Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 158-168.DOI: 10.16085/j.issn.1000-6613.2024-0014
• Energy processes and technology • Previous Articles Next Articles
HONG Siqi(), GU Fangwei, ZHENG Jinyu(
)
Received:
2024-01-04
Revised:
2024-02-27
Online:
2025-02-13
Published:
2025-01-15
Contact:
ZHENG Jinyu
通讯作者:
郑金玉
作者简介:
洪思琦(1998—),男,硕士研究生,主要从事水电解制氢催化剂制备工作。E-mail:hongsiqi.ripp@sinopec.com。
基金资助:
CLC Number:
HONG Siqi, GU Fangwei, ZHENG Jinyu. Development status and prospect of low iridium catalysts for hydrogen production by PEM electrolysis[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 158-168.
洪思琦, 顾方伟, 郑金玉. PEM水电解制氢低铱催化剂发展现状及展望[J]. 化工进展, 2025, 44(1): 158-168.
制氢技术 | 阴阳极隔膜 | 工作温度/℃ | 电流密度/A·cm-2 | 能耗/kW·h·m-3 | 优点 | 缺点 | 商业化程度 |
---|---|---|---|---|---|---|---|
ALK | PPS | 70~100 | 0.2~0.5 | 4.5~5.5 | 不使用贵金属催化剂、成本低 | 效率较低、碱液腐蚀设备、压力-液位控制困难 | 充分商业化 |
PEM | 质子交换膜 | 60~90 | 1~6 | 3.6~4.4 | 负荷波动可调节幅度大、安全性高、启停速度快 | 价格高、单槽规模小 | 商业化初期 |
AEM | 阴离子交换膜 | 60~90 | 0.3~0.8 | 4.8 | 体积小、安全性高,不使用贵金属催化剂 | 规模小、阴离子交换膜技术不成熟 | 实验室研发阶段 |
SOEC | 氧化物导电体 | 600~1000 | 0.3 | 2.23~2.27 | 无需使用贵金属催化剂、效率高 | 启停速度慢,材料衰减快 | 实验室研发阶段 |
制氢技术 | 阴阳极隔膜 | 工作温度/℃ | 电流密度/A·cm-2 | 能耗/kW·h·m-3 | 优点 | 缺点 | 商业化程度 |
---|---|---|---|---|---|---|---|
ALK | PPS | 70~100 | 0.2~0.5 | 4.5~5.5 | 不使用贵金属催化剂、成本低 | 效率较低、碱液腐蚀设备、压力-液位控制困难 | 充分商业化 |
PEM | 质子交换膜 | 60~90 | 1~6 | 3.6~4.4 | 负荷波动可调节幅度大、安全性高、启停速度快 | 价格高、单槽规模小 | 商业化初期 |
AEM | 阴离子交换膜 | 60~90 | 0.3~0.8 | 4.8 | 体积小、安全性高,不使用贵金属催化剂 | 规模小、阴离子交换膜技术不成熟 | 实验室研发阶段 |
SOEC | 氧化物导电体 | 600~1000 | 0.3 | 2.23~2.27 | 无需使用贵金属催化剂、效率高 | 启停速度慢,材料衰减快 | 实验室研发阶段 |
样品 | Ir³+ | Ir⁴+ | ||
---|---|---|---|---|
位置/eV | 强度/% | 位置/eV | 强度/% | |
plrO₂ | 62.3 | 53.5 | 63.9 | 46.5 |
3%-Gd-pIrO₂ | 62.1 | 44.2 | 63.5 | 55.8 |
5%-Gd-pIrO₂ | 62.2 | 43.5 | 63.6 | 56.5 |
7%-Gd-pIrO₂ | 62.2 | 52.6 | 63.8 | 47.4 |
10%-Gd-pIrO₂ | 62.2 | 58.4 | 63.7 | 41.6 |
样品 | Ir³+ | Ir⁴+ | ||
---|---|---|---|---|
位置/eV | 强度/% | 位置/eV | 强度/% | |
plrO₂ | 62.3 | 53.5 | 63.9 | 46.5 |
3%-Gd-pIrO₂ | 62.1 | 44.2 | 63.5 | 55.8 |
5%-Gd-pIrO₂ | 62.2 | 43.5 | 63.6 | 56.5 |
7%-Gd-pIrO₂ | 62.2 | 52.6 | 63.8 | 47.4 |
10%-Gd-pIrO₂ | 62.2 | 58.4 | 63.7 | 41.6 |
1 | 何青,孟照鑫,沈轶 等. “双碳”目标下我国氢能政策分析与思考[J]. 热力发电, 2021, 50(11): 27-36. |
HE Qing, MENG Zhaoxin, SHEN Yi, et al. Analysis and thinking of hydrogen energy policies in China under "double carbon" target[J]. Thermal Power Generation, 2021, 50(11): 27-36. | |
2 | International Energy Agency. 2050年净零排放: 全球能源部门路线图[R/OL]. (2021). |
3 | 米万良, 荣峻峰. 质子交换膜(PEM)水电解制氢技术进展及应用前景[J]. 石油炼制与化工, 2021, 52(10): 78-87. |
MI Wanliang, RONG Junfeng. Progress and application prospects of pem water electrolysis technology for hydrogen production[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 78-87. | |
4 | 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41(10): 3385-3391. |
MU Shujun, LIN Jin, XING Xuetao, et al. Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power System Technology, 2017, 41(10): 3385-3391. | |
5 | 陈彬, 谢和平, 刘涛, 等. 碳中和背景下先进制氢原理与技术研究进展[J]. 工程科学与技术, 2022, 54(1): 106-116. |
CHEN Bin, XIE Heping, LIU Tao, et al. Principles and progress of advanced hydrogen production technologies in the context of carbon neutrality[J]. Advanced Engineering Sciences, 2022, 54(1): 106-116. | |
6 | MINKE Christine, SUERMANN Michel, BENSMANN Boris, et al. Is iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?[J]. International Journal of Hydrogen Energy, 2021, 46(46): 23581-23590. |
7 | 梁宵. 低铱钙钛矿水氧化催化剂微结构调控与性能研究[D]. 长春:吉林大学, 2021. |
LIANG Xiao.Microstructural modulation and electrocatalytic performance of low-iridium perovskite for water oxidation[D]. Changchun: Jilin University, 2021 | |
8 | ZHANG Lulu, ZHU Shangqian, DONG Shuyu, et al. Co nanoparticles encapsulated in porous N-doped carbon nanofibers as an efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 2018, 165(15): J3271-J3275. |
9 | VESBORG Peter C K, JARAMILLO Thomas F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy[J]. RSC Advances, 2012, 2(21): 7933-7947. |
10 | BROOKS D, 曲艺, 倪慧峰. 铱资源是否足以支撑未来氢能经济的发展[J]. 贵金属, 2022, 43(S1): 93-100. |
BROOKS D. Will there be enough iridium to meet demand from the hydrogen economy[J]. Precious Metals, 2022, 43(S1): 93-100. | |
11 | HUANG Zhenfeng, SONG Jiajia, DOU Shuo, et al. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis[J]. Matter, 2019, 1(6): 1494-1518. |
12 | WOHLFAHRT-MEHRENS M, HEITBAUM J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 237(2): 251-260. |
13 | FIERRO Stéphane, NAGEL Tina, BALTRUSCHAT Helmut, et al. Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry[J]. Electrochemistry Communications, 2007, 9(8): 1969-1974. |
14 | Tyler MEFFORD J, RONG Xi, ABAKUMOV Artem M, et al. Water electrolysis on La1- x Sr x CoO3- δ perovskite electrocatalysts[J]. Nature Communications, 2016, 7: 11053. |
15 | KASIAN Olga, GROTE Jan-Philipp, GEIGER Simon, et al. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angewandte Chemie International Edition, 2018, 57(9): 2488-2491. |
16 | 何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. | |
17 | RASTEN Egil, HAGEN Georg, TUNOLD Reidar. Electrocatalysis in water electrolysis with solid polymer electrolyte[J]. Electrochimica Acta, 2003, 48(25/26): 3945-3952. |
18 | SONG Shidong, ZHANG Huamin, MA Xiaoping, et al. Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers[J]. International Journal of Hydrogen Energy, 2008, 33(19): 4955-4961. |
19 | SIRACUSANO S, BAGLIO V, STASSI A, et al. Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers[J]. International Journal of Hydrogen Energy, 2011, 36(13): 7822-7831. |
20 | SLAVCHEVA E, RADEV I, BLIZNAKOV S, et al. Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis[J]. Electrochimica Acta, 2007, 52(12): 3889-3894. |
21 | OUATTARA Lassiné, FIERRO Stéphane, FREY Olivier, et al. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution[J]. Journal of Applied Electrochemistry, 2009, 39(8): 1361-1367. |
22 | Peter KÚŠ, OSTROVERKH Anna, Klára ŠEVČÍKOVÁ, et al. Magnetron sputtered Ir thin film on TiC-based support sublayer as low-loading anode catalyst for proton exchange membrane water electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(34): 15124-15132. |
23 | LETTENMEIER P, MAJCHEL J, WANG L, et al. Highly active nano-sized iridium catalysts: Synthesis and operando spectroscopy in a proton exchange membrane electrolyzer[J]. Chemical Science, 2018, 9(14): 3570-3579. |
24 | LI Guoqiang, LI Songtao, XIAO Meiling, et al. Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure[J]. Nanoscale, 2017, 9(27): 9291-9298 |
25 | ORTEL Erik, REIER Tobias, STRASSER Peter, et al. Mesoporous IrO2 films templated by PEO-PB-PEO block-copolymers: Self-assembly, crystallization behavior, and electrocatalytic performance[J]. Chem Mater, 2011, 23(13): 3201-3209. |
26 | 李佳坤. 质子交换膜(PEM)水电解制氢用新型析氧电极研究[D]. 长沙: 湖南大学, 2019. |
LI Jiakun. Research on novel oxygen evolution electrode for proton exchangemembrane water electrolysis [D]. Changsha: Hunan University, 2019 | |
27 | MURAKAMI Y, TSUCHIYA S, YAHIKOZAWA K, et al. Preparation of ultrafine RuO2 and IrO2 particles by a sol-gel process[J]. Journal of Materials Science Letters, 1994, 13(24): 1773-1774. |
28 | WANG Yahui, HAO Shaoyun, LIU Xiangnan, et al. Ce-doped IrO2 electrocatalysts with enhanced performance for water oxidation in acidic media[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37006-37012. |
29 | WANG Yibo, HOU Shuai, MA Rongpeng, et al. Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32): 10710-10716. |
30 | NONG Hong Nhan, REIER Tobias, Hyung-Suk OH, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiO x core-shell electrocatalysts[J]. Nature Catalysis, 2018, 1: 841-851. |
31 | SUN Wei, SONG Ya, GONG Xueqing, et al. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity[J]. Chemical Science, 2015, 6(8): 4993-4999. |
32 | Oscar DIAZ-MORALES, RAAIJMAN Stefan, KORTLEVER Ruud, et al. Iridium-based double perovskites for efficient water oxidation in acid media[J]. Nature Communications, 2016, 7: 12363. |
33 | LEBEDEV Dmitry, POVIA Mauro, WALTAR Kay, et al. Highly active and stable iridium pyrochlores for oxygen evolution reaction[J]. Chemistry of Materials, 2017, 29(12): 5182-5191. |
34 | ZHANG Qi, CHEN Hui, YANG Lan, et al. Non-catalytic, instant iridium (Ir) leaching: A non-negligible aspect in identifying Ir-based perovskite oxygen-evolving electrocatalysts[J]. Chinese Journal of Catalysis, 2022, 43(3): 885-893. |
35 | MIN Xiangping, SHI Yan, LU Zhuoxin, et al. High performance and cost-effective supported IrO x catalyst for proton exchange membrane water electrolysis[J]. Electrochimica Acta, 2021, 385: 138391. |
36 | Hong LYU, ZUO Jian, ZHOU Wei, et al. Synthesis and activities of IrO2/Ti1- x W x O2 electrocatalyst for oxygen evolution in solid polymer electrolyte water electrolyzer[J]. Journal of Electroanalytical Chemistry, 2019, 833: 471-479. |
37 | HAO Chuanpu, Hong LYU, MI Cangen, et al. Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 746-756. |
38 | REGMI Yagya N, TZANETOPOULOS Eden, ZENG Guosong, et al. Supported oxygen evolution catalysts by design: Toward lower precious metal loading and improved conductivity in proton exchange membrane water electrolyzers[J]. ACS Catalysis, 2020, 10(21): 13125-13135. |
39 | SMITH J R, WALSH F C, CLARKE R L. Electrodes based on Magnéli phase titanium oxides: The properties and applications of Ebonex® materials[J]. Journal of Applied Electrochemistry, 1998, 28(10): 1021-1033. |
40 | WALSH F C, WILLS R G A. The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes[J]. Electrochimica Acta, 2010, 55(22): 6342-6351. |
41 | XU Junyuan, LIU Gaoyang, LI Jianling, et al. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction[J]. Electrochimica Acta, 2012, 59: 105-112. |
42 | ZHENG Min, WANG Bao. One-step synthesis of antimony-doped tin dioxide nanocrystallites and their property[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(2): 404-409. |
43 | WU Xu, SCOTT Keith. RuO2 supported on Sb-doped SnO2 nanoparticles for polymer electrolyte membrane water electrolysers[J]. International Journal of Hydrogen Energy, 2011, 36(10): 5806-5810. |
44 | Hyung-Suk OH, NONG Hong Nhan, REIER Tobias, et al. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers[J]. Chemical Science, 2015, 6(6): 3321-3328. |
45 | Hyung-Suk OH, NONG Hong Nhan, REIER Tobias, et al. Electrochemical catalyst-support effects and their stabilizing role for IrO x nanoparticle catalysts during the oxygen evolution reaction[J]. Journal of the American Chemical Society, 2016, 138(38): 12552-12563. |
46 | NONG Hong Nhan, Hyung-Suk OH, REIER Tobias, et al. Oxide‐supported IrNiO x core-shell particles as efficient, cost‐effective, and stable catalysts for electrochemical water splitting[J]. Angewandte Chemie International Edition, 2015, 54(10): 2975-2979. |
47 | DATTA Moni Kanchan, KADAKIA Karan, VELIKOKHATNYI Oleg I, et al. High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis[J]. Journal of Materials Chemistry A, 2013, 1(12): 4026-4037. |
48 | KADAKIA Karan Sandeep, JAMPANI Prashanth, VELIKOKHATNYI Oleg I, et al. Nanostructured (Ir, Sn)O2: F-oxygen evolution reaction anode electro-catalyst powders for PEM based water electrolysis[J]. Journal of the Electrochemical Society, 2014, 161(9): F868-F875. |
49 | BANERJEE A N, KUNDOO S, SAHA P, et al. Synthesis and characterization of nano-crystalline fluorine-doped tin oxide thin films by sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2003, 28(1): 105-110. |
50 | ABBOU Sofyane, CHATTOT Raphaël, MARTIN Vincent, et al. Manipulating the corrosion resistance of SnO2 aerogels through doping for efficient and durable oxygen evolution reaction electrocatalysis in acidic media[J]. ACS Catalysis, 2020, 10(13): 7283-7294. |
51 | SUI Sheng, MA Lirong, ZHAI Yuchun. Investigation on the proton exchange membrane water electrolyzer using supported anode catalyst[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(1): 8-11. |
52 | MA Lirong, SUI Sheng, ZHAI Yuchun. Preparation and characterization of Ir/TiC catalyst for oxygen evolution[J]. Journal of Power Sources, 2008, 177(2): 470-477. |
53 | ISLAM Jahowa, KIM Sang-Kyung, THIEN Phan Thanh, et al. Enhancing the activity and durability of iridium electrocatalyst supported on boron carbide by tuning the chemical state of iridium for oxygen evolution reaction[J]. Journal of Power Sources, 2021, 512: 230506. |
54 | NIKIFOROV A V, TOMÁS GARCÍA A L, PETRUSHINA I M, et al. Preparation and study of IrO2/SiC-Si supported anode catalyst for high temperature PEM steam electrolysers[J]. International Journal of Hydrogen Energy, 2011, 36(10): 5797-5805. |
55 | POLONSKÝ J, MAZÚR P, PAIDAR M, et al. Performance of a PEM water electrolyser using a TaC-supported iridium oxide electrocatalyst[J]. International Journal of Hydrogen Energy, 2014, 39(7): 3072-3078. |
56 | IGNASZAK Anna, SONG Chaojie, ZHU Weimin, et al. Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells[J]. Electrochimica Acta, 2012, 69: 397-405. |
57 | KAKINUMA Katsuyoshi, WAKASUGI Yuko, UCHIDA Makoto, et al. Electrochemical activity and durability of platinum catalysts supported on nanometer-size titanium nitride particles for polymer electrolyte fuel cells[J]. Electrochemistry, 2011, 79(5): 399-403. |
58 | LI Guoqiang, LI Kai, YANG Long, et al. Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction[J]. ACS Applied Materials & Interfaces, 2018, 10(44): 38117-38124. |
59 | ZHANG Kaikai, Wanshan MAI, LI Jin, et al. Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media[J]. Journal of Materials Science, 2020, 55(8): 3507-3520. |
[1] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
[2] | LI Jiayou, ZHANG Yuhan, JIANG Nan, JIANG Bolong. Preparation of transition metal sulfide NiS(x)@NFcatalyst by hydrothermal method and its hydrogen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 297-304. |
[3] | HE Ran, LIANG Hong, HUANG Hong, YANG Youli, ZHENG Qiang, LI Xi. Preparation of acetylene black/Fe3O4 catalysed cathodic electrode and removal of 2,4,6-trichlorophenol by electro-Fenton oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 572-582. |
[4] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[5] | MA Guixuan, XU Zitong, XIAO Zhihua, Ning Guoqing, WEI Qiang, XU Chunming. O,S co-doped carbon nanotube aqueous conductive additive assisted construction of high-performance graphite/SiO anode [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 443-456. |
[6] | ZHU Hao, LIU Hanfei, GAO Yuan, HUANG Yiping, FEI Xiaocheng, HAN Weiqing. Effect of salt on electrocatalytic performance and mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 571-580. |
[7] | LIANG Hongcheng, ZHAO Dongni, QUAN Yin, LI Jingni, HU Xinyi. Influence of SEI film morphology and structure on the performance of lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5049-5062. |
[8] | WU Jianyang, WANG Runa, CHEN Yao, SHEN Lanyao, YU Yongli, JIANG Ning, QIU Jingyi, ZHOU Henghui. Preparation process of high nickel cathode precursor for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5079-5085. |
[9] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[10] | YANG Guang, JIANG Ruiting, ZHANG Yue, FU Zijian, LIU Wei. Application of vanadium pentoxide/carbon nanocomposites in supercapacitors [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3857-3871. |
[11] | LUO Zhen, WANG Qingji, WANG Zhansheng, YANG Xueying, XIE Jiacai, WANG Hao. Strong oxidation coupled short range treatment of refining industry contaminated sites extraction water [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4155-4163. |
[12] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[13] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[14] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[15] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |