Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1863-1881.DOI: 10.16085/j.issn.1000-6613.2023-0533
• Materials science and technology • Previous Articles
JIN Binhao1(), ZHU Xiaoqian1, KE Tian1, ZHANG Zhiguo1,2, BAO Zongbi1,2, REN Qilong1,2, SU Baogen1, YANG Qiwei1,2()
Received:
2023-04-06
Revised:
2023-06-05
Online:
2024-05-13
Published:
2024-04-15
Contact:
YANG Qiwei
金彬浩1(), 朱小倩1, 柯天1, 张治国1,2, 鲍宗必1,2, 任其龙1,2, 苏宝根1, 杨启炜1,2()
通讯作者:
杨启炜
作者简介:
金彬浩(1997—),男,硕士研究生,研究方向为分子辨识分离工程。E-mail:jinbinhao@zju.edu.cn。
基金资助:
CLC Number:
JIN Binhao, ZHU Xiaoqian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, SU Baogen, YANG Qiwei. Advances in adsorbents for aromatics/cycloalkanes separation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881.
金彬浩, 朱小倩, 柯天, 张治国, 鲍宗必, 任其龙, 苏宝根, 杨启炜. 芳香烃/环烷烃吸附分离材料研究进展[J]. 化工进展, 2024, 43(4): 1863-1881.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0533
名称 | 分子结构 | 分子尺寸/Å | 动力学直径/Å | 沸点/K | 极化率/10-24cm3 | ||
---|---|---|---|---|---|---|---|
X | Y | Z | |||||
苯 | 7.3 | 6.6 | 3.3 | 5.35~5.85 | 353.3 | 10.0~10.7 | |
环己烷 | 7.2 | 6.6 | 5.0 | 6.0 | 353.9 | 10.8~11.7 | |
甲苯 | 8.3 | 6.6 | 4.0 | 5.25 | 383 | 12.32 | |
甲基环己烷 | 8.3 | 6.6 | 5.1 | 6.49 | 374 | 12.83 |
名称 | 分子结构 | 分子尺寸/Å | 动力学直径/Å | 沸点/K | 极化率/10-24cm3 | ||
---|---|---|---|---|---|---|---|
X | Y | Z | |||||
苯 | 7.3 | 6.6 | 3.3 | 5.35~5.85 | 353.3 | 10.0~10.7 | |
环己烷 | 7.2 | 6.6 | 5.0 | 6.0 | 353.9 | 10.8~11.7 | |
甲苯 | 8.3 | 6.6 | 4.0 | 5.25 | 383 | 12.32 | |
甲基环己烷 | 8.3 | 6.6 | 5.1 | 6.49 | 374 | 12.83 |
吸附剂 | 优先吸附芳香烃 | ||||||||
---|---|---|---|---|---|---|---|---|---|
温度/K | 静态吸附容量/mmol·g-1 | 静态吸附组分压力/kPa | 吸附分离机理 | ||||||
Cu2I2(BTTP4)[ | — | Bz(2.60), Cy(1.43) | p0① | 热力学 | |||||
Ni3(OH)(Ina)3(BDC)1.5[ | 298 | Bz(3.83), Cy(0.17) | p0① | 热力学 | |||||
ZnL[ | 298 | Bz(1.47), Cy(0.45) | p0① | 热力学 | |||||
DAT-MOF-1[ | 298 | Bz(1.50), Cy(0.20) | 100 | 热力学 | |||||
Mn-MOF-74[ | 298 | Bz(9.38), Cy(0.25) | 12.5 | 热力学 | |||||
MAF-24β[ | 298 | Bz(2.57), Cy(0.20) | p0① | 刚性排阻 | |||||
MAF-stu-13[ | 298 | Bz(2.59), Cy(0.21) | p0① | 刚性排阻 | |||||
Li2Zn2(NO2-bdc)3(bpy)[ | 293 | Bz(2.90), Cy(0.18) | p0① | 刚性排阻 | |||||
Zn(μ4-TCNQ-TCNQ)bpy[ | 298 | Bz(3.57), Cy(0.89) | p0① | 柔性排阻 | |||||
CID-23[ | 298 | Bz(1.20), Cy(0.09) | 10 | 柔性排阻 | |||||
Cu(bpp)2(BF4)2[ | 283 | Bz(3.18), Cy(trace)② | p0① | 柔性排阻 | |||||
CTF-IP10[ | 298 | Bz(12.43), Cy(trace)② | p0① | 热力学 | |||||
TBICOF[ | 298 | Bz(28.66), Cy(8.31) | p0① | 热力学 | |||||
CMP-S-1[ | 298 | Bz(8.30), Cy(4.50) | p0① | 热力学 | |||||
杂化[ | 298 | Bz(1.30), Cy(trace)② | p0① | 热力学 | |||||
TAPM-1[ | 298 | Bz(3.71), Cy(0.17), TOL(2.28), MCH(0.31) | 12 | 热力学 | |||||
[ | — | — | — | 热力学 | |||||
EtP5α[ | 298 | TOL:MCH = 98.8:1.2(liquid)④ | P0① | 柔性排阻 | |||||
吸附剂 | 优先吸附环烷烃 | ||||||||
温度/K | 模拟穿透时间/min·g-1 | 模拟穿透条件 (分压,载气流速) | 等摩尔混合气(液)吸附比 | 吸附分离机理 | |||||
MUF-77[ | 293 | 苯(100),环己烷(180) | 0.5kPa, 100mLN/min | — | 热力学 | ||||
CUB-30[ | 293 | 苯(30),环己烷(400) | 0.5kPa, 100mLN/min | — | 热力学 | ||||
[Zn12(tdc)6(glycolate)6(dabco)3] (glycolate = 1,2-戊二醇)[ | — | — | — | Bz∶Cy = 0.2∶1(气) Bz∶Cy = 0.4∶1(液) | 热力学 | ||||
EtP6β[ | 298 | TOL∶MCH = 0.8∶99.2(液) | 柔性排阻 | ||||||
1α[ | 298 | — | — | Bz∶Cy = 0.17∶0.83(气) TOL∶MCH = 0.14∶0.86(气) | 热力学 |
吸附剂 | 优先吸附芳香烃 | ||||||||
---|---|---|---|---|---|---|---|---|---|
温度/K | 静态吸附容量/mmol·g-1 | 静态吸附组分压力/kPa | 吸附分离机理 | ||||||
Cu2I2(BTTP4)[ | — | Bz(2.60), Cy(1.43) | p0① | 热力学 | |||||
Ni3(OH)(Ina)3(BDC)1.5[ | 298 | Bz(3.83), Cy(0.17) | p0① | 热力学 | |||||
ZnL[ | 298 | Bz(1.47), Cy(0.45) | p0① | 热力学 | |||||
DAT-MOF-1[ | 298 | Bz(1.50), Cy(0.20) | 100 | 热力学 | |||||
Mn-MOF-74[ | 298 | Bz(9.38), Cy(0.25) | 12.5 | 热力学 | |||||
MAF-24β[ | 298 | Bz(2.57), Cy(0.20) | p0① | 刚性排阻 | |||||
MAF-stu-13[ | 298 | Bz(2.59), Cy(0.21) | p0① | 刚性排阻 | |||||
Li2Zn2(NO2-bdc)3(bpy)[ | 293 | Bz(2.90), Cy(0.18) | p0① | 刚性排阻 | |||||
Zn(μ4-TCNQ-TCNQ)bpy[ | 298 | Bz(3.57), Cy(0.89) | p0① | 柔性排阻 | |||||
CID-23[ | 298 | Bz(1.20), Cy(0.09) | 10 | 柔性排阻 | |||||
Cu(bpp)2(BF4)2[ | 283 | Bz(3.18), Cy(trace)② | p0① | 柔性排阻 | |||||
CTF-IP10[ | 298 | Bz(12.43), Cy(trace)② | p0① | 热力学 | |||||
TBICOF[ | 298 | Bz(28.66), Cy(8.31) | p0① | 热力学 | |||||
CMP-S-1[ | 298 | Bz(8.30), Cy(4.50) | p0① | 热力学 | |||||
杂化[ | 298 | Bz(1.30), Cy(trace)② | p0① | 热力学 | |||||
TAPM-1[ | 298 | Bz(3.71), Cy(0.17), TOL(2.28), MCH(0.31) | 12 | 热力学 | |||||
[ | — | — | — | 热力学 | |||||
EtP5α[ | 298 | TOL:MCH = 98.8:1.2(liquid)④ | P0① | 柔性排阻 | |||||
吸附剂 | 优先吸附环烷烃 | ||||||||
温度/K | 模拟穿透时间/min·g-1 | 模拟穿透条件 (分压,载气流速) | 等摩尔混合气(液)吸附比 | 吸附分离机理 | |||||
MUF-77[ | 293 | 苯(100),环己烷(180) | 0.5kPa, 100mLN/min | — | 热力学 | ||||
CUB-30[ | 293 | 苯(30),环己烷(400) | 0.5kPa, 100mLN/min | — | 热力学 | ||||
[Zn12(tdc)6(glycolate)6(dabco)3] (glycolate = 1,2-戊二醇)[ | — | — | — | Bz∶Cy = 0.2∶1(气) Bz∶Cy = 0.4∶1(液) | 热力学 | ||||
EtP6β[ | 298 | TOL∶MCH = 0.8∶99.2(液) | 柔性排阻 | ||||||
1α[ | 298 | — | — | Bz∶Cy = 0.17∶0.83(气) TOL∶MCH = 0.14∶0.86(气) | 热力学 |
1 | ZHOU Jingyi, KE Tian, STEINKE Felix, et al. Tunable confined aliphatic pore environment in robust metal-organic frameworks for efficient separation of gases with a similar structure[J]. Journal of the American Chemical Society, 2022, 144(31): 14322-14329. |
2 | SHEN Jin, HE Xin, KE Tian, et al. Simultaneous interlayer and intralayer space control in two-dimensional metal-organic frameworks for acetylene/ethylene separation[J]. Nature Communications, 2020, 11(1): 6259. |
3 | KE Tian, WANG Qingju, SHEN Jin, et al. Molecular sieving of C2-C3 alkene from alkyne with tuned threshold pressure in robust layered metal-organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(31): 12725-12730. |
4 | WANG Zhaohua, DONG Chunyang, TANG Xuan, et al. CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen[J]. Nature Communications, 2022, 13: 4404. |
5 | OKADA Yoshimi, SASAKI Eiji, WATANABE Eiji, et al. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1348-1356. |
6 | WU Dan, BAAZIZ Walid, GU Bang, et al. Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions[J]. Nature Catalysis, 2021, 4(7): 595-606. |
7 | HADJ-KALI Mohamed K, SALLEH M Zulhaziman M, WAZEER Irfan, et al. Separation of benzene and cyclohexane using eutectic solvents with aromatic structure[J]. Molecules, 2022, 27(13): 4041. |
8 | SALLEH M, HADJ-KALI M, WAZEER I, et al. Extractive separation of benzene and cyclohexane using binary mixtures of ionic liquids[J]. Journal of Molecular Liquids, 2019, 285: 716-726. |
9 | SALLEH Zulhaziman, WAZEER Irfan, MULYONO Sarwono, et al. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents-COSMO-RS screening and experimental validation[J]. The Journal of Chemical Thermodynamics, 2017, 104: 33-44. |
10 | LI Wenxue, XU Bo, LEI Zhigang, et al. Separation of benzene and cyclohexane by extractive distillation intensified with ionic liquid[J]. Chemical Engineering and Processing - Process Intensification, 2018, 126: 81-89. |
11 | AYUSO Miguel, Andrés CAÑADA-BARCALA, LARRIBA Marcos, et al. Enhanced separation of benzene and cyclohexane by homogeneous extractive distillation using ionic liquids as entrainers[J]. Separation and Purification Technology, 2020, 240: 116583. |
12 | BROUWER Thomas, SCHUUR Boelo. Bio-based solvents as entrainers for extractive distillation in aromatic/aliphatic and olefin/paraffin separation[J]. Green Chemistry, 2020, 22(16): 5369-5375. |
13 | GARCIA VILLALUENGA J P, TABE-MOHAMMADI A. A review on the separation of benzene/cyclohexane mixtures by pervaporation processes[J]. Journal of Membrane Science, 2000, 169(2): 159-174. |
14 | BELL Carl-Martin, HUANG Ivy, ZHOU Meijuan, et al. A vapor permeation processes for the separation of aromatic compounds from aliphatic compounds[J]. Separation Science and Technology, 2014, 49(15): 2271-2279. |
15 | ANWAR Fahmi, KHALEEL Maryam, WANG Kean, et al. Selectivity tuning of adsorbents for ethane/ethylene separation: A review[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12269-12293. |
16 | ZHANG Ling, LI Libo, HU Enlai, et al. Boosting ethylene/ethane separation within copper(I)-chelated metal-organic frameworks through tailor-made aperture and specific π-complexation[J]. Advanced Science, 2020, 7(2): 1901918. |
17 | XIANG Huan, SHAO Yan, AMEEN Ahmed, et al. Adsorptive separation of C2H6/C2H4 on metal-organic frameworks (MOFs) with pillared-layer structures[J]. Separation and Purification Technology, 2020, 242: 116819. |
18 | DING Qi, ZHANG Zhaoqiang, YU Cong, et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework[J]. Science Advances, 2020, 6(15): eaaz4322. |
19 | LI Libo, LIN Ruibiao, WANG Xiaoqing, et al. Kinetic separation of propylene over propane in a microporous metal-organic framework[J]. Chemical Engineering Journal, 2018, 354: 977-982. |
20 | XIE Yi, SHI Yanshu, CUI Hui, et al. Efficient separation of propylene from propane in an ultramicroporous cyanide-based compound with open metal sites[J]. Small Structures, 2022, 3(5): 2100125. |
21 | CADIAU A, ADIL K, BHATT P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353(6295): 137-140. |
22 | TIAN Xiaoyun, ZHOU Haolong, ZHANG Xuewen, et al. Two isostructural flexible porous coordination polymers showing contrasting single-component and mixture adsorption properties for propylene/propane[J]. Inorganic Chemistry, 2020, 59(9): 6047-6052. |
23 | DING Qi, ZHANG Sui. Recent advances in the development of metal-organic frameworks for propylene and propane separation[J]. Energy & Fuels, 2022, 36(14): 7337-7361. |
24 | LIU Shanshan, HAN Xue, CHAI Yuchao, et al. Efficient separation of acetylene and carbon dioxide in a decorated zeolite[J]. Angewandte Chemie International Edition, 2021, 60(12): 6526-6532. |
25 | LI Peng, HE Yabing, ZHAO Yunfeng, et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie International Edition, 2015, 54(2): 574-577. |
26 | WANG Jun, ZHANG Yan, SU Yun, et al. Fine pore engineering in a series of isoreticular metal-organic frameworks for efficient C2H2/CO2 separation[J]. Nature Communications, 2022, 13(1): 200. |
27 | HERM Zoey R, WIERS Brian M, MASON Jarad A, et al. Separation of hexane isomers in a metal-organic framework with triangular channels[J]. Science, 2013, 340(6135): 960-964. |
28 | YU Liang, DONG Xinglong, GONG Qihan, et al. Splitting mono- and dibranched alkane isomers by a robust aluminum-based metal-organic framework material with optimal pore dimensions[J]. Journal of the American Chemical Society, 2020, 142(15): 6925-6929. |
29 | MENDES Patricia A P, HORCAJADA Patricia, RIVES Sébastien, et al. A complete separation of hexane isomers by a functionalized flexible metal organic framework[J]. Advanced Functional Materials, 2014, 24(48): 7666-7673. |
30 | WANG Hao, DONG Xinglong, VELASCO Ever, et al. One-of-a-kind: A microporous metal-organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving[J]. Energy & Environmental Science, 2018, 11(5): 1226-1231. |
31 | LI Xiaolin, WANG Juehua, BAI Nannan, et al. Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes[J]. Nature Communications, 2020, 11: 4280. |
32 | LI Liangying, GUO Lidong, OLSON David H, et al. Discrimination of xylene isomers in a stacked coordination polymer[J]. Science, 2022, 377(6603): 335-339. |
33 | GONZALEZ Miguel I, KAPELEWSKI Matthew T, BLOCH Eric D, et al. Separation of xylene isomers through multiple metal site interactions in metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(9): 3412-3422. |
34 | YANG Liping, LIU Hanbang, XING Jiacheng, et al. Separation of xylene isomers in the anion-pillared square grid material SIFSIX-1-Cu[J]. Chemistry-A European Journal, 2021, 27(20): 6187-6190. |
35 | ZHOU Jingyi, KE Tian, SONG Yifei, et al. Highly efficient separation of C8 aromatic isomers by rationally designed nonaromatic metal-organic frameworks[J]. Journal of the American Chemical Society, 2022, 144(46): 21417-21424. |
36 | GONZÁLEZ-GALÁN C, LUNA-TRIGUERO A, VICENT-LUNA J M, et al. Exploiting the π-bonding for the separation of benzene and cyclohexane in zeolites[J]. Chemical Engineering Journal, 2020, 398: 125678. |
37 | WANG Hao, LIU Yunling, LI Jing. Designer metal-organic frameworks for size-exclusion-based hydrocarbon separations: Progress and challenges[J]. Advanced Materials, 2020, 32(44): e2002603. |
38 | CHEN Cheng, GUAN Haiyan, LI Hengbo, et al. A noncovalent π-stacked porous organic molecular framework for selective separation of aromatics and cyclic aliphatics[J]. Angewandte Chemie International Edition, 2022, 61(24): e202201646. |
39 | ZHOU Hongcai, LONG Jeffrey R, YAGHI Omar M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
40 | POLYUKHOV Daniil M, PORYVAEV Artem S, SUKHIKH Aleksandr S, et al. Fine-tuning window apertures in ZIF-8/67 frameworks by metal ions and temperature for high-efficiency molecular sieving of xylenes[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40830-40836. |
41 | YUAN Shuai, HUANG Lan, HUANG Zhehao, et al. Continuous variation of lattice dimensions and pore sizes in metal-organic frameworks[J]. Journal of the American Chemical Society, 2020, 142(10): 4732-4738. |
42 | WANG Xun, NIU Zheng, AL-ENIZI Abdullah M, et al. Pore environment engineering in metal-organic frameworks for efficient ethane/ethylene separation[J]. Journal of Materials Chemistry A, 2019, 7(22): 13585-13590. |
43 | WANG Gangding, KRISHNA Rajamani, LI Yongzhi, et al. Boosting ethane/ethylene separation by MOFs through the amino-functionalization of pores[J]. Angewandte Chemie International Edition, 2022, 61(48): e202213015. |
44 | AGRAWAL Mayank, BHATTACHARYYA Souryadeep, HUANG Yi, et al. Liquid-phase multicomponent adsorption and separation of xylene mixtures by flexible MIL-53 adsorbents[J]. The Journal of Physical Chemistry C, 2018, 122(1): 386-397. |
45 | PANG Jiandong, DI Zhengyi, QIN Junsheng, et al. Precisely embedding active sites into a mesoporous Zr-framework through linker installation for high-efficiency photocatalysis[J]. Journal of the American Chemical Society, 2020, 142(35): 15020-15026. |
46 | XIAO Yingbo, GONG Wei, GUO Sijia, et al. Regulating coordination environment in metal-organic frameworks for adsorption and redox conversion of polysulfides in lithium-sulfur batteries[J]. ACS Materials Letters, 2021, 3(12): 1684-1694. |
47 | ZHENG Fang, CHEN Rundao, ZHANG Zhiguo, et al. Cooperative control of intralayer and interlayer space in MOFs enables selective capture of intermediate-sized molecules[J]. Cell Reports Physical Science, 2022, 3(6): 100903. |
48 | CHEN Fuqiang, LAI Dan, GUO Lidong, et al. Deep desulfurization with record SO2 adsorption on the metal-organic frameworks[J]. Journal of the American Chemical Society, 2021, 143(24): 9040-9047. |
49 | WU Kaiyi, GUO Lidong, ZHANG Zhiguo, et al. Shaping of gallate-based metal-organic frameworks for adsorption separation of ethylene from acetylene and ethane[J]. Journal of Colloid and Interface Science, 2021, 581: 177-184. |
50 | ZHANG Yaru, XIE Xiaozheng, YIN Xuebo, et al. Flexible ligand for metal-organic frameworks with simultaneous large-pore and antenna effect emission[J]. Chemical Engineering Journal, 2022, 443: 136532. |
51 | LUO Feng, YAN Changsheng, DANG Lilong, et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation[J]. Journal of the American Chemical Society, 2016, 138(17): 5678-5684. |
52 | ZHOU Dongdong, ZHANG Jiepeng. On the role of flexibility for adsorptive separation[J]. Accounts of Chemical Research, 2022, 55(20): 2966-2977. |
53 | MONNI Noemi, Eduardo ANDRES-GARCIA, Katia CAAMAÑO, et al. A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO2 uptake and separation[J]. Journal of Materials Chemistry A, 2021, 9(44): 25189-25195. |
54 | YANG Rui, LI Lei, XIONG Ying, et al. Two robust porous metal-organic frameworks sustained by distinct catenation: Selective gas sorption and single-crystal-to-single-crystal guest exchange[J]. Chemistry: An Asian Journal, 2010, 5(11): 2358-2368. |
55 | REN Guojian, LIU Shuxia, MA Fengji, et al. A 9-connected metal-organic framework with gas adsorption properties[J]. Journal of Materials Chemistry, 2011, 21(40): 15909-15913. |
56 | JOARDER Biplab, MUKHERJEE Soumya, CHAUDHARI Abhijeet K, et al. Guest-responsive function of a dynamic metal-organic framework with a π Lewis acidic pore surface[J]. Chemistry: A European Journal, 2014, 20(47): 15303-15308. |
57 | MANNA Biplab, MUKHERJEE Soumya, DESAI Aamod V, et al. A π-electron deficient diaminotriazine functionalized MOF for selective sorption of benzene over cyclohexane[J]. Chemical Communications, 2015, 51(84): 15386-15389. |
58 | Manuel DÍAZ-GARCÍA, Álvaro MAYORAL, Isabel DÍAZ, et al. Nanoscaled M-MOF-74 materials prepared at room temperature[J]. Crystal Growth & Design, 2014, 14(5): 2479-2487. |
59 | DE OLIVEIRA Aline, DE LIMA Guilherme Ferreira, DE ABREU Heitor Avelino. Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn)[J]. Chemical Physics Letters, 2018, 691: 283-290. |
60 | Gabriel FLORES J, Manuel DÍAZ-GARCÍA, IBARRA Ilich A, et al. Sustainable M-MOF-74 (M = Cu, Co, Zn) prepared in methanol as heterogeneous catalysts in the synthesis of benzaldehyde from styrene oxidation[J]. Journal of Solid State Chemistry, 2021, 298: 122151. |
61 | MUKHERJEE Soumya, MANNA Biplab, DESAI Aamod V, et al. Harnessing Lewis acidic open metal sites of metal-organic frameworks: The foremost route to achieve highly selective benzene sorption over cyclohexane[J]. Chemical Communications, 2016, 52(53): 8215-8218. |
62 | MACREADIE Lauren K, BABARAO Ravichandar, SETTER Caitlin J, et al. Enhancing multicomponent metal-organic frameworks for low pressure liquid organic hydrogen carrier separations[J]. Angewandte Chemie International Edition, 2020, 59(15): 6090-6098. |
63 | LIU Lujia, TELFER Shane G. Systematic ligand modulation enhances the moisture stability and gas sorption characteristics of quaternary metal-organic frameworks[J]. Journal of the American Chemical Society, 2015, 137(11): 3901-3909. |
64 | LYSOVA Anna A, SAMSONENKO Denis G, DOROVATOVSKII Pavel V, et al. Tuning the molecular and cationic affinity in a series of multifunctional metal-organic frameworks based on dodecanuclear Zn(Ⅱ) carboxylate wheels[J]. Journal of the American Chemical Society, 2019, 141(43): 17260-17269. |
65 | LIN Jianbin, ZHANG Jiepeng, ZHANG Weixiong, et al. Porous manganese(Ⅱ) 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazolate frameworks: Rational self-assembly, supramolecular isomerism, solid-state transformation, and sorption properties[J]. Inorganic Chemistry, 2009, 48(14): 6652-6660. |
66 | YE Chunrong, WANG Wenjian, CHEN Wei, et al. Harnessing shape complementarity for upgraded cyclohexane purification through adaptive bottlenecked pores in an imidazole-containing MOF[J]. Angewandte Chemie International Edition, 2021, 60(44): 23590-23595. |
67 | SAPIANIK Aleksandr A, KOVALENKO Konstantin A, SAMSONENKO Denis G, et al. Exceptionally effective benzene/cyclohexane separation using a nitro-decorated metal-organic framework[J]. Chemical Communications, 2020, 56(59): 8241-8244. |
68 | SHIMOMURA Satoru, HORIKE Satoshi, MATSUDA Ryotaro, et al. Guest-specific function of a flexible undulating channel in a 7,7,8,8-tetracyano-p-quinodimethane dimer-based porous coordination polymer[J]. Journal of the American Chemical Society, 2007, 129(36): 10990-10991. |
69 | HIJIKATA Yuh, HORIKE Satoshi, SUGIMOTO Masayuki, et al. Relationship between channel and sorption properties in coordination polymers with interdigitated structures[J]. Chemistry: A European Journal, 2011, 17(18): 5138-5144. |
70 | KONDO Atsushi, SUZUKI Takayuki, KOTANI Ryosuke, et al. Liquid/vapor-induced reversible dynamic structural transformation of a three-dimensional Cu-based MOF to a one-dimensional MOF showing gate adsorption[J]. Dalton Transactions, 2017, 46(20): 6762-6768. |
71 | KANDAMBETH Sharath, Kaushik DEY, BANERJEE Rahul. Covalent organic frameworks: Chemistry beyond the structure[J]. Journal of the American Chemical Society, 2019, 141(5): 1807-1822. |
72 | HUANG Xin, SUN Chao, FENG Xiao. Crystallinity and stability of covalent organic frameworks[J]. Science China Chemistry, 2020, 63(10): 1367-1390. |
73 | KARMAKAR Avishek, KUMAR Amrit, CHAUDHARI Abhijeet K, et al. Bimodal functionality in a porous covalent triazine framework by rational integration of an electron-rich and -deficient pore surface[J]. Chemistry: A European Journal, 2016, 22(14): 4931-4937. |
74 | Prasenjit DAS, MANDAL Sanjay K. In-depth experimental and computational investigations for remarkable gas/vapor sorption, selectivity, and affinity by a porous nitrogen-rich covalent organic framework[J]. Chemistry of Materials, 2019, 31(5): 1584-1596. |
75 | CHEN Tongfan, ZHANG Wenxiang, LI Bin, et al. Adsorptive separation of aromatic compounds from alkanes by π-π interactions in a carbazole-based conjugated microporous polymer[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 56385-56392. |
76 | YAMAGISHI Hiroshi. Functions and fundamentals of porous molecular crystals sustained by labile bonds[J]. Chemical Communications, 2022, 58(85): 11887-11897. |
77 | SONG Nan, KAKUTA Takahiro, YAMAGISHI Tada-aki, et al. Molecular-scale porous materials based on pillar[n]arenes[J]. Chem, 2018, 4(9): 2029-2053. |
78 | ZHOU Jiong, YU Guocan, LI Qing, et al. Separation of benzene and cyclohexane by nonporous adaptive crystals of a hybrid[3]arene[J]. Journal of the American Chemical Society, 2020, 142(5): 2228-2232. |
79 | Kecheng JIE, ZHOU Yujuan, LI Errui, et al. Separation of aromatics/cyclic aliphatics by nonporous adaptive pillararene crystals[J]. Angewandte Chemie International Edition, 2018, 57(39): 12845-12849. |
80 | YAMADA Manabu, YOSHIZAKI Ruka, UEMURA Fumiya, et al. Facile separation of cyclic aliphatic and aromatic vapors using crystalline thiacalixarene assemblies with preorganized channels[J]. Chemical Communications, 2023, 59(18): 2604-2607. |
81 | ZHAO Xiang, LIU Yue, ZHANG Zhiyuan, et al. One-pot and shape-controlled synthesis of organic cages[J]. Angewandte Chemie International Edition, 2021, 60(33): 17904-17909. |
[1] |
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai.
Research progress in the catalytic hydrodealkylation of C |
[2] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[3] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[4] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
[5] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[6] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[7] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[8] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[9] | KONG Xiangru, ZHANG Xiaoyang, SUN Pengxiang, CUI Lin, DONG Yong. Research progress of solid porous materials for direct CO2 capture from air [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1471-1483. |
[10] | JIN Xin, LI Yushan, XIE Qingqing, WANG Mengyu, XIA Xingfan, YANG Chaohe. Progress on solketal synthesis catalyzed by porous materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 731-743. |
[11] | HU Peng, ZHAO Dan, JI Hongbing. Temperature-controlled biomimetic induced-fit-identification for boosting syngas purification [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6133-6135. |
[12] | WU Yue, LI Xiaoyu, TAO Chunhui, ZHANG Ying, LI Yinhui, ZHANG Wenxiang, Yang Bolun, MA Heping. Adsorptive separation of NF3 using ion-modified CON material [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6076-6085. |
[13] | HUA Guoyan, XU Xiaoming, CHEN Yuxuan, ZHANG Yanhong, LIU Fuqiang. Progress and prospects of MOFs-based membranes for Mg-Li separation [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5776-5785. |
[14] | GUO Lizhen, LIN Xiangyu, DONG Fuhao, WANG Zhuomin, LIU He. Preparation of the porous high sulfur polymers and its application in mercury adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5764-5775. |
[15] | CAO Mingmin, HAN Chengle, YANG Fang, CHEN Yuhuan. CO2 capture and separation by ionic liquid-metal organic framework composite materials [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5831-5841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |