Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3834-3856.DOI: 10.16085/j.issn.1000-6613.2023-0952
• Materials science and technology • Previous Articles Next Articles
Received:
2023-06-09
Revised:
2023-09-01
Online:
2024-08-14
Published:
2024-07-25
Contact:
WANG Lina
通讯作者:
王丽娜
作者简介:
王丽娜(1982—),女,博士,副教授,研究方向为新型纳米材料的导向构筑及功能化。E-mail:lzcsxy2019@126.com。
基金资助:
CLC Number:
WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856.
王丽娜, 武金升. 共价有机框架材料的合成与应用研究进展[J]. 化工进展, 2024, 43(7): 3834-3856.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0952
1 | DING Sanyuan, WANG Wei. Covalent organic frameworks (COFs): From design to applications[J]. Chemical Society Reviews, 2013, 42(2): 548-568. |
2 | CÔTÉ Adrien P, BENIN Annabelle I, OCKWIG Nathan W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
3 | GUI Bo, LIN Guiqing, DING Huimin, et al. Three-dimensional covalent organic frameworks: From topology design to applications[J]. Accounts of Chemical Research, 2020, 53(10): 2225-2234. |
4 | BHUNIA Sukanya, DEO Kaivalya A, GAHARWAR Akhilesh. 2D covalent organic frameworks for biomedical applications[J]. Advanced Functional Materials, 2020, 30(27): 2002046. |
5 | XU Haisen, LUO Yi, Pei zhen SEE, et al. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks ( C O F s ) [ J ] . Angewandte Chemie International Edition, 2020, 59(28): 11527-11532. |
6 | LOHSE Maria S, BEIN Thomas. Covalent organic frameworks: Structures, synthesis, and applications[J]. Advanced Functional Materials, 2018, 28(33): 1705553. |
7 | YANG Yizhou, Clara SCHÄFER, Karl BÖRJESSON. Detachable all-carbon-linked 3D covalent organic framework films for semiconductor/COF heterojunctions by continuous flow synthesis[J]. Chem, 2022, 8(8): 2217-2227. |
8 | YANG Yixuan, TANG Xihao, WU Jialin, et al. Transformation of a hydrazone-linked covalent organic framework into a highly stable hydrazide-linked one[J]. ACS Applied Polymer Materials, 2022, 4(7): 4624-4631. |
9 | TYLIANAKIS Emmanuel, KLONTZAS Emmanouel, FROUDAKIS George E. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks[J]. Nanoscale, 2011, 3(3): 856-869. |
10 | YANG Chengxiong, LIU Chang, CAO Yimeng, et al. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation[J]. Chemical Communications, 2015, 51(61): 12254-12257. |
11 | XU Junsong, YANG Can, BI Shuai, et al. Vinylene-linked covalent organic frameworks (COFs) with symmetry-tuned polarity and photocatalytic activity[J]. Angewandte Chemie International Edition, 2020, 59(52): 23845-23853. |
12 | QIU Jikuan, WANG Huiyong, ZHAO Yuling, et al. Hierarchically porous covalent organic frameworks assembled in ionic liquids for highly effective catalysis of C-C coupling reactions[J]. Green Chemistry, 2020, 22(8): 2605-2612. |
13 | LIU Yuanyuan, LI Xiangchun, WANG Shi, et al. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks[J]. Nature Communications, 2020, 11(1): 5561. |
14 | GAO Yanxin, TAN Zunkun, YANG Rong, et al. Integrating polyarylether-COFs with TiO2 nanofibers for enhanced visible-light-driven CO2 reduction in artificial photosynthesis[J]. Applied Surface Science, 2022, 605: 154605. |
15 | EL-KADERI Hani M, HUNT Joseph R, MENDOZA-CORTÉS José L, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822): 268-272. |
16 | URIBE-ROMO Fernando J, HUNT Joseph R, FURUKAWA Hiroyasu, et al. A crystalline imine-linked 3-D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13): 4570-4571. |
17 | LIN Guiqing, DING Huimin, YUAN Daqiang, et al. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. Journal of the American Chemical Society, 2016, 138(10): 3302-3305. |
18 | MA Tianqiong, KAPUSTIN Eugene A, YIN Shawn X, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397): 48-52. |
19 | XIE Yang, LI Jian, LIN Cong, et al. Tuning the topology of three-dimensional covalent organic frameworks via steric control: From pts to unprecedented ljh[J]. Journal of the American Chemical Society, 2021, 143(19): 7279-7284. |
20 | ZHANG Yuanyuan, DUAN Jiyun, MA Dou, et al. Three-dimensional anionic cyclodextrin-based covalent organic frameworks[J]. Angewandte Chemie International Edition, 2017, 129(51): 16531-16535. |
21 | MA Tianqiong, LI Jian, NIU Jing, et al. Observation of interpenetration isomerism in covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(22): 6763-6766. |
22 | GROPP Cornelius, MA Tianqiong, HANIKEL Nikita, et al. Design of higher valency in covalent organic frameworks[J]. Science, 2020, 370(6515): eabd6406. |
23 | GONG Chengtao, WANG Hao, SHENG Guan, et al. Synthesis and visualization of entangled 3D covalent organic frameworks with high-valency stereoscopic molecular nodes for gas separation[J]. Angewandte Chemie International Edition, 2022, 61(32): e202204899. |
24 | GAO Chao, LI Jian, YIN Sheng, et al. Twist building blocks from planar to tetrahedral for the synthesis of covalent organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(8): 3718-3723. |
25 | WANG Yujie, LIU Yaozu, LI Hui, et al. Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering[J]. Journal of the American Chemical Society, 2020, 142(8): 3736-3741. |
26 | XU Xiaoyi, CAI Peiyu, CHEN Hongzheng, et al. Three-dimensional covalent organic frameworks with she topology[J]. Journal of the American Chemical Society, 2022, 144(40): 18511-18517. |
27 | GENG Keyu, HE Ting, LIU Ruoyang, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
28 | YANG Haishen, DU Ya, WAN Shun, et al. Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles[J]. Chemical Science, 2015, 6(7): 4049-4053. |
29 | EVANS Austin M, PARENT Lucas R, FLANDERS Nathan C, et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks[J]. Science, 2018, 361(6397): 52-57. |
30 | WAN Shun, GUO Jia, KIM Jangbae, et al. A photoconductive covalent organic framework: Self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation[J]. Angewandte Chemie International Edition, 2009, 121(30): 5547-5550. |
31 | LIU Chunhua, ZHANG Wei, ZENG Qingdao, et al. A photoresponsive surface covalent organic framework: Surface-confined synthesis, isomerization, and controlled guest capture and release[J]. Chemistry—A European Journal, 2016, 22(20): 6768-6773. |
32 | GRILL Leonhard, DYER Matthew, LAFFERENTZ Leif, et al. Nano-architectures by covalent assembly of molecular building blocks[J]. Nature Nanotechnology, 2007, 2(11): 687-691. |
33 | LIPTON-DUFFIN J A, IVASENKO O, PEREPICHKA D F, et al. Synthesis of polyphenylene molecular wires by surface-confined polymerization[J]. Small, 2009, 5(5): 592-597. |
34 | LIPTON-DUFFIN J A, MIWA J A, KONDRATENKO M, et al. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11200-11204. |
35 | LIU Wei, LUO Xin, BAO Yang, et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction[J]. Nature Chemistry, 2017, 9(6): 563-570. |
36 | ZHOU Deng, TAN Xianyang, WU Huimin, et al. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by suzuki polymerization on a liquid-liquid interface[J]. Angewandte Chemie International Edition, 2019, 58(5): 1376-1381. |
37 | MATSUOKA Ryota, SAKAMOTO Ryota, HOSHIKO Ken, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society, 2017, 139(8): 3145-3152. |
38 | WU Shaofei, LI Minchan, PHAN Hoa, et al. Toward two-dimensional π-conjugated covalent organic radical frameworks[J]. Angewandte Chemie International Edition, 2018, 57(27): 8007-8011. |
39 | LIN Guiqing, DING Huimin, CHEN Rufan, et al. 3D porphyrin-based covalent organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(25): 8705-8709. |
40 | KANDAMBETH Sharath, MALLICK Arijit, LUKOSE Binit, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48): 19524-19527. |
41 | ZHANG Yuebiao, SU Jie, FURUKAWA Hiroyasu, et al. Single-crystal structure of a covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(44): 16336-16339. |
42 | KUHN Pierre, ANTONIETTI Markus, THOMAS Arne. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie International Edition, 2008, 47(18): 3450-3453. |
43 | KATEKOMOL Phisan, ROESER Jérôme, BOJDYS Michael, et al. Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene[J]. Chemistry of Materials, 2013, 25(9): 1542-1548. |
44 | BOJDYS Michael J, JEROMENOK Jekaterina, THOMAS Arne, et al. Rational extension of the family of layered, covalent, triazine-based frameworks with regular porosity[J]. Advanced Materials, 2010, 22(19): 2202-2205. |
45 | Subarna DEY, BHUNIA Asamanjoy, ESQUIVEL Dolores, et al. Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO2 adsorption[J]. Journal of Materials Chemistry A, 2016, 4(17): 6259-6263. |
46 | PUTHIARAJ Pillaiyar, CHO Sung-Min, LEE Yuri, et al. Microporous covalent triazine polymers: Efficient Friedel-Crafts synthesis and adsorption/storage of CO2 and CH4 [J]. Journal of Materials Chemistry A, 2015, 3(13): 6792-6797. |
47 | YU Soo-Young, MAHMOOD Javeed, Hyuk-Jun NOH, et al. Direct synthesis of a covalent triazine-based framework from aromatic amides[J]. Angewandte Chemie International Edition, 2018, 57(28): 8438-8442. |
48 | WANG Kewei, YANG Liming, WANG Xi, et al. Covalent triazine frameworks via a low-temperature polycondensation approach[J]. Angewandte Chemie International Edition, 2017, 56(45): 14149-14153. |
49 | PENG Peng, SHI Lei, HUO Feng, et al. In situ charge exfoliated soluble covalent organic framework directly used for Zn-air flow battery[J]. ACS Nano, 2019, 13(1): 878-884. |
50 | GUAN Xinyu, LI Hui, MA Yunchao, et al. Chemically stable polyarylether-based covalent organic frameworks[J]. Nature Chemistry, 2019, 11(6): 587-594. |
51 | LI Nana, JIANG Kaiyue, Fermín RODRÍGUEZ-HERNÁNDEZ, et al. Polyarylether-based 2D covalent-organic frameworks with In-plane D-A structures and tunable energy levels for energy storage[J]. Advanced Science, 2022, 9(6): e2104898. |
52 | CROWE Jonathan W, BALDWIN Luke A, MCGRIER Psaras L. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units[J]. Journal of the American Chemical Society, 2016, 138(32): 10120-10123. |
53 | XIONG Shanxin, LIU Jian, WANG Yuancheng, et al. Solvothermal synthesis of triphenylamine-based covalent organic framework nanofibers with excellent cycle stability for supercapacitor electrodes[J]. Journal of Applied Polymer Science, 2022, 139(3): e51510. |
54 | SHI Xiansong, XIAO Ankang, ZHANG Chenxu, et al. Growing covalent organic frameworks on porous substrates for molecule-sieving membranes with pores tunable from ultra- to nanofiltration[J]. Journal of Membrane Science, 2019, 576: 116-122. |
55 | RITCHIE Lyndsey K, TREWIN Abbie, Aida REGUERA-GALAN, et al. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes[J]. Microporous and Mesoporous Materials, 2010, 132(1/2): 132-136. |
56 | WEI Hao, CHAI Shuangzhi, HU Nantao, et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chemical Communications, 2015, 51(61): 12178-12181. |
57 | MASCHITA Johannes, BANERJEE Tanmay, Gökcen SAVASCI, et al. Ionothermal synthesis of imide-linked covalent organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(36): 15750-15758. |
58 | HAO Gazi, LI Hao, MAO Chenhui, et al. Preparation of nano-Cu-Fe composite metal oxides via a mechanical grinding method and its catalytic performance for the thermal decomposition of ammonium perchlorate[J]. Combustion Science and Technology, 2021, 193(6): 987-1004. |
59 | EKSILER Kubra, ANDOU Yoshito, YILMAZ Faruk, et al. Dynamically controlled fibrillation under combination of ionic liquid with mechanical grinding[J]. Journal of Applied Polymer Science, 2017, 134(7): 44469-44476. |
60 | BANERJEE Tanmay, HAASE Frederik, Gökcen SAVASCI, et al. Single-site photocatalytic H2 evolution from covalent organic frameworks with molecular cobaloxime co-catalysts[J]. Journal of the American Chemical Society, 2017, 139(45): 16228-16234. |
61 | ZWANEVELD Nikolas A A, PAWLAK Rémy, ABEL Mathieu, et al. Organized formation of 2D extended covalent organic frameworks at surfaces[J]. Journal of the American Chemical Society, 2008, 130(21): 6678-6679. |
62 | KHAN Niaz ALI, ZHANG Runnan, WU Hong, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation[J]. Journal of the American Chemical Society, 2020, 142(31): 13450-13458. |
63 | DONG Renhao, ZHANG Tao, FENG Xinliang. Interface-assisted synthesis of 2D materials: Trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. |
64 | Pablo MARTINEZ-BULIT, SORRENTI Alessandro, RODRIGUEZ SAN Miguel David, et al. In flow-based technologies: A new paradigm for the synthesis and processing of covalent-organic frameworks[J]. Chemical Engineering Journal, 2022, 435(3): 135117. |
65 | PENG Yongwu, WONG Wai, HU Zhigang, et al. Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs)[J]. Chemistry of Materials, 2016, 28(14): 5095-5101. |
66 | SINGH Vikram, JANG Seungwook, VISHWAKARMA Niraj K, et al. Intensified synthesis and post-synthetic modification of covalent organic frameworks using a continuous flow of microdroplets technique[J]. NPG Asia Materials, 2018, 10(1): e456. |
67 | FRANCO Carlos, David RODRÍGUEZ-SAN-MIGUEL, SORRENTI Alessandro, et al. Biomimetic synthesis of sub-20nm covalent organic frameworks in water[J]. Journal of the American Chemical Society, 2020, 142(7): 3540-3547. |
68 | LIAO Qiaobo, KE Can, HUANG Xin, et al. A versatile method for functionalization of covalent organic frameworks via suzuki-miyaura cross-coupling[J]. Angewandte Chemie International Edition, 2021, 60(3): 1411-1416. |
69 | GUI Bo, LIU Xuefen, CHENG Yuanpeng, et al. Tailoring the pore surface of 3D covalent organic frameworks via post-synthetic click chemistry[J]. Angewandte Chemie International Edition, 2022, 61(2): e202113852. |
70 | YOU Dan, PAN Zhiquan, CHENG Qingrong. COFs-Ph@CdS S-scheme heterojunctions with photocatalytic hydrogen evolution and efficient degradation properties[J]. Journal of Alloys and Compounds, 2023, 930: 167069. |
71 | ZHAO Xiaodong, PANG Huaji, HUANG Dekang, et al. Construction of ultrastable nonsubstituted quinoline-bridged covalent organic frameworks via rhodium-catalyzed dehydrogenative annulation[J]. Angewandte Chemie International Edition, 2022, 61(41): e202208833. |
72 | ZHANG Weiwei, CHEN Linjiang, DAI Sheng, et al. Reconstructed covalent organic frameworks[J]. Nature, 2022, 604(7904): 72-79. |
73 | SHI Jilong, CHEN Rufan, HAO Huimin, et al. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO[J]. Angewandte Chemie International Edition, 2020, 59(23): 9088-9093. |
74 | MU Zhenjie, ZHU Yuhao, LI Bixiao, et al. Covalent organic frameworks with record pore apertures[J]. Journal of the American Chemical Society, 2022, 144(11): 5145-5154. |
75 | YANG Liujun, WANG Yuxiang, YUAN Junwei, et al. Construction of covalent-integrated MOFs@COFs composite material for efficient synergistic adsorption and degradation of pollutants[J]. Chemical Engineering Journal, 2022, 446: 137095. |
76 | ABUZEID Hesham R, EL-MAHDY Ahmed F M, KUO Shiao-Wei. Hydrogen bonding induces dual porous types with microporous and mesoporous covalent organic frameworks based on bicarbazole units[J]. Microporous and Mesoporous Materials, 2020, 300: 110151. |
77 | MENDOZA-CORTÉS José L, HAN Sang Soo, FURUKAWA Hiroyasu, et al. Adsorption mechanism and uptake of methane in covalent organic frameworks: Theory and experiment[J]. The Journal of Physical Chemistry A, 2010, 114(40): 10824-10833. |
78 | FURUKAWA Hiroyasu, YAGHI Omar M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications[J]. Journal of the American Chemical Society, 2009, 131(25): 8875-8883. |
79 | MENDOZA-CORTÉS Jose L, GODDARD William A, FURUKAWA Hiroyasu, et al. A covalent organic framework that exceeds the DOE 2015 volumetric target for H2 uptake at 298 K[J]. The Journal of Physical Chemistry Letters, 2012, 3(18): 2671-2675. |
80 | FAN Hongwei, PENG Manhua, STRAUSS Ina, et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation[J]. Journal of the American Chemical Society, 2020, 142(15): 6872-6877. |
81 | JIN Fazheng, LIN En, WANG Ting, et al. Rationally fabricating three-dimensional covalent organic frameworks for propyne/propylene separation[J]. Journal of the American Chemical Society, 2022, 144(50): 23081-23088. |
82 | ZHONG Wanfu, Rongjian SA, LI Liuyi, et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO[J]. Journal of the American Chemical Society, 2019, 141(18): 7615-7621. |
83 | LU Meng, ZHANG Mi, LIU Jiang, et al. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction[J]. Journal of the American Chemical Society, 2022, 144(4): 1861-1871. |
84 | BHADRA Mohitosh, KANDAMBETH Sharath, SAHOO Manoj K, et al. Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins[J]. Journal of the American Chemical Society, 2019, 141(15): 6152-6156. |
85 | LI Wenqian, HUANG Xiaofeng, ZENG Tengwu, et al. Thiazolo[5,4-d]thiazole-based donor-acceptor covalent organic framework for sunlight-driven hydrogen evolution[J]. Angewandte Chemie International Edition, 2021, 60(4): 1869-1874. |
86 | STEGBAUER Linus, SCHWINGHAMMER Katharina, LOTSCH Bettina V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production[J]. Chemical Science, 2014, 5(7): 2789-2793. |
87 | HAN Wangkang, LIU Yong, YAN Xiaodong, et al. Integrating light-harvesting ruthenium(Ⅱ)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2022, 61(40): 202208791. |
88 | WAN Changpu, YI Jundong, CAO Rong, et al. Conductive metal/covalent organic frameworks for CO2 electro-reduction[J]. Chinese Journal of Structural Chemistry, 2022, 41(5): 2205001-2205014. |
89 | LI Cha, QIU Zining, SUN Hongming, et al. Recent progress in covalent organic frameworks (COFs) for electrocatalysis[J]. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211084-2211099. |
90 | CHEN Mengyang, ZHOU Ye, REN Shibin, et al. Methods to make conductive covalent organic frameworks for electrocatalytic applications[J]. Chinese Journal of Structural Chemistry, 2022, 41(12): 2212107-2212119. |
91 | TANG Jiaqi, LIANG Zuozhong, QIN Haonan, et al. Large-area free-standing metalloporphyrin-based covalent organic framework films by liquid-air interfacial polymerization for oxygen electrocatalysis[J]. Angewandte Chemie International Edition, 2023, 62(1): e202214449. |
92 | HAN Bin, JIN Yucheng, CHEN Baotong, et al. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis[J]. Angewandte Chemie International Edition, 2022, 61(1): e202114244. |
93 | JIANG Minghang, HAN Linkai, PENG Peng, et al. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis[J]. Nano Letters, 2022, 22(1): 372-379. |
94 | DONG Hong, LU Meng, WANG Ya, et al. Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 303: 120897. |
95 | BANDOMO DUBED Geyla C, MONDAL Suvendu Sekhar, FRANCO Federico, et al. Mechanically constrained catalytic Mn(CO)3Br single sites in a two-dimensional covalent organic framework for CO2 electroreduction in H2O[J]. ACS Catalysis, 2021, 11(12): 7210-7222. |
96 | PANG Yiying, WANG Bowei, KANG Yazhuo, et al. Sulfonated chiral covalent organic frameworks-mediated asymmetric Michael addition of acetone to β-nitroolefins[J]. Chemical Engineering Science, 2022, 260: 117933. |
97 | ZHANG Jie, HAN Xing, WU Xiaowei, et al. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis[J]. Journal of the American Chemical Society, 2017, 139(24): 8277-8285. |
98 | LI Fei, KAN Jinglan, YAO Bingjian, et al. Synthesis of chiral covalent organic frameworks via asymmetric organocatalysis for heterogeneous asymmetric catalysis[J]. Angewandte Chemie International Edition, 2022, 61(25): e202115044. |
99 | ZHANG Siyun, ZHOU Juan, LI Haibing. Chiral covalent organic framework packed nanochannel membrane for enantioseparation[J]. Angewandte Chemie International Edition, 2022, 61(27): e202204012. |
100 | YUAN Chen, JIA Wenyan, YU Ziyun, et al. Are highly stable covalent organic frameworks the key to universal chiral stationary phases for liquid and gas chromatographic s e p a r a t i o n s ? [ J]. Journal of the American Chemical Society, 2022, 144(2): 891-900. |
101 | ZHANG Sainan, ZHENG Yunlong, AN Hongde, et al. Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation[J]. Angewandte Chemie International Edition, 2018, 57(51): 16754-16759. |
102 | LIU Sijia, LIU Minghao, XU Qing, et al. Lithium ion conduction in covalent organic frameworks[J]. Chinese Journal of Structural Chemistry, 2022, 41(11): 2211003-2211017. |
103 | YAO Changjiang, WU Zhenzhen, XIE Jian, et al. Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery[J]. ChemSusChem, 2020, 13(9): 2457-2463. |
104 | WANG Gang, CHANDRASEKHAR Naisa, BISWAL Bishnu P, et al. A crystalline, 2D polyarylimide cathode for ultrastable and ultrafast Li storage[J]. Advanced Materials, 2019, 31(28): e1901478. |
105 | KANG Tae Woog, LEE Jun-Hyeong, LEE Jaewoo, et al. An ion-channel-restructured zwitterionic covalent organic framework solid electrolyte for all-solid-state lithium-metal batteries[J]. Advanced Materials, 2023, 35(30): e2301308. |
106 | XU Fei, YANG Shuhao, CHEN Xiong, et al. Energy-storage covalent organic frameworks: Improving performance via engineering polysulfide chains on walls[J]. Chemical Science, 2019, 10(23): 6001-6006. |
107 | HALDAR Sattwick, KALEESWARAN Dhananjayan, RASE Deepak, et al. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode[J]. Nanoscale Horizons, 2020, 5(8): 1264-1273. |
108 | SUN Ruimin, HOU Singyuk, LUO Chao, et al. A covalent organic framework for fast-charge and durable rechargeable Mg storage[J]. Nano Letters, 2020, 20(5): 3880-3888. |
109 | DUAN Ju, WANG Wenting, ZOU Degui, et al. Construction of a few-layered COF@CNT composite as an ultrahigh rate cathode for low-cost K-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31234-31244. |
110 | YUSRAN Yusran, LI Hui, GUAN Xinyu, et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors[J]. Advanced Materials, 2020, 32(8): e1907289. |
111 | MARTÍN-ILLÁN Jesús Á, SIERRA Laura, Pilar OCÓN, et al. Electrochemical double-layer capacitor based on carbon@ covalent organic framework aerogels[J]. Angewandte Chemie International Edition, 2022, 61(48): e202213106. |
112 | HALDAR Sattwick, KUSHWAHA Rinku, MAITY Rahul, et al. Pyridine-rich covalent organic frameworks as high-performance solid-state supercapacitors[J]. ACS Materials Letters, 2019, 1(4): 490-497. |
113 | HUANG Ning, ZHAI Lipeng, XU Hong, et al. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions[J]. Journal of the American Chemical Society, 2017, 139(6): 2428-2434. |
114 | ZHUANG Shuting, LIU Yong, WANG Jianlong. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution[J]. Journal of Hazardous Materials, 2020, 383: 121126. |
115 | MELLAH Abdelkarim, FERNANDES Soraia P S, Ramón RODRÍGUEZ, et al. Adsorption of pharmaceutical pollutants from water using covalent organic frameworks[J]. Chemistry—A European Journal, 2018, 24(42): 10601-10605. |
116 | SALONEN Laura M, PINELA Sara R, FERNANDES Soraia P S, et al. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework[J]. Journal of Chromatography A, 2017, 1525: 17-22. |
117 | LI Yongguang, WU Shanshan, ZHANG Lingling, et al. Precisely controlled multidimensional covalent frameworks: Polymerization of supramolecular colloids[J]. Angewandte Chemie International Edition, 2020, 59(48): 21525-21529. |
118 | ZHANG Guiyang, LI Xinle, LIAO Qiaobo, et al. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery[J]. Nature Communications, 2018, 9(1): 2785. |
119 | WANG Xinye, SUN Baohong, YE Ziqiu, et al. Enzyme-responsive COF-based thiol-targeting nanoinhibitor for curing bacterial infections[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 38483-38496. |
120 | YAN Dong, WANG Zhifang, CHENG Peng, et al. Rational fabrication of crystalline smart materials for rapid detection and efficient removal of ozone[J]. Angewandte Chemie International Edition, 2021, 60(11): 6055-6060. |
121 | LIU Ming, CHEN Yongjun, HUANG Xin, et al. Porphyrin-based COF 2D materials: Variable modification of sensing performances by post-metallization[J]. Angewandte Chemie International Edition, 2022, 61(12): e202115308. |
122 | LIN Chao, SUN Linhai, MENG Xutong, et al. Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators[J]. Angewandte Chemie International Edition, 2022, 61(42): e202211601. |
[1] | ZHAO Weigang, ZHANG Qianqian, LAN Yuling, YAN Wen, ZHOU Xiaojian, FAN Mizi, DU Guanben. Research progress and prospect of the core materials for vacuum insulation panel [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3910-3922. |
[2] | ZHOU Rui, YU Kejing, XU Yang. Preparation and electromagnetic interference shielding properties of electroless iron-nickel plated carbon fiber [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3955-3963. |
[3] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[4] | CHEN Zhiqiang, XIA Mingwei, YANG Haiping, CHEN Yingquan, WANG Xianhua, CHEN Hanping. Research progress on synthesis and regulation of lignocellulose-based carbon quantum dots [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3100-3113. |
[5] | HE Ruiqiang, FANG Min, ZHOU Jianduo, FEI Hua, YANG Kai. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173. |
[6] | LYU Qingyan, GAO Hanwen, XIE Kunyu, FAN Dongqing, HUANG Long, CHEN Zhiqiang. Current situation and challenges of mixed culture polyhydroxyalkanoate (PHA) production using waste organics [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3374-3385. |
[7] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[8] | FENG Bangman, YUE Chengguang, WANG Mei-Yan, WANG Yue, MA Xinbin. Fabrication of heterogeneous tannic acid-zirconium mesoporous material and the catalytic performance on cycloaddition of CO2 with epoxide [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2803-2810. |
[9] | HUANG Kun, XU Ming, WU Xiujuan, PEI Sijia, LIU Dawei, MA Xiaoxun, XU Long. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493. |
[10] | XUE Yunjiao, ZHANG Xuan, LIU Yang, CHEN Yuhuan, FANG Jing, YANG Fang. Pseudo-protein biomaterials: Classification, synthesis and application [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2001-2016. |
[11] | QI Yabing, WU Zibo, YANG Qingcui. Research advances of preparation of Pickering emulsions and their stability [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2017-2030. |
[12] | LU Guangjun, HAN Jingang, CHEN Ying, MA Zhibin. Preparation of magnesium slag-based porous materials and their performance for Pb2+ adsorption in wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2126-2134. |
[13] | GAO Fei, LIU Zhisong, PAN Keke, LIU Minmin, DAI Bin, DAN Jianming, YU Feng. Vermiculite-supported FeCe bimetallic catalyst for selective catalytic reduction of NO with CO [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1851-1862. |
[14] | JIN Binhao, ZHU Xiaoqian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, SU Baogen, YANG Qiwei. Advances in adsorbents for aromatics/cycloalkanes separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881. |
[15] | LIANG Yanyan, ZHANG Junliang, GUO Yunya, ZHANG Yanting. The role of seed in the synthesis of molecular sieves [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |