化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3221-3234.DOI: 10.16085/j.issn.1000-6613.2021-1322
刘环博1(), 李健1(), 颜蓓蓓1, 董晓珊1, 陈冠益1,2,3
收稿日期:
2021-06-24
修回日期:
2021-07-18
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
李健
作者简介:
刘环博(1997—),男,硕士研究生,研究方向为生物质能源。E-mail:基金资助:
LIU Huanbo1(), LI Jian1(), YAN Beibei1, DONG Xiaoshan1, CHEN Guanyi1,2,3
Received:
2021-06-24
Revised:
2021-07-18
Online:
2022-06-10
Published:
2022-06-21
Contact:
LI Jian
摘要:
湿式烘焙是指180~260℃下在过热水中进行生物质预处理的技术,因其适用范围广、能耗低、预处理效果显著等优势,受到了广泛关注,但也因其发展尚处于起步阶段,存在诸多问题。文中综述了湿式烘焙技术的定义、反应机理及其优点,重点关注湿式烘焙固体产物物理化学特性的变化(最优条件下,产物质量密度升高33.2%,能量密度升高48.2%,研磨能耗降低25.6倍,平衡含水率降低2.9倍,球团耐久性升高33.0%,热值升高45.1%,燃点升高67℃)。讨论了湿式烘焙反应条件对于处理效果的影响,探究了湿式烘焙条件和燃料性能之间的内在联系,对生物质燃料湿式烘焙预处理及工艺耦合应用进行了全面概述,对湿式烘焙技术的经济可行性进行了综合分析。最后,明晰了湿式烘焙技术的缺陷及相应的应对措施,并对其未来的应用场景进行了分析展望,为提高湿式烘焙技术环境友好性和经济可行性提供一些理论基础。
中图分类号:
刘环博, 李健, 颜蓓蓓, 董晓珊, 陈冠益. 湿式烘焙技术研究进展[J]. 化工进展, 2022, 41(6): 3221-3234.
LIU Huanbo, LI Jian, YAN Beibei, DONG Xiaoshan, CHEN Guanyi. Research progress of wet torrefaction technology[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3221-3234.
组分 | 质量分数/% | 分解温度/℃ | 分解产物 | 产物来源 | 分解简式 |
---|---|---|---|---|---|
纤维素 | 40~50 | 230 | 主要为葡萄糖 | 纤维素大分子中糖苷键的断裂 | 纤维素→葡萄糖→分解产物 |
半纤维素 | 20~30 | 200 | 主要为木糖,其他还包括葡萄糖、阿拉伯糖、岩藻糖、半乳糖、葡萄糖醛酸和半乳糖醛酸 | 木聚糖主链的解聚 | 半纤维素→木糖→分解产物 |
木质素 | 20~30 | 260 | 酮、苯酚、呋喃和含甲氧基的苯酚衍生物等 | 分子中连接单体的氧桥键和单体苯环上的侧链键断裂 | 木质素→分解产物 |
表1 生物质中纤维素、半纤维素与木质素的分解情况[20, 22-23]
组分 | 质量分数/% | 分解温度/℃ | 分解产物 | 产物来源 | 分解简式 |
---|---|---|---|---|---|
纤维素 | 40~50 | 230 | 主要为葡萄糖 | 纤维素大分子中糖苷键的断裂 | 纤维素→葡萄糖→分解产物 |
半纤维素 | 20~30 | 200 | 主要为木糖,其他还包括葡萄糖、阿拉伯糖、岩藻糖、半乳糖、葡萄糖醛酸和半乳糖醛酸 | 木聚糖主链的解聚 | 半纤维素→木糖→分解产物 |
木质素 | 20~30 | 260 | 酮、苯酚、呋喃和含甲氧基的苯酚衍生物等 | 分子中连接单体的氧桥键和单体苯环上的侧链键断裂 | 木质素→分解产物 |
性质 | 原始生物质 | 水热炭 | 褐煤 |
---|---|---|---|
热值/MJ·kg-1 | 18.4~18.9 | 24.7~26.7 | 25.0 |
含水率/% | 6.6~12.9 | 2.5~3.2 | 13.5 |
挥发分质量分数/% | 79.2~80.9 | 67.9~72.5 | 48.8 |
灰分质量分数/% | 8.1~10.5 | 26.4~31.1 | 30.1 |
含氧量/% | 44.8~45.5 | 5.0~7.3 | 10.3 |
O/C比 | 0.7 | 0.3~0.4 | 0.4 |
H/C | 1.4~1.6 | 0.9~1.2 | 1.1 |
燃点/℃ | 253~273 | 288~372 | 368 |
表2 原始生物质及其水热炭与褐煤燃烧特性对比[45, 47-48]
性质 | 原始生物质 | 水热炭 | 褐煤 |
---|---|---|---|
热值/MJ·kg-1 | 18.4~18.9 | 24.7~26.7 | 25.0 |
含水率/% | 6.6~12.9 | 2.5~3.2 | 13.5 |
挥发分质量分数/% | 79.2~80.9 | 67.9~72.5 | 48.8 |
灰分质量分数/% | 8.1~10.5 | 26.4~31.1 | 30.1 |
含氧量/% | 44.8~45.5 | 5.0~7.3 | 10.3 |
O/C比 | 0.7 | 0.3~0.4 | 0.4 |
H/C | 1.4~1.6 | 0.9~1.2 | 1.1 |
燃点/℃ | 253~273 | 288~372 | 368 |
气化原料 | 气化条件 | 气化气成分/mol·kg | 热值 /kJ·m-3 | |||
---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | |||
橄榄石水热炭 | 700℃、1g/min | 28.54 | 8.32 | 0.05 | 6.30 | 6560.1 |
12.94 | 12.88 | 3.76 | 4.98 | 8285.3 | ||
橄榄石水热炭 | 900℃、1g/min | 38.56 | 11.48 | 1.72 | 5.73 | 8341.5 |
52.57 | 14.32 | 1.82 | 16.40 | 10224.5 | ||
橄榄石水热炭 | 900℃、0.5g/min | 41.53 | 8.22 | 1.03 | 4.28 | 7099.5 |
52.78 | 11.01 | 1.62 | 20.00 | 9043.7 |
表3 橄榄石及其水热炭气化气特性对比[69]
气化原料 | 气化条件 | 气化气成分/mol·kg | 热值 /kJ·m-3 | |||
---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | |||
橄榄石水热炭 | 700℃、1g/min | 28.54 | 8.32 | 0.05 | 6.30 | 6560.1 |
12.94 | 12.88 | 3.76 | 4.98 | 8285.3 | ||
橄榄石水热炭 | 900℃、1g/min | 38.56 | 11.48 | 1.72 | 5.73 | 8341.5 |
52.57 | 14.32 | 1.82 | 16.40 | 10224.5 | ||
橄榄石水热炭 | 900℃、0.5g/min | 41.53 | 8.22 | 1.03 | 4.28 | 7099.5 |
52.78 | 11.01 | 1.62 | 20.00 | 9043.7 |
1 | BUI H H, TRAN K Q, CHEN W H. Pyrolysis of microalgae residues—A kinetic study[J]. Bioresource Technology, 2016, 199: 362-366. |
2 | BACH Q V, SKREIBERG Ø. Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 665-677. |
3 | CHEN W H, ZHUANG Y Q, LIU S H, et al. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres[J]. Bioresource Technology, 2016, 199: 367-374. |
4 | 毛俏婷, 胡俊豪, 姚丁丁, 等. 生物炭催化生物质热化学转化利用的研究进展[J]. 化工进展, 2020, 39(4): 1302-1307. |
MAO Qiaoting, HU Junhao, YAO Dingding, et al. Biochar for thermo-chemical conversion of biomass: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1302-1307. | |
5 | LAM P S, SOKHANSANJ S, BI X T, et al. Energy input and quality of pellets made from steam-exploded Douglas fir (Pseudotsuga menziesii)[J]. Energy & Fuels, 2011, 25(4): 1521-1528. |
6 | LAM P S, SOKHANSANJ S, BI X T, et al. Drying characteristics and equilibrium moisture content of steam-treated Douglas fir (Pseudotsuga menziesii L.)[J]. Bioresource Technology, 2012, 116: 396-402. |
7 | LAM P S, LAM P Y, SOKHANSANJ S, et al. Mechanical and compositional characteristics of steam-treated Douglas fir (Pseudotsuga menziesii L.) during pelletization[J]. Biomass and Bioenergy, 2013, 56: 116-126. |
8 | MABEE W E, GREGG D J, ARATO C, et al. Updates on softwood-to-ethanol process development[J]. Applied Biochemistry and Biotechnology, 2006, 129(1/2/3): 55-70. |
9 | LYNAM J G, CORONELLA C J, YAN W, et al. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(10): 6192-6199. |
10 | CHEN W H, YE S C, SHEEN H K. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating[J]. Bioresource Technology, 2012, 118: 195-203. |
11 | HOEKMAN S K, BROCH A, ROBBINS C. Hydrothermal carbonization (HTC) of lignocellulosic biomass[J]. Energy & Fuels, 2011, 25(4): 1802-1810. |
12 | BACH Q V, TRAN K Q, KHALIL R A, et al. Comparative assessment of wet torrefaction[J]. Energy & Fuels, 2013, 27(11): 6743-6753. |
13 | KRUSE A, FUNKE A, TITIRICI M M. Hydrothermal conversion of biomass to fuels and energetic materials[J]. Current Opinion in Chemical Biology, 2013, 17(3): 515-521. |
14 | HU B, WANG K, WU L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 2010, 22(7): 813-828. |
15 | KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: 2. Degradation reactions[J]. The Journal of Supercritical Fluids, 2007, 41(3): 361-379. |
16 | TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. |
17 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
18 | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
19 | KUMAR P, BARRETT D M, DELWICHE M J, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3713-3729. |
20 | PAVLOVIČ I, KNEZ Ž, ŠKERGET M. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research[J]. Journal of Agricultural and Food Chemistry, 2013, 61(34): 8003-8025. |
21 | BISWAS A K, UMEKI K, YANG W H, et al. Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment[J]. Fuel Processing Technology, 2011, 92(10): 1849-1854. |
22 | ACHARYA B, DUTTA A, MINARET J. Review on comparative study of dry and wet torrefaction[J]. Sustainable Energy Technologies and Assessments, 2015, 12: 26-37. |
23 | 任献涛, 张长森, 李松岭, 等. 玉米秆酶解残渣木质素热解实验研究[J]. 纤维素科学与技术, 2012, 20(3): 13-19. |
REN Xiantao, ZHANG Changsen, LI Songling, et al. Pyrolysis of enzymatic hydrolysis lignin from the cornstalks residue[J]. Journal of Cellulose Science and Technology, 2012, 20(3): 13-19. | |
24 | DU Z Y, MOHR M, MA X C, et al. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content[J]. Bioresource Technology, 2012, 120: 13-18. |
25 | HEILMANN S M, JADER L R, HARNED L A, et al. Hydrothermal carbonization of microalgae Ⅱ. Fatty acid, char, and algal nutrient products[J]. Applied Energy, 2011, 88(10): 3286-3290. |
26 | TWAIQ F A, ZABIDI N A M, BHATIA S. Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 1999, 38(9): 3230-3237. |
27 | YAN W, ACHARJEE T C, CORONELLA C J, et al. Thermal pretreatment of lignocellulosic biomass[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 435-440. |
28 | VOLPE M, FIORI L. From olive waste to solid biofuel through hydrothermal carbonisation: the role of temperature and solid load on secondary char formation and hydrochar energy properties[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 63-72. |
29 | LAURILA J, HAVIMO M, LAUHANEN R. Compression drying of energy wood[J]. Fuel Processing Technology, 2014, 124: 286-289. |
30 | YAN W, PEREZ S, SHENG K C. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization[J]. Fuel, 2017, 196: 473-480. |
31 | KAMBO H S, DUTTA A. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel[J]. Energy Conversion and Management, 2015, 105: 746-755. |
32 | WANG X H, WU J, CHEN Y Q, et al. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration[J]. Bioresource Technology, 2018, 258: 88-97. |
33 | REZA M T, LYNAM J G, UDDIN M H, et al. Hydrothermal carbonization: fate of inorganics[J]. Biomass and Bioenergy, 2013, 49: 86-94. |
34 | BACH Q V, TRAN K Q, SKREIBERG Ø. Accelerating wet torrefaction rate and ash removal by carbon dioxide addition[J]. Fuel Processing Technology, 2015, 140: 297-303. |
35 | REZA M T, LYNAM J G, VASQUEZ V R, et al. Pelletization of biochar from hydrothermally carbonized wood[J]. Environmental Progress & Sustainable Energy, 2012, 31(2): 225-234. |
36 | STELT M J C VAN DER, GERHAUSER H, KIEL J H A, et al. Biomass upgrading by torrefaction for the production of biofuels: a review[J]. Biomass and Bioenergy, 2011, 35(9): 3748-3762. |
37 | ARIAS B, PEVIDA C, FERMOSO J, et al. Influence of torrefaction on the grindability and reactivity of woody biomass[J]. Fuel Processing Technology, 2008, 89(2): 169-175. |
38 | TU R, SUN Y, WU Y, et al. Improvement of corn stover fuel properties via hydrothermal carbonization combined with surfactant[J]. Biotechnology for Biofuels, 2019, 12: 249. |
39 | TREMEL A, STEMANN J, HERRMANN M, et al. Entrained flow gasification of biocoal from hydrothermal carbonization[J]. Fuel, 2012, 102: 396-403. |
40 | FAGERNÄS L, BRAMMER J, WILÉN C, et al. Drying of biomass for second generation synfuel production[J]. Biomass and Bioenergy, 2010, 34(9): 1267-1277. |
41 | CONAG A T, VILLAHERMOSA J E R, CABATINGAN L K, et al. Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5411-5419. |
42 | GAI C, CHEN M J, LIU T T, et al. Gasification characteristics of hydrochar and pyrochar derived from sewage sludge[J]. Energy, 2016, 113: 957-965. |
43 | LIU Z G, QUEK A, BALASUBRAMANIAN R. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars[J]. Applied Energy, 2014, 113: 1315-1322. |
44 | REZA M T, UDDIN M H, LYNAM J G, et al. Engineered pellets from dry torrefied and HTC biochar blends[J]. Biomass and Bioenergy, 2014, 63: 229-238. |
45 | LIU Z G, QUEK A, KENT HOEKMAN S, et al. Production of solid biochar fuel from waste biomass by hydrothermal carbonization[J]. Fuel, 2013, 103: 943-949. |
46 | LIU Z G, QUEK A, KENT HOEKMAN S, et al. Thermogravimetric investigation of hydrochar-lignite co-combustion[J]. Bioresource Technology, 2012, 123: 646-652. |
47 | PARSHETTI G K, LIU Z G, JAIN A, et al. Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel, 2013, 111: 201-210. |
48 | LIU Z G, QUEK A, KENT HOEKMAN S, et al. Thermogravimetric investigation of hydrochar-lignite co-combustion[J]. Bioresource Technology, 2012, 123: 646-652. |
49 | ZHENG A Q, ZHAO Z L, CHANG S, et al. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs[J]. Bioresource Technology, 2015, 176: 15-22. |
50 | SERMYAGINA E, SAARI J, KAIKKO J, et al. Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 551-556. |
51 | ZHANG D L, WANG F, ZHANG A D, et al. Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate: comparison of dry and wet torrefaction[J]. Bioresource Technology, 2019, 275: 239-246. |
52 | MÄKELÄ M, BENAVENTE V, FULLANA A. Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties[J]. Applied Energy, 2015, 155: 576-584. |
53 | LI M F, SHEN Y, SUN J K, et al. Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2022-2029. |
54 | HU J, JIANG B X, WANG J, et al. Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating[J]. Bioresource Technology, 2019, 274: 83-88. |
55 | BACH Q V, CHEN W H, LIN S C, et al. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating[J]. Energy Conversion and Management, 2017, 141: 163-170. |
56 | YAN W, HOEKMAN S K, BROCH A, et al. Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets[J]. Environmental Progress & Sustainable Energy, 2014, 33(3): 676-680. |
57 | ELAIGWU S E, GREENWAY G M. Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties[J]. Fuel Processing Technology, 2016, 149: 305-312. |
58 | DAI L L, HE C, WANG Y P, et al. Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: hydrochar properties and its pyrolysis behaviors[J]. Energy Conversion and Management, 2017, 146: 1-7. |
59 | XU X W, TU R, SUN Y, et al. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk[J]. Bioresource Technology, 2019, 271: 427-438. |
60 | CHEN Y F, DONG B Y, QIN W J, et al. Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol[J]. Bioresource Technology, 2010, 101(18): 6994-6999. |
61 | ROMÁN S, NABAIS J M V, LAGINHAS C, et al. Hydrothermal carbonization as an effective way of densifying the energy content of biomass[J]. Fuel Processing Technology, 2012, 103: 78-83. |
62 | PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1(1): 32. |
63 | BACH Q V, TRAN K Q, SKREIBERG Ø, et al. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions[J]. Fuel, 2014, 137: 375-383. |
64 | HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266. |
65 | ZHAO P T, CHEN H F, GE S F, et al. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion[J]. Applied Energy, 2013, 111: 199-205. |
66 | HE C, WANG K, YANG Y H, et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping[J]. Environmental Science & Technology, 2015, 49(11): 6872-6880. |
67 | CHEN D Z, HU Y Y, ZHANG P F. Hydrothermal treatment of incineration fly ash for PCDD/Fs decomposition: the effect of iron addition[J]. Environmental Technology, 2012, 33(22): 2517-2523. |
68 | BRIESEMEISTER L, KREMLING M, FENDT S, et al. Air-blown entrained-flow gasification of biocoal from hydrothermal carbonization[J]. Chemical Engineering & Technology, 2017, 40(2): 270-277. |
69 | ÁLVAREZ-MURILLO A, LEDESMA B, ROMÁN S, et al. Biomass pyrolysis toward hydrocarbonization. Influence on subsequent steam gasification processes[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 380-389. |
70 | CASTELLO D, KRUSE A, FIORI L. Supercritical water gasification of hydrochar[J]. Chemical Engineering Research and Design, 2014, 92(10): 1864-1875. |
71 | LU Y D, SAVAGE P E. Supercritical water gasification of lipid-extracted hydrochar to recover energy and nutrients[J]. The Journal of Supercritical Fluids, 2015, 99: 88-94. |
72 | 张泽, 赵洪君, 孟洁, 等. 生物质的热解及生物油提质的研究进展[J]. 环境工程, 2021, 39(3): 161-171. |
ZHANG Ze, ZHAO Hongjun, MENG Jie, et al. Research progress of biomass pyrolysis and bio oil upgrading[J]. Environmental Engineering, 2021, 39(3): 161-171. | |
73 | YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
74 | ZENG K, HE X, YANG H P, et al. The effect of combined pretreatments on the pyrolysis of corn stalk[J]. Bioresource Technology, 2019, 281: 309-317. |
75 | SU Y H, LIU L Q, DONG Q, et al. Investigation of molten salt in wet torrefaction and its effects on fast pyrolysis behaviors[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(5): 577-585. |
76 | BACH Q V, TRAN K Q, SKREIBERG Ø, et al. Effects of wet torrefaction on pyrolysis of woody biomass fuels[J]. Energy, 2015, 88: 443-456. |
77 | ZHANG S P, CHEN T, XIONG Y Q, et al. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk[J]. Energy Conversion and Management, 2017, 141: 403-409. |
78 | STEINBACH D, KRUSE A, SAUER J. Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production—A review[J]. Biomass Conversion and Biorefinery, 2017, 7(2): 247-274. |
79 | KIM Y, XIMENES E, MOSIER N S, et al. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass[J]. Enzyme and Microbial Technology, 2011, 48(4/5): 408-415. |
80 | LIN R C, DENG C, DING L K, et al. Improving gaseous biofuel production from seaweed Saccharina latissima: the effect of hydrothermal pretreatment on energy efficiency[J]. Energy Conversion and Management, 2019, 196: 1385-1394. |
81 | HASHEMI S S, KARIMI K, MIRMOHAMADSADEGHI S. Hydrothermal pretreatment of safflower straw to enhance biogas production[J]. Energy, 2019, 172: 545-554. |
82 | HESAMI S M, ZILOUEI H, KARIMI K, et al. Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment[J]. Industrial Crops and Products, 2015, 76: 449-455. |
83 | CHEN H H, RAO Y, CAO L C, et al. Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields[J]. Chemical Engineering Journal, 2019, 357: 367-375. |
84 | KO J K, UM Y, PARK Y C, et al. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose[J]. Applied Microbiology and Biotechnology, 2015, 99(10): 4201-4212. |
85 | TRAN K Q, TRINH T N, BACH Q V. Development of a biomass torrefaction process integrated with oxy-fuel combustion[J]. Bioresource Technology, 2016, 199: 408-413. |
86 | ZHAO P T, SHEN Y F, GE S F, et al. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Applied Energy, 2014, 131: 345-367. |
87 | YAN W, HASTINGS J T, ACHARJEE T C, et al. Mass and energy balances of wet torrefaction of lignocellulosic biomass[J]. Energy & Fuels, 2010, 24(9): 4738-4742. |
88 | TRAN K Q. Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass - The need to develop a plug-flow reactor[J]. Bioresource Technology, 2016, 213: 327-332. |
89 | CALZAVARA Y, JOUSSOT-DUBIEN C, BOISSONNET G, et al. Evaluation of biomass gasification in supercritical water process for hydrogen production[J]. Energy Conversion and Management, 2005, 46(4): 615-631. |
90 | ZHANG J X, CHEN W T, ZHANG P, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts[J]. Bioresource Technology, 2013, 133: 389-397. |
[1] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[2] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[3] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[4] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[5] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[6] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[7] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[8] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[9] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[10] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[11] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[12] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[13] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[14] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[15] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |