化工进展 ›› 2022, Vol. 41 ›› Issue (6): 3221-3234.doi: 10.16085/j.issn.1000-6613.2021-1322
刘环博1(), 李健1(
), 颜蓓蓓1, 董晓珊1, 陈冠益1,2,3
收稿日期:
2021-06-24
修回日期:
2021-07-18
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
李健
E-mail:liuhuanbo2019@163.com;lijian_2014@tju.edu.cn
作者简介:
刘环博(1997—),男,硕士研究生,研究方向为生物质能源。E-mail:基金资助:
LIU Huanbo1(), LI Jian1(
), YAN Beibei1, DONG Xiaoshan1, CHEN Guanyi1,2,3
Received:
2021-06-24
Revised:
2021-07-18
Online:
2022-06-10
Published:
2022-06-21
Contact:
LI Jian
E-mail:liuhuanbo2019@163.com;lijian_2014@tju.edu.cn
摘要:
湿式烘焙是指180~260℃下在过热水中进行生物质预处理的技术,因其适用范围广、能耗低、预处理效果显著等优势,受到了广泛关注,但也因其发展尚处于起步阶段,存在诸多问题。文中综述了湿式烘焙技术的定义、反应机理及其优点,重点关注湿式烘焙固体产物物理化学特性的变化(最优条件下,产物质量密度升高33.2%,能量密度升高48.2%,研磨能耗降低25.6倍,平衡含水率降低2.9倍,球团耐久性升高33.0%,热值升高45.1%,燃点升高67℃)。讨论了湿式烘焙反应条件对于处理效果的影响,探究了湿式烘焙条件和燃料性能之间的内在联系,对生物质燃料湿式烘焙预处理及工艺耦合应用进行了全面概述,对湿式烘焙技术的经济可行性进行了综合分析。最后,明晰了湿式烘焙技术的缺陷及相应的应对措施,并对其未来的应用场景进行了分析展望,为提高湿式烘焙技术环境友好性和经济可行性提供一些理论基础。
中图分类号:
刘环博, 李健, 颜蓓蓓, 董晓珊, 陈冠益. 湿式烘焙技术研究进展[J]. 化工进展, 2022, 41(6): 3221-3234.
LIU Huanbo, LI Jian, YAN Beibei, DONG Xiaoshan, CHEN Guanyi. Research progress of wet torrefaction technology[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3221-3234.
1 | BUI H H, TRAN K Q, CHEN W H. Pyrolysis of microalgae residues—A kinetic study[J]. Bioresource Technology, 2016, 199: 362-366. |
2 | BACH Q V, SKREIBERG Ø. Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 665-677. |
3 | CHEN W H, ZHUANG Y Q, LIU S H, et al. Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres[J]. Bioresource Technology, 2016, 199: 367-374. |
4 | 毛俏婷, 胡俊豪, 姚丁丁, 等. 生物炭催化生物质热化学转化利用的研究进展[J]. 化工进展, 2020, 39(4): 1302-1307. |
MAO Qiaoting, HU Junhao, YAO Dingding, et al. Biochar for thermo-chemical conversion of biomass: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1302-1307. | |
5 | LAM P S, SOKHANSANJ S, BI X T, et al. Energy input and quality of pellets made from steam-exploded Douglas fir (Pseudotsuga menziesii)[J]. Energy & Fuels, 2011, 25(4): 1521-1528. |
6 | LAM P S, SOKHANSANJ S, BI X T, et al. Drying characteristics and equilibrium moisture content of steam-treated Douglas fir (Pseudotsuga menziesii L.)[J]. Bioresource Technology, 2012, 116: 396-402. |
7 | LAM P S, LAM P Y, SOKHANSANJ S, et al. Mechanical and compositional characteristics of steam-treated Douglas fir (Pseudotsuga menziesii L.) during pelletization[J]. Biomass and Bioenergy, 2013, 56: 116-126. |
8 | MABEE W E, GREGG D J, ARATO C, et al. Updates on softwood-to-ethanol process development[J]. Applied Biochemistry and Biotechnology, 2006, 129(1/2/3): 55-70. |
9 | LYNAM J G, CORONELLA C J, YAN W, et al. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2011, 102(10): 6192-6199. |
10 | CHEN W H, YE S C, SHEEN H K. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating[J]. Bioresource Technology, 2012, 118: 195-203. |
11 | HOEKMAN S K, BROCH A, ROBBINS C. Hydrothermal carbonization (HTC) of lignocellulosic biomass[J]. Energy & Fuels, 2011, 25(4): 1802-1810. |
12 | BACH Q V, TRAN K Q, KHALIL R A, et al. Comparative assessment of wet torrefaction[J]. Energy & Fuels, 2013, 27(11): 6743-6753. |
13 | KRUSE A, FUNKE A, TITIRICI M M. Hydrothermal conversion of biomass to fuels and energetic materials[J]. Current Opinion in Chemical Biology, 2013, 17(3): 515-521. |
14 | HU B, WANG K, WU L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 2010, 22(7): 813-828. |
15 | KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: 2. Degradation reactions[J]. The Journal of Supercritical Fluids, 2007, 41(3): 361-379. |
16 | TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. |
17 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
18 | 曹运齐, 解先利, 郭振强, 等. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang, et al. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
19 | KUMAR P, BARRETT D M, DELWICHE M J, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3713-3729. |
20 | PAVLOVIČ I, KNEZ Ž, ŠKERGET M. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research[J]. Journal of Agricultural and Food Chemistry, 2013, 61(34): 8003-8025. |
21 | BISWAS A K, UMEKI K, YANG W H, et al. Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment[J]. Fuel Processing Technology, 2011, 92(10): 1849-1854. |
22 | ACHARYA B, DUTTA A, MINARET J. Review on comparative study of dry and wet torrefaction[J]. Sustainable Energy Technologies and Assessments, 2015, 12: 26-37. |
23 | 任献涛, 张长森, 李松岭, 等. 玉米秆酶解残渣木质素热解实验研究[J]. 纤维素科学与技术, 2012, 20(3): 13-19. |
REN Xiantao, ZHANG Changsen, LI Songling, et al. Pyrolysis of enzymatic hydrolysis lignin from the cornstalks residue[J]. Journal of Cellulose Science and Technology, 2012, 20(3): 13-19. | |
24 | DU Z Y, MOHR M, MA X C, et al. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content[J]. Bioresource Technology, 2012, 120: 13-18. |
25 | HEILMANN S M, JADER L R, HARNED L A, et al. Hydrothermal carbonization of microalgae Ⅱ. Fatty acid, char, and algal nutrient products[J]. Applied Energy, 2011, 88(10): 3286-3290. |
26 | TWAIQ F A, ZABIDI N A M, BHATIA S. Catalytic conversion of palm oil to hydrocarbons: performance of various zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 1999, 38(9): 3230-3237. |
27 | YAN W, ACHARJEE T C, CORONELLA C J, et al. Thermal pretreatment of lignocellulosic biomass[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 435-440. |
28 | VOLPE M, FIORI L. From olive waste to solid biofuel through hydrothermal carbonisation: the role of temperature and solid load on secondary char formation and hydrochar energy properties[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 63-72. |
29 | LAURILA J, HAVIMO M, LAUHANEN R. Compression drying of energy wood[J]. Fuel Processing Technology, 2014, 124: 286-289. |
30 | YAN W, PEREZ S, SHENG K C. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: dry torrefaction and hydrothermal carbonization[J]. Fuel, 2017, 196: 473-480. |
31 | KAMBO H S, DUTTA A. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel[J]. Energy Conversion and Management, 2015, 105: 746-755. |
32 | WANG X H, WU J, CHEN Y Q, et al. Comparative study of wet and dry torrefaction of corn stalk and the effect on biomass pyrolysis polygeneration[J]. Bioresource Technology, 2018, 258: 88-97. |
33 | REZA M T, LYNAM J G, UDDIN M H, et al. Hydrothermal carbonization: fate of inorganics[J]. Biomass and Bioenergy, 2013, 49: 86-94. |
34 | BACH Q V, TRAN K Q, SKREIBERG Ø. Accelerating wet torrefaction rate and ash removal by carbon dioxide addition[J]. Fuel Processing Technology, 2015, 140: 297-303. |
35 | REZA M T, LYNAM J G, VASQUEZ V R, et al. Pelletization of biochar from hydrothermally carbonized wood[J]. Environmental Progress & Sustainable Energy, 2012, 31(2): 225-234. |
36 | STELT M J C VAN DER, GERHAUSER H, KIEL J H A, et al. Biomass upgrading by torrefaction for the production of biofuels: a review[J]. Biomass and Bioenergy, 2011, 35(9): 3748-3762. |
37 | ARIAS B, PEVIDA C, FERMOSO J, et al. Influence of torrefaction on the grindability and reactivity of woody biomass[J]. Fuel Processing Technology, 2008, 89(2): 169-175. |
38 | TU R, SUN Y, WU Y, et al. Improvement of corn stover fuel properties via hydrothermal carbonization combined with surfactant[J]. Biotechnology for Biofuels, 2019, 12: 249. |
39 | TREMEL A, STEMANN J, HERRMANN M, et al. Entrained flow gasification of biocoal from hydrothermal carbonization[J]. Fuel, 2012, 102: 396-403. |
40 | FAGERNÄS L, BRAMMER J, WILÉN C, et al. Drying of biomass for second generation synfuel production[J]. Biomass and Bioenergy, 2010, 34(9): 1267-1277. |
41 | CONAG A T, VILLAHERMOSA J E R, CABATINGAN L K, et al. Energy densification of sugarcane bagasse through torrefaction under minimized oxidative atmosphere[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5411-5419. |
42 | GAI C, CHEN M J, LIU T T, et al. Gasification characteristics of hydrochar and pyrochar derived from sewage sludge[J]. Energy, 2016, 113: 957-965. |
43 | LIU Z G, QUEK A, BALASUBRAMANIAN R. Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars[J]. Applied Energy, 2014, 113: 1315-1322. |
44 | REZA M T, UDDIN M H, LYNAM J G, et al. Engineered pellets from dry torrefied and HTC biochar blends[J]. Biomass and Bioenergy, 2014, 63: 229-238. |
45 | LIU Z G, QUEK A, KENT HOEKMAN S, et al. Production of solid biochar fuel from waste biomass by hydrothermal carbonization[J]. Fuel, 2013, 103: 943-949. |
46 | LIU Z G, QUEK A, KENT HOEKMAN S, et al. Thermogravimetric investigation of hydrochar-lignite co-combustion[J]. Bioresource Technology, 2012, 123: 646-652. |
47 | PARSHETTI G K, LIU Z G, JAIN A, et al. Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel, 2013, 111: 201-210. |
48 | LIU Z G, QUEK A, KENT HOEKMAN S, et al. Thermogravimetric investigation of hydrochar-lignite co-combustion[J]. Bioresource Technology, 2012, 123: 646-652. |
49 | ZHENG A Q, ZHAO Z L, CHANG S, et al. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs[J]. Bioresource Technology, 2015, 176: 15-22. |
50 | SERMYAGINA E, SAARI J, KAIKKO J, et al. Hydrothermal carbonization of coniferous biomass: effect of process parameters on mass and energy yields[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 551-556. |
51 | ZHANG D L, WANG F, ZHANG A D, et al. Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate: comparison of dry and wet torrefaction[J]. Bioresource Technology, 2019, 275: 239-246. |
52 | MÄKELÄ M, BENAVENTE V, FULLANA A. Hydrothermal carbonization of lignocellulosic biomass: effect of process conditions on hydrochar properties[J]. Applied Energy, 2015, 155: 576-584. |
53 | LI M F, SHEN Y, SUN J K, et al. Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2022-2029. |
54 | HU J, JIANG B X, WANG J, et al. Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating[J]. Bioresource Technology, 2019, 274: 83-88. |
55 | BACH Q V, CHEN W H, LIN S C, et al. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating[J]. Energy Conversion and Management, 2017, 141: 163-170. |
56 | YAN W, HOEKMAN S K, BROCH A, et al. Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets[J]. Environmental Progress & Sustainable Energy, 2014, 33(3): 676-680. |
57 | ELAIGWU S E, GREENWAY G M. Microwave-assisted hydrothermal carbonization of rapeseed husk: a strategy for improving its solid fuel properties[J]. Fuel Processing Technology, 2016, 149: 305-312. |
58 | DAI L L, HE C, WANG Y P, et al. Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: hydrochar properties and its pyrolysis behaviors[J]. Energy Conversion and Management, 2017, 146: 1-7. |
59 | XU X W, TU R, SUN Y, et al. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk[J]. Bioresource Technology, 2019, 271: 427-438. |
60 | CHEN Y F, DONG B Y, QIN W J, et al. Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol[J]. Bioresource Technology, 2010, 101(18): 6994-6999. |
61 | ROMÁN S, NABAIS J M V, LAGINHAS C, et al. Hydrothermal carbonization as an effective way of densifying the energy content of biomass[J]. Fuel Processing Technology, 2012, 103: 78-83. |
62 | PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1(1): 32. |
63 | BACH Q V, TRAN K Q, SKREIBERG Ø, et al. Effects of wet torrefaction on reactivity and kinetics of wood under air combustion conditions[J]. Fuel, 2014, 137: 375-383. |
64 | HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266. |
65 | ZHAO P T, CHEN H F, GE S F, et al. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion[J]. Applied Energy, 2013, 111: 199-205. |
66 | HE C, WANG K, YANG Y H, et al. Effective nitrogen removal and recovery from dewatered sewage sludge using a novel integrated system of accelerated hydrothermal deamination and air stripping[J]. Environmental Science & Technology, 2015, 49(11): 6872-6880. |
67 | CHEN D Z, HU Y Y, ZHANG P F. Hydrothermal treatment of incineration fly ash for PCDD/Fs decomposition: the effect of iron addition[J]. Environmental Technology, 2012, 33(22): 2517-2523. |
68 | BRIESEMEISTER L, KREMLING M, FENDT S, et al. Air-blown entrained-flow gasification of biocoal from hydrothermal carbonization[J]. Chemical Engineering & Technology, 2017, 40(2): 270-277. |
69 | ÁLVAREZ-MURILLO A, LEDESMA B, ROMÁN S, et al. Biomass pyrolysis toward hydrocarbonization. Influence on subsequent steam gasification processes[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 380-389. |
70 | CASTELLO D, KRUSE A, FIORI L. Supercritical water gasification of hydrochar[J]. Chemical Engineering Research and Design, 2014, 92(10): 1864-1875. |
71 | LU Y D, SAVAGE P E. Supercritical water gasification of lipid-extracted hydrochar to recover energy and nutrients[J]. The Journal of Supercritical Fluids, 2015, 99: 88-94. |
72 | 张泽, 赵洪君, 孟洁, 等. 生物质的热解及生物油提质的研究进展[J]. 环境工程, 2021, 39(3): 161-171. |
ZHANG Ze, ZHAO Hongjun, MENG Jie, et al. Research progress of biomass pyrolysis and bio oil upgrading[J]. Environmental Engineering, 2021, 39(3): 161-171. | |
73 | YANG H P, YAN R, CHEN H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
74 | ZENG K, HE X, YANG H P, et al. The effect of combined pretreatments on the pyrolysis of corn stalk[J]. Bioresource Technology, 2019, 281: 309-317. |
75 | SU Y H, LIU L Q, DONG Q, et al. Investigation of molten salt in wet torrefaction and its effects on fast pyrolysis behaviors[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(5): 577-585. |
76 | BACH Q V, TRAN K Q, SKREIBERG Ø, et al. Effects of wet torrefaction on pyrolysis of woody biomass fuels[J]. Energy, 2015, 88: 443-456. |
77 | ZHANG S P, CHEN T, XIONG Y Q, et al. Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk[J]. Energy Conversion and Management, 2017, 141: 403-409. |
78 | STEINBACH D, KRUSE A, SAUER J. Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5-hydroxymethylfurfural production—A review[J]. Biomass Conversion and Biorefinery, 2017, 7(2): 247-274. |
79 | KIM Y, XIMENES E, MOSIER N S, et al. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass[J]. Enzyme and Microbial Technology, 2011, 48(4/5): 408-415. |
80 | LIN R C, DENG C, DING L K, et al. Improving gaseous biofuel production from seaweed Saccharina latissima: the effect of hydrothermal pretreatment on energy efficiency[J]. Energy Conversion and Management, 2019, 196: 1385-1394. |
81 | HASHEMI S S, KARIMI K, MIRMOHAMADSADEGHI S. Hydrothermal pretreatment of safflower straw to enhance biogas production[J]. Energy, 2019, 172: 545-554. |
82 | HESAMI S M, ZILOUEI H, KARIMI K, et al. Enhanced biogas production from sunflower stalks using hydrothermal and organosolv pretreatment[J]. Industrial Crops and Products, 2015, 76: 449-455. |
83 | CHEN H H, RAO Y, CAO L C, et al. Hydrothermal conversion of sewage sludge: focusing on the characterization of liquid products and their methane yields[J]. Chemical Engineering Journal, 2019, 357: 367-375. |
84 | KO J K, UM Y, PARK Y C, et al. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose[J]. Applied Microbiology and Biotechnology, 2015, 99(10): 4201-4212. |
85 | TRAN K Q, TRINH T N, BACH Q V. Development of a biomass torrefaction process integrated with oxy-fuel combustion[J]. Bioresource Technology, 2016, 199: 408-413. |
86 | ZHAO P T, SHEN Y F, GE S F, et al. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Applied Energy, 2014, 131: 345-367. |
87 | YAN W, HASTINGS J T, ACHARJEE T C, et al. Mass and energy balances of wet torrefaction of lignocellulosic biomass[J]. Energy & Fuels, 2010, 24(9): 4738-4742. |
88 | TRAN K Q. Fast hydrothermal liquefaction for production of chemicals and biofuels from wet biomass - The need to develop a plug-flow reactor[J]. Bioresource Technology, 2016, 213: 327-332. |
89 | CALZAVARA Y, JOUSSOT-DUBIEN C, BOISSONNET G, et al. Evaluation of biomass gasification in supercritical water process for hydrogen production[J]. Energy Conversion and Management, 2005, 46(4): 615-631. |
90 | ZHANG J X, CHEN W T, ZHANG P, et al. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts[J]. Bioresource Technology, 2013, 133: 389-397. |
[1] | 潘杰, 王明新, 高生旺, 夏训峰, 韩雪. 氮硫掺杂生物炭/过一硫酸盐体系降解水中磺胺异![]() |
[2] | 王震, 闫霆, 霍英杰. 氯化锰/氨热化学吸附储热的特性[J]. 化工进展, 2022, 41(8): 4425-4431. |
[3] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
[4] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[5] | 李玉峰, 王绍庆, 张安东, 毕冬梅, 李志合, 高亮, 万震. 催化型多孔陶瓷球制备及催化玉米秸秆热解[J]. 化工进展, 2022, 41(7): 3597-3607. |
[6] | 张丽珠, 王欢, 李琼, 杨东杰. 木质素衍生吸附材料及其在废水处理中的应用研究进展[J]. 化工进展, 2022, 41(7): 3731-3744. |
[7] | 庄雨婷, 王建华, 向智艳, 赵娟, 徐琼, 刘贤响, 尹笃林. 半纤维素及其衍生物转化为γ-戊内酯及其动力学研究进展[J]. 化工进展, 2022, 41(7): 3519-3533. |
[8] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[9] | 王宇晶, 张楠, 刘涉江, 苗辰, 刘秀丽. 热化学清洗含油污泥的效果评价及机理[J]. 化工进展, 2022, 41(6): 3333-3340. |
[10] | 夏鑫, 蔺建民, 李妍, 陶志平. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339. |
[11] | 申琪, 薛雨源, 杨涛伟, 张妍, 李胜任. 木质素荧光研究进展[J]. 化工进展, 2022, 41(5): 2672-2685. |
[12] | 许瑞阳, 白勇, 司慧, 刘德财, 祁项超. 生物质快速热解流化床反应器气力进料特性[J]. 化工进展, 2022, 41(4): 1742-1749. |
[13] | 盖希坤, 马晓锋, 骆美宇, 杨丹, 李音, 邸婧, 杨瑞芹, 单胜道. 马尾松基磁性水热炭的制备及其吸附性能[J]. 化工进展, 2022, 41(4): 1994-1999. |
[14] | 张东, 张瑞, 张彬, 安周建, 雷彻. 基于质子交换膜燃料电池的冷热电联产系统研究进展[J]. 化工进展, 2022, 41(3): 1608-1621. |
[15] | 王延云, 胡强, 龚卫华, 王燕, 吴蔚. 碱联合超高压预处理对笋壳酶解效率的影响[J]. 化工进展, 2022, 41(3): 1357-1363. |
|