1 |
LI Matthew, LU Jun, CHEN Zhongwei, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561.
|
2 |
LEE Wontae, MUHAMMAD Shoaib, SERGEY Chernov, et al. Advances in the cathode materials for lithium rechargeable batteries[J]. Angewandte Chemie International Edition, 2020, 59(7): 2578-2605.
|
3 |
LI Jianlin, FLEETWOOD James, HAWLEY Blake, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2021, 122(1): 903-956.
|
4 |
LI Borong, CHAO Yu, LI Mengchao, et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 7.
|
5 |
LIU Wen, Pilgun OH, LIU Xi’en, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457.
|
6 |
王策, 王国庆, 王二锐, 等. 锂离子电池正极材料合成及改性[J]. 化工进展, 2021, 40(9): 4998-5011.
|
|
WANG Ce, WANG Guoqing, WANG Errui, et al. Synthesis and modification of lithium-ion battery cathode materials[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4998-5011.
|
7 |
WANG Feng, BAI Jianming. Synthesis and processing by design of high-nickel cathode materials[J]. Batteries & Supercaps, 2022, 5(1): 202100174.
|
8 |
王志鸿, 朱华威, 余海峰, 等. 共沉淀法制备高镍氧化物正极材料前体研究进展[J]. 化工进展, 2021, 40(9): 5097-5106.
|
|
WANG Zhihong, ZHU Huawei, YU Haifeng, et al. Research process on the synthesis of Ni-rich oxide cathode precursors by co-precipitation method[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5097-5106.
|
9 |
ZHENG Xiaobo, LI Xinhai, WANG Zhixing, et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery[J]. Electrochimica Acta, 2016, 191: 832-840.
|
10 |
WU Feng, LIU Na, CHEN Lai, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano Energy, 2019, 59: 50-57.
|
11 |
CHANG Chun-Chieh, KUMTA Prashant N. Particulate sol-gel synthesis and electrochemical characterization of LiMO2 (M=Ni, Ni0.75Co0.25) powders[J]. Journal of Power Sources, 1998, 75(1): 44-55.
|
12 |
LI Decheng, SASAKI Yuki, KOBAYAKAWA Koichi, et al. Preparation, morphology and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 with LiF addition[J]. Electrochimica Acta, 2006, 52(2): 643-648.
|
13 |
VAN BOMMEL Andrew, DAHN J R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia[J]. Chemistry of Materials, 2009, 21(8): 1500-1503.
|
14 |
SHEN Yabin, WU Yingqiang, XUE Hongjin, et al. Insight into the coprecipitation-controlled crystallization reaction for preparing lithium-layered oxide cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 717-726.
|
15 |
LIU Hao, WOLF Mark, KARKI Khim, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes[J]. Nano Letters, 2017, 17(6): 3452-3457.
|
16 |
YANG Chengkai, SHAO Ruiwen, WANG Qian, et al. Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism[J]. Energy Storage Materials, 2021, 35: 62-69.
|
17 |
GE Mingyuan, Sungun WI, LIU Xiang, et al. Kinetic limitations in single-crystal high-nickel cathodes[J]. Angewandte Chemie International Edition, 2021, 60(32): 17350-17355.
|
18 |
李想, 葛武杰, 马先果, 等. 高镍正极材料微裂纹诱导容量衰减的应对策略研究进展[J]. 化工进展, 2022, 41(8): 4277-4287.
|
|
LI Xiang, GE Wujie, MA Xianguo, et al. Research progress on countermeasures for microcrack-induced capacity degradation of Ni-rich cathode materials[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4277-4287.
|