Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 443-456.DOI: 10.16085/j.issn.1000-6613.2024-0435
• Materials science and technology • Previous Articles Next Articles
MA Guixuan1(), XU Zitong2, XIAO Zhihua3(), Ning Guoqing4, WEI Qiang1(), XU Chunming1,3
Received:
2024-03-15
Revised:
2024-05-11
Online:
2024-12-06
Published:
2024-11-20
Contact:
XIAO Zhihua, WEI Qiang
马桂璇1(), 徐子桐2, 肖志华3(), 宁国庆4, 魏强1(), 徐春明1,3
通讯作者:
肖志华,魏强
作者简介:
马桂璇(1995—),女,博士研究生,研究方向为硫掺杂碳材料的制备及其在锂离子电池负极中的应用。E-mail:cupmaguixuan@163.com。
基金资助:
CLC Number:
MA Guixuan, XU Zitong, XIAO Zhihua, Ning Guoqing, WEI Qiang, XU Chunming. O,S co-doped carbon nanotube aqueous conductive additive assisted construction of high-performance graphite/SiO anode[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 443-456.
马桂璇, 徐子桐, 肖志华, 宁国庆, 魏强, 徐春明. 氧硫双掺杂CNTs水系导电剂辅助构筑高性能石墨/SiO负极[J]. 化工进展, 2024, 43(S1): 443-456.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0435
样品名称 | 元素分析 | XPS | ||||
---|---|---|---|---|---|---|
S质量分数/% | O质量分数/% | C质量分数/% | S原子分数/% | O原子分数/% | C原子分数/% | |
S-DCNTs | 1.61 | 1.505 | 91.55 | 0.85 | 1.54 | 97.61 |
O,S-DCNTs | 2.23 | 1.56 | 92.6 | 0.93 | 1.55 | 97.52 |
样品名称 | 元素分析 | XPS | ||||
---|---|---|---|---|---|---|
S质量分数/% | O质量分数/% | C质量分数/% | S原子分数/% | O原子分数/% | C原子分数/% | |
S-DCNTs | 1.61 | 1.505 | 91.55 | 0.85 | 1.54 | 97.61 |
O,S-DCNTs | 2.23 | 1.56 | 92.6 | 0.93 | 1.55 | 97.52 |
样品名称 | C—SH原子分数/% | C—S—C原子分数/% | C—SO—C原子分数/% | C—SO2—C原子分数/% | S2-原子分数/% |
---|---|---|---|---|---|
S-DCNTs | 1.81 | 87.30 | 5.57 | 4.84 | 0.48 |
O,S-DCNTs | 19.94 | 56.21 | 8.12 | 9.39 | 6.34 |
样品名称 | C—SH原子分数/% | C—S—C原子分数/% | C—SO—C原子分数/% | C—SO2—C原子分数/% | S2-原子分数/% |
---|---|---|---|---|---|
S-DCNTs | 1.81 | 87.30 | 5.57 | 4.84 | 0.48 |
O,S-DCNTs | 19.94 | 56.21 | 8.12 | 9.39 | 6.34 |
样品名称 | d(0.1)/μm | d(0.5)/μm | d(0.9)/μm |
---|---|---|---|
S-DCNTs | 0.053 | 0.086 | 2.222 |
O,S-DCNTs | 0.054 | 0.370 | 1.179 |
样品名称 | d(0.1)/μm | d(0.5)/μm | d(0.9)/μm |
---|---|---|---|
S-DCNTs | 0.053 | 0.086 | 2.222 |
O,S-DCNTs | 0.054 | 0.370 | 1.179 |
样品名称 | Rv(极片)/Ω·cm | ICE(电池)/% |
---|---|---|
SiO/C+O,S-DCNTs | 1.68 | 96.09 |
SiO/C+S-DCNTs | 1.75 | 97.72 |
SiO/C | 2.94 | 96.45 |
样品名称 | Rv(极片)/Ω·cm | ICE(电池)/% |
---|---|---|
SiO/C+O,S-DCNTs | 1.68 | 96.09 |
SiO/C+S-DCNTs | 1.75 | 97.72 |
SiO/C | 2.94 | 96.45 |
1 | F M Nizam Uddin KHAN, RASUL Mohammad G, SAYEM A S M, et al. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review[J]. Journal of Energy Storage, 2023, 71: 108033. |
2 | ASENBAUER Jakob, EISENMANN Tobias, KUENZEL Matthias, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels, 2020, 4(11): 5387-5416. |
3 | ZHANG Mengxuan, ZHAO Lu, SUN Dong, et al. S doped CNTs scaffolded Si@C spheres anode toward splendid high-temperature performance in lithium-ion battery[J]. Applied Surface Science, 2023, 626: 157254. |
4 | Kyungmin LIM, PARK Heonsoo, Jaeyun HA, et al. Dual-carbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2021, 101: 397-404. |
5 | CHEN Tao, WU Ji, ZHANG Qinglin, et al. Recent advancement of SiO x based anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 363: 126-144. |
6 | YAO Nana, ZHANG Yu, RAO Xianhui, et al. A review on the critical challenges and progress of SiO x -based anodes for lithium-ion batteries[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 876-895. |
7 | SHI Hebang, ZHANG He, LI Xinxin, et al. In situ fabrication of dual coating structured SiO/1D-C/a-C composite as high-performance lithium ion battery anode by fluidized bed chemical vapor deposition[J]. Carbon, 2020, 168: 113-124. |
8 | LU Wenquan, ZHOU Xinwei, LIU Yuzi, et al. Crack-free silicon monoxide as anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57141-57145. |
9 | MIYACHI Mariko, YAMAMOTO Hironori, KAWAI Hidemasa, et al. Analysis of SiO anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(10): A2089. |
10 | LI Zhaohuai, HE Qiu, HE Liang, et al. Self-sacrificed synthesis of carbon-coated SiO x nanowires for high capacity lithium ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5(8): 4183-4189. |
11 | LIU Zhenhui, YU Qiang, ZHAO Yunlong, et al. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2019, 48(1): 285-309. |
12 | TAN Tian, LEE Pui-Kit, ZETTSU Nobuyuki, et al. Passivating oxygen atoms in SiO through pre-treatment with Na2CO3 to increase its first cycle efficiency for lithium-ion batteries[J]. Electrochimica Acta, 2022, 404: 139777. |
13 | YANG Hyeon-Woo, LEE Dae In, KANG Nayoung, et al. Highly enhancement of the SiO x nanocomposite through Ti-doping and carbon-coating for high-performance Li-ion battery[J]. Journal of Power Sources, 2018, 400: 613-620. |
14 | DOU Fei, SHI Liyi, SONG Pingan, et al. Design of orderly carbon coatings for SiO anodes promoted by TiO2 toward high performance lithium-ion battery[J]. Chemical Engineering Journal, 2018, 338: 488-495. |
15 | GE Jiawei, TANG Quntao, SHEN Honglie, et al. Low-temperature fabrication of porous SiO with carbon shell for high-stability lithium ion battery[J]. Ceramics International, 2020, 46(8): 12507-12516. |
16 | CUI Jinlong, CUI Yongfu, LI Shaohui, et al. Microsized porous SiO x @C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(44): 30239-30247. |
17 | GUO Lingzhi, HE Hongyan, REN Yurong, et al. Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 335: 32-40. |
18 | HAN Jinlong, CHEN Guorong, YAN Tingting, et al. Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery[J]. Chemical Engineering Journal, 2018, 347: 273-279. |
19 | LIN Zeheng, LI Jianhui, HUANG Qiming, et al. Insights into the interfacial instability between carbon-coated SiO anode and electrolyte in lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2019, 123(20): 12902-12909. |
20 | SHI Liurong, PANG Chunlei, CHEN Shulin, et al. Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes[J]. Nano Letters, 2017, 17(6): 3681-3687. |
21 | SHI Hebang, ZHANG He, HU Chaoquan, et al. Efficient fluidization intensification process to fabricate in situ dispersed (SiO + G)/CNTs composites for high-performance lithium-ion battery anode applications[J]. Particuology, 2021, 56: 84-90. |
22 | SEHRAWAT Poonam, SHABIR Abgeena, ABID, et al. Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries[J]. Journal of Power Sources, 2021, 501: 229709. |
23 | ZHAO Tingkai, SHE Shengfei, JI Xianglin, et al. In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials[J]. Journal of Alloys and Compounds, 2017, 708: 500-507. |
24 | XIA Mao, LI Yiran, XIONG Xiang, et al. Enhancing the electrochemical performance of micron-scale SiO@C/CNTs anode via adding piezoelectric material BaTiO3 for high-power lithium ion battery[J]. Journal of Alloys and Compounds, 2019, 800: 116-124. |
25 | LI Jianbin, WANG Lei, LIU Fangming, et al. In situ wrapping SiO with carbon nanotubes as anode material for high-performance Li-ion batteries[J]. ChemistrySelect, 2019, 4(10): 2918-2925. |
26 | TIAN Hao, TIAN Huajun, YANG Wu, et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(25): 2101796. |
27 | ZHANG Junying, YANG Gen, WANG Jinao, et al. Graphene and carbon nanotube dual-decorated SiO x composite anode material for lithium-ion batteries[J]. Energy & Fuels, 2021, 35(23): 19784-19790. |
28 | JIANG Jinlong, OUYANG Hao, JIANG Yong, et al. Preparation of SiO x -TiO2/Si/CNTs composite microspheres as novel anodes for lithium-ion battery with good cycle stability[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(14): 11025-11037. |
29 | ZHOU Junhua, WANG Jiaqi, SHI Qitao, et al. Origin of enhanced stability of SiO anode via using carbon nanotubes[J]. Science China Materials, 2023, 66(9): 3461-3467. |
30 | RATHINAVEL S, PRIYADHARSHINI K, PANDA Dhananjaya. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application[J]. Materials Science and Engineering: B, 2021, 268: 115095. |
31 | ZHANG Jianye, HUANG Zhiyong, HE Chengen, et al. Binary carbon-based additives in LiFePO4 cathode with favorable lithium storage[J]. Nanotechnology Reviews, 2020, 9(1): 934-944. |
32 | WANG Guoping, LI Mei, QIAN Yong, et al. Effect of carbon nanotube dispersion on electrochemical behavior of the CNTs/LiCoO2 composite cathode[J]. International Journal of Electrochemical Science, 2021, 16(7): 210765. |
33 | MEDVEDEV O S, WANG Q, POPOVICH A A, et al. Comparison of conductive additives for high-power applications of Li-ion batteries[J]. Ionics, 2020, 26(9): 4277-4286. |
34 | MA Guixuan, NING Guoqing, WEI Qiang. S-doped carbon materials: Synthesis, properties and applications[J]. Carbon, 2022, 195: 328-340. |
35 | HOQUE Md Ariful, HASSAN Fathy M, JAUHAR Altamash M, et al. Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 93-98. |
36 | TAVAKOL Hossein, SHAHABI Dana. DFT, QTAIM, and NBO study of adsorption of rare gases into and on the surface of sulfur-doped, single-wall carbon nanotubes[J]. The Journal of Physical Chemistry C, 2015, 119(12): 6502-6510. |
37 | SAADAT Kayvan, TAVAKOL Hossein. Study of noncovalent interactions of end-caped sulfur-doped carbon nanotubes using DFT, QTAIM, NBO and NCI calculations[J]. Structural Chemistry, 2016, 27(3): 739-751. |
38 | RAO Hanbing, LIU Yiting, ZHONG Ji, et al. Gold nanoparticle/Chitosan@ N , S co-doped multiwalled carbon nanotubes sensor: Fabrication, characterization, and electrochemical detection of catechol and nitrite[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10926-10939. |
39 | KARIKALAN Natarajan, VELMURUGAN Murugan, CHEN Shenming, et al. Modern approach to the synthesis of Ni(OH)2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22545-22553. |
40 | PANCHAKARLA L S, GOVINDARAJ A, RAO C N R. Nitrogen- and boron-doped double-walled carbon nanotubes[J]. ACS Nano, 2007, 1(5): 494-500. |
41 | XU Weilan, TANG Cheng, HUANG Na, et al. Adina rubella-like microsized SiO@N-doped carbon grafted with N-doped carbon nanotubes as anodes for high-performance lithium storage[J]. Small Science, 2022, 2(4): 2100105. |
42 | JIA Guosheng, INNOCENT Mugaanire Tendo, YU Yan, et al. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization[J]. International Journal of Biological Macromolecules, 2023, 226: 646-659. |
43 | DU Yifeng, SUN Guohua, LI Yan, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. |
44 | PARRA J B, PIS J J, DE SOUSA J C, et al. Effect of coal preoxidation on the development of microporosity in activated carbons[J]. Carbon, 1996, 34(6): 783-787. |
45 | LIU Dongdong, GAO Jihui, CAO Qingxi, et al. Improvement of activated carbon from Jixi bituminous coal by air preoxidation[J]. Energy & Fuels, 2017, 31(2): 1406-1415. |
46 | DAHER Nour, HUO Da, DAVOISNE Carine, et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6501-6510. |
47 | MA Lingling, QIN Zhihong, ZHANG Lu, et al. Peak fitting methods and parameter settings in XPS analysis for organic sulfur in coal[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 277-283. |
48 | ABDELKADER-FERNÁNDEZ V K, DOMINGO-GARCÍA M, LÓPEZ-GARZÓN F J, et al. Expanding graphene properties by a simple S-doping methodology based on cold CS2 plasma[J]. Carbon, 2019, 144: 269-279. |
49 | MA Xinlong, ZHAO Lu, SONG Xinyu, et al. Production of S-doped porous graphene via post-treatment with MgSO4 as sulphur source[J]. Chemical Engineering Journal, 2019, 359: 801-809. |
50 | YANG Qianqian, LIU Lu, XIAO Lu, et al. Co9S8@N, S-codoped carbon core-shell structured nanowires: Constructing a fluffy surface for high-density active sites[J]. Journal of Materials Chemistry A, 2018, 6(30): 14752-14760. |
51 | HONG Zhensheng, ZHEN Yichao, RUAN Yurong, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials, 2018, 30(29): 1802035. |
52 | WAN Liu, WEI Wei, XIE Mingjiang, et al. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode[J]. Electrochimica Acta, 2019, 311: 72-82. |
53 | SANKARARAMAKRISHNAN Nalini, SHANKHWAR Anil, CHAUHAN Divya. Mechanistic insights on immobilization and decontamination of hexavalent chromium onto nano MgS/FeS doped cellulose nanofibres[J]. Chemosphere, 2019, 228: 390-397. |
54 | BUCKLEY A N, WOODS R. Electrochemical and XPS studies of the surface oxidation of synthetic heazlewoodite (Ni3S2)[J]. Journal of Applied Electrochemistry, 1991, 21(7): 575-582. |
55 | SKINNER William M, Wayne NESBITT H, PRATT Allen R. XPS identification of bulk hole defects and itinerant Fe 3d electrons in natural troilite (FeS)[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2259-2263. |
56 | RAMACHANDRAN Rajendran, SARANYA Murugan, GRACE Andrews Nirmala, et al. MnS nanocomposites based on doped graphene: Simple synthesis by a wet chemical route and improved electrochemical properties as an electrode material for supercapacitors[J]. RSC Advances, 2017, 7(4): 2249-2257. |
57 | YOO Dong-Joo, LIU Qian, COHEN Orion, et al. Understanding the role of SEI layer in low-temperature performance of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11910-11918. |
58 | MA Cheng, CHEN Xueyong, LONG Donghui, et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J]. Carbon, 2017, 118: 699-708. |
59 | XU Kai, LI Yongfeng, YANG Fan, et al. Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their application to solar cells[J]. Carbon, 2014, 68: 511-519. |
60 | WANG Huafeng, LI Zhenhua, GHOSH Kaushik, et al. Synthesis of double-walled carbon nanotube films and their field emission properties[J]. Carbon, 2010, 48(10): 2882-2889. |
61 | LIU Tianyuan, ZHANG Lili, YU Wanjing, et al. Growth of double-walled carbon nanotubes from silicon oxide nanoparticles[J]. Carbon, 2013, 56: 167-172. |
62 | ERKENS Maksiem, Sofie CAMBRÉ, FLAHAUT Emmanuel, et al. Ultrasonication-induced extraction of inner shells from double-wall carbon nanotubes characterized via in situ spectroscopy after density gradient ultracentrifugation[J]. Carbon, 2021, 185: 113-125. |
63 | TAKENAKA Norio, BOUIBES Amine, YAMADA Yuki, et al. Frontiers in theoretical analysis of solid electrolyte interphase formation mechanism[J]. Advanced Materials, 2021, 33(37): 2100574. |
64 | Vikalp JHA, KRISHNAMURTHY Balaji. Modeling the SEI layer formation and its growth in lithium-ion batteries (LiB) during charge-discharge cycling[J]. Ionics, 2022, 28(8): 3661-3670. |
65 | LIU Wei, LIU Pengcheng, MITLIN David. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43): 2002297. |
66 | Hamidreza BEHESHTI S, JAVANBAKHT Mehran, OMIDVAR Hamid, et al. Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives[J]. iScience, 2022, 25(3): 103862. |
67 | BLAIR Sarah J, DOUCET Mathieu, NIEMANN Valerie A, et al. Combined, time-resolved, in situ neutron reflectometry and X-ray diffraction analysis of dynamic SEI formation during electrochemical N2 reduction[J]. Energy & Environmental Science, 2023, 16(8): 3391-3406. |
68 | GUO Chenfeng, WANG Dianlong, WANG Qiuming, et al. A SiO/graphene nanocomposite as a high stability anode material for lithium-ion batteries[J]. International Journal of Electrochemical Science, 2012, 7(9): 8745-8752. |
69 | HU Anjun, ZHOU Mingjie, LEI Tianyu, et al. Optimizing redox reactions in aprotic lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(42): 2002180. |
70 | YUAN Hong, PENG Hongjie, LI Boquan, et al. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(1): 1802768. |
71 | SHI Zixiong, LI Matthew, SUN Jingyu, et al. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives[J]. Advanced Energy Materials, 2021, 11(23): 2100332. |
72 | TAVAKOL Hossein, HASSANI Fahimeh. Adsorption of molecular iodine on the surface of sulfur-doped carbon nanotubes: Theoretical study on their interactions, sensor properties, and other applications[J]. Structural Chemistry, 2015, 26(1): 151-158. |
73 | HASSANI Fahimeh, TAVAKOL Hossein. A DFT, AIM and NBO study of adsorption and chemical sensing of iodine by S-doped fullerenes[J]. Sensors and Actuators B: Chemical, 2014, 196: 624-630. |
74 | TAVAKOL Hossein, Akram MOLLAEI-RENANI. DFT, AIM, and NBO study of the interaction of simple and sulfur-doped graphenes with molecular halogens, CH3OH, CH3SH, H2O, and H2S[J]. Structural Chemistry, 2014, 25(6): 1659-1667. |
75 | MA Xinlong, NING Guoqing, SUN Yuzhen, et al. High capacity Li storage in sulfur and nitrogen dual-doped graphene networks[J]. Carbon, 2014, 79: 310-320. |
76 | MA Xinlong, NING Guoqing, KAN Yanfang, et al. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors[J]. Electrochimica Acta, 2014, 150: 108-113. |
77 | QI Chuanlei, MA Xinlong, NING Guoqing, et al. Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries[J]. Carbon, 2015, 92: 245-253. |
78 | NING Guoqing, MA Xinlong, ZHU Xiao, et al. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15950-15958. |
79 | DENIS Pablo A, FACCIO Ricardo, MOMBRU Alvaro W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?[J]. ChemPhysChem, 2009, 10(4): 715-722. |
[1] | GAO Jixing, DING Yumei, ZHANG Chao, TAN Jing, DING Xi, LI Haoyi, YANG Weimin. Preparation and properties of PLA/PCL micro-nano fiber membrane by melt differential electrospinning [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 457-468. |
[2] | ZHU Hao, LIU Hanfei, GAO Yuan, HUANG Yiping, FEI Xiaocheng, HAN Weiqing. Effect of salt on electrocatalytic performance and mechanism [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 571-580. |
[3] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[4] | YIN Shaowu, HUANG Ruoxiao, ZAN Xiaojun, TONG Lige, LIU Chuanping, WANG Li. Design of phase-change heat and energy storage system based on CPCM hexagonal and simulation of heat storage and release [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 243-254. |
[5] | DU Xiaocong, XIN Chunfu, ZHAO Yu. Performance evaluation of composite phase change materials and phase change modified asphalt for road use [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 419-430. |
[6] | QU Yun, CHENG Liyuan, DAI Guoliang, WANG Gang, GUO Yuqing, SUN Jie. Preparation and properties of PAN/MXene coaxial fiber electrode [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5113-5122. |
[7] | LI Meixuan, CHENG Jianfeng, HUANG Guoyong, XU Shengming, YU Fengshan, WENG Yaqing, CAO Caifang, WEN Jiawei, WANG Junlian, WANG Chunxia, GU Bintao, ZHANG Yuanhua, LIU Bin, WANG Caiping, PAN Jianming, XU Zeliang, WANG Chong, WANG Ke. Synthesis and electrochemical mechanism of high voltage lithium nickel manganate cathode materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5086-5094. |
[8] | WU Jianyang, WANG Runa, CHEN Yao, SHEN Lanyao, YU Yongli, JIANG Ning, QIU Jingyi, ZHOU Henghui. Preparation process of high nickel cathode precursor for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5079-5085. |
[9] | LIU Li, FENG Bo, WEN Yang, GU Qixiong. Research progress in synthesis, functionalization and metal adsorption of silica-based mesoporous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5063-5078. |
[10] | LIANG Hongcheng, ZHAO Dongni, QUAN Yin, LI Jingni, HU Xinyi. Influence of SEI film morphology and structure on the performance of lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5049-5062. |
[11] | LI Zhenwu, PU Di, XIONG Yachun, WU Dingying, JIN Cheng, GUO Yongjun. Research progress of nanomaterials for oil displacement in enhancing oil recovery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5035-5048. |
[12] | SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995. |
[13] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
[14] | LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156. |
[15] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |