multifunctional metal-organic framework materials[J]. Advanced Materials, 2016, 28(40): 8819-8860. |
55 | NANDASIRI M I, JAMBOVANE S R, MCGRAIL B P, et al. Adsorption, separation, and catalytic properties of densified metal-organic frameworks[J]. Coordination Chemistry Reviews, 2016, 311: 38-52. |
56 | SABO M, HENSCHEL A, FRÖDE H, et al. Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties[J]. Journal of Materials Chemistry, 2007, 17(36): 3827-3832. |
57 | SCHOENECKER P M, CARSON C G, JASUJA H, et al. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6513-6519. |
58 | KAYE S S, DAILLY A, YAGHI O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)[J]. Journal of the American Chemical Society, 2007, 129(46): 14176-14177. |
59 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
60 | PISCOPO C G, POLYZOIDIS A, SCHWARZER M, et al. Stability of UiO-66 under acidic treatment: opportunities and limitations for post-synthetic modifications[J]. Microporous and Mesoporous Materials, 2015, 208: 30-35. |
61 | WAN P, YUAN M X, YU X L, et al. Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UiO-66 metal organic frameworks[J]. Chemical Engineering Journal, 2020, 382: 122921. |
62 | MA J, GUO X Y, YING Y P, et al. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance[J]. Chemical Engineering Journal, 2017, 313: 890-898. |
63 | LIU Y C, GAN D, CHEN M Y, et al. Bioinspired dopamine modulating graphene oxide nanocomposite membrane interposed by super-hydrophilic UiO-66 with enhanced water permeability[J]. Separation and Purification Technology, 2020, 253: 117552. |
64 | HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2010, 9(2): 172-178. |
65 | ABDI S, NASIRI M. Enhanced Hydrophilicity and water flux of poly(ether sulfone) membranes in the presence of aluminum fumarate metal-organic framework nanoparticles: preparation and characterization[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 15060-15070. |
66 | REN Z Y, LUO J Q, WAN Y H. Highly permeable biocatalytic membrane prepared by 3D modification: metal-organic frameworks ameliorate its stability for micropollutants removal[J]. Chemical Engineering Journal, 2018, 348: 389-398. |
67 | WANG Q J, WANG G L, LIANG X F, et al. Supporting carbon quantum dots on NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a broad spectrum irradiation[J]. Applied Surface Science, 2019, 467: 320-327. |
68 | REMIRO-BUENAMAÑANA S, CABRERO-ANTONINO M, MARTÍNEZ-GUANTER M, et al. Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting[J]. Applied Catalysis B: Environmental, 2019, 254: 677-684. |
69 | ZHOU S Y, GAO J, ZHU J Y, et al. Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal[J]. Journal of Membrane Science, 2020, 610: 118219. |
70 | LIU R T, SUI Y M, WANG X Z. Metal-organic framework-based ultrafiltration membrane separation with capacitive-type for enhanced phosphate removal[J]. Chemical Engineering Journal, 2019, 371: 903-913. |
71 | CRAVILLON J, MÜNZER S, LOHMEIER S J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chemistry of Materials, 2009, 21(8): 1410-1412. |
72 | 张贺, 李国良, 张可刚, 等. 金属有机骨架材料在吸附分离研究中的应用进展[J]. 化学学报, 2017, 75(9): 841-859. |
ZHANG H, LI G L, ZHANG K G, et al. Advances of metal-organic frameworks in adsorption and separation applications[J]. Acta Chimica Sinica, 2017, 75(9): 841-859. | |
73 | KARIMI A, KHATAEE A, VATANPOUR V, et al. High-flux PVDF mixed matrix membranes embedded with size-controlled ZIF-8 nanoparticles[J]. Separation and Purification Technology, 2019, 229: 115838. |
74 | LIU G H, JIANG Z Y, CAO K T, et al. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles[J]. Journal of Membrane Science, 2017, 523: 185-196. |
75 | ZHANG H, WANG Y. Poly(vinyl alcohol)/ZIF-8-NH2 mixed matrix membranes for ethanol dehydration via pervaporation[J]. AIChE Journal, 2016, 62(5): 1728-1739. |
76 | HU Z Q, CHEN Y F, JIANG J W. Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation[J]. The Journal of Chemical Physics, 2011, 134(13): 134705. |
77 | SOTTO A, ORCAJO G, ARSUAGA J M, et al. Preparation and characterization of MOF-PES ultrafiltration membranes[J]. Journal of Applied Polymer Science, 2015, 132(21). |
78 | KARIMI A, KHATAEE A, VATANPOUR V, et al. The effect of different solvents on the morphology and performance of the ZIF-8 modified PVDF ultrafiltration membranes[J]. Separation and Purification Technology, 2020, 253: 117548. |
79 | SHAFIEI M, HAJIAN M. Preparation and characterization of polyvinyl butyral/zeolitic imidazolate framework-8 nanocomposite ultrafiltration membranes to improve water flux[J]. Advances in Polymer Technology, 2018, 37(8): 3607-3618. |
80 | NAIM R, HAZMO N H W, LAU W J, et al. Nanocomposite ultrafiltration membranes incorporated with zeolite and carbon nanotubes for enhanced water separation[J]. International Journal of Engineering, Transactions B: Applications, 2018, 31(8):1446-1454. |
81 | 吕晓丽, 张春芳, 白云翔, 等. 原位生长法制备ZIF-8/PAN超滤膜用于染料废水处理[J]. 水处理技术, 2016, 42(7): 30-34. |
LYU X L, ZHANG C F, BAI Y X, et al. Fabrication of ZIF-8/PAN ultrafiltration membranes versus in situ growth for dye wastewater treatment[J]. Technology of Water Treatment, 2016, 42(7): 30-34. | |
82 | KARIMI A, VATANPOUR V, KHATAEE A, et al. Contra-diffusion synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration membranes for improved water purification[J]. Journal of Industrial and Engineering Chemistry, 2019, 73: 95-105. |
83 | ZHANG J P, ZHANG Y B, LIN J B, et al. Metal azolate frameworks: from crystal engineering to functional materials[J]. Chemical Reviews, 2012, 112(2): 1001-1033. |
84 | MAROOFI S M, MAHMOODI N M. Zeolitic imidazolate framework-polyvinylpyrrolidone-polyethersulfone composites membranes: from synthesis to the detailed pollutant removal from wastewater using cross flow system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572: 211-220. |
85 | SUN H Z, TANG B B, WU P Y. Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties[J]. Journal of Membrane Science, 2018, 551: 283-293. |
86 | BERCHEL M, GALL T L, DENIS C, et al. A silver-based metal-organic framework material as a ‘reservoir’ of bactericidal metal ions[J]. New Journal of Chemistry, 2011, 35(5): 1000-1003. |
87 | LU X Y, YE J W, ZHANG D K, et al. Silver carboxylate metal-organic frameworks with highly antibacterial activity and biocompatibility[J]. Journal of Inorganic Biochemistry, 2014, 138: 114-121. |
88 | WYSZOGRODZKA G, MARSZAŁEK B, GIL B, et al. Metal-organic frameworks: mechanisms of antibacterial action and potential applications[J]. Drug Discovery Today, 2016, 21(6): 1009-1018. |
89 | QUIRÓS J, BOLTES K, AGUADO S, et al. Antimicrobial metal-organic frameworks incorporated into electrospun fibers[J]. Chemical Engineering Journal, 2015, 262: 189-197. |
90 | AHMAD N, SAMAVATI A, NORDIN N A H M, et al. Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane[J]. Separation and Purification Technology, 2020, 239: 116554. |
91 | MODI A, VERMA S K, BELLARE J. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: a potential membrane material for bioartificial liver application[J]. Materials Science and Engineering: C, 2018, 91: 524-540. |
92 | MODI A, BELLARE J. Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water[J]. Separation and Purification Technology, 2020, 249: 117160. |
93 | CHEN R Z, YAO J F, GU Q F, et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption[J]. Chemical Communications, The Royal Society of Chemistry, 2013, 49(82): 9500-9502. |
94 | LOW Z X, RAZMJOU A, WANG K, et al. Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane[J]. Journal of Membrane Science, 2014, 460: 9-17. |
95 | MODI A, BELLARE J. Amoxicillin removal using polyethersulfone hollow fiber membranes blended with ZIF-L nanoflakes and cGO nanosheets: improved flux and fouling-resistance[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103973. |
96 | LIN Y Q, WU H C, YASUI T, et al. Development of an HKUST-1 nanofiller-templated poly(ether sulfone) mixed matrix membrane for a highly efficient ultrafiltration process[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18782-18796. |
97 | CHUI S S Y, LO S M F, CHARMANT J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150 |
98 | MAZANI M, AGHAPOUR AKTIJ S, RAHIMPOUR A, et al. Cu-BTC metal-organic framework modified membranes for landfill leachate treatment[J]. Water, 2020, 12(1): 91. |
99 | LI T, REN Y, ZHAI S, et al. Integrating cationic metal-organic frameworks with ultrafiltration membrane for selective removal of perchlorate from water[J]. Journal of Hazardous Materials, 2020, 381: 120961. |
100 | ROWAN S J, CANTRILL S J, COUSINS G R L, et al. Dynamic covalent chemistry[J]. Angewandte Chemie International Edition, 2002, 41(6): 898-952. |
101 | 刘小舟. 二维及三维共价有机框架的设计合成与功能探究[D]. 长春: 吉林大学, 2019. |
LIU X Z. The design, synthesis and exploration of two-dimentional and three-dimentional covalent organic frameworks[D]. Changchun: Jilin University, 2019. | |
102 | CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
103 | EL-KADERI H M, HUNT J R, MENDOZA-CORTÉS J L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
104 | HUNT J R, DOONAN C J, LEVANGIE J D, et al. Reticular synthesis of covalent organic borosilicate frameworks[J]. Journal of the American Chemical Society, 2008, 130(36): 11872-11873. |
105 | KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527. |
106 | DUONG P H H, KUEHL V A, MASTOROVICH B, et al. Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes[J]. Journal of Membrane Science, 2019, 574: 338-348. |
107 | WANG X Y, SHI X S, WANG Y. In situ growth of cationic covalent organic frameworks (COFs) for mixed matrix membranes with enhanced performances[J]. Langmuir, 2020, 36(37): 10970-10978. |
108 | XU W T, SUN X J, HUANG M L, et al. Novel covalent organic framework/PVDF ultrafiltration membranes with antifouling and lead removal performance[J]. Journal of Environmental Management, 2020, 269: 110758. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[7] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[8] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[9] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[10] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[11] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[12] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[13] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[14] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[15] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |