Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1275-1292.DOI: 10.16085/j.issn.1000-6613.2023-0493
• Industrial catalysis • Previous Articles
LIANG Yanyan1(), ZHANG Junliang2, GUO Yunya3, ZHANG Yanting3()
Received:
2023-03-30
Revised:
2023-06-12
Online:
2024-04-11
Published:
2024-03-10
Contact:
ZHANG Yanting
通讯作者:
张燕挺
作者简介:
梁燕燕(1986—),女,博士,讲师,研究方向为分子筛合成。E-mail:yyliangyy@163.com。
基金资助:
CLC Number:
LIANG Yanyan, ZHANG Junliang, GUO Yunya, ZHANG Yanting. The role of seed in the synthesis of molecular sieves[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1275-1292.
梁燕燕, 张军亮, 郭云鸦, 张燕挺. 晶种在分子筛合成中的作用研究进展[J]. 化工进展, 2024, 43(3): 1275-1292.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0493
参考文献 | 晶种添加量① /% | 晶种添加量② /% | 产物结构 | 作用 |
---|---|---|---|---|
Miyamoto等[ | 33.3 | — | 核壳结构 | 主导 |
Giordano等[ | — | 33.3 | 核壳结构 | 主导 |
Dai等[ | — | 10.0 | 翅片状结构 | 主导 |
Jain等[ | — | 10.0 | 自支撑结构 | 主导 |
Yu等[ | 13.0 | — | 中空结构 | 主导 |
Kegnæs等[ | 约50 | — | 核壳结构 | 主导 |
Guo等[ | — | 50.0 | 纳米片 | 协同 |
Shao等[ | — | 5~25.0 | 纳米片 | 协同 |
参考文献 | 晶种添加量① /% | 晶种添加量② /% | 产物结构 | 作用 |
---|---|---|---|---|
Miyamoto等[ | 33.3 | — | 核壳结构 | 主导 |
Giordano等[ | — | 33.3 | 核壳结构 | 主导 |
Dai等[ | — | 10.0 | 翅片状结构 | 主导 |
Jain等[ | — | 10.0 | 自支撑结构 | 主导 |
Yu等[ | 13.0 | — | 中空结构 | 主导 |
Kegnæs等[ | 约50 | — | 核壳结构 | 主导 |
Guo等[ | — | 50.0 | 纳米片 | 协同 |
Shao等[ | — | 5~25.0 | 纳米片 | 协同 |
1 | LI Chengeng, MOLINER M, CORMA A. Building zeolites from precrystallized units: Nanoscale architecture[J]. Angewandte Chemie International Edition, 2018, 57(47): 15330-15353. |
2 | LUAN Huimin, LEI Chi, MA Ye, et al. Alcohol-assisted synthesis of high-silica zeolites in the absence of organic structure-directing agents[J]. Chinese Journal of Catalysis, 2021, 42(4): 563-570. |
3 | DAVIS M E. Zeolites from a materials chemistry perspective[J]. Chemistry of Materials, 2014, 26(1): 239-245. |
4 | HONDA K, YASHIKI A, SADAKANE M, et al. Hydrothermal conversion of FAU and BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals[J]. Microporous and Mesoporous Materials, 2014, 196: 254-260. |
5 | HAMIDZADEH M, KOMEILI S, SAEIDI M. Seed-induced synthesis of ZSM-5 aggregates using the silicate-1 as a seed: Characterization and effect of the silicate-1 composition[J]. Microporous and Mesoporous Materials, 2018, 268: 153-161. |
6 | Eng-Poh NG, CHATEIGNER D, BEIN T, et al. Capturing ultrasmall EMT zeolite from template-free systems[J]. Science, 2012, 335(6064): 70-73. |
7 | VALTCHEV V, TOSHEVA L. Porous nanosized particles: Preparation, properties, and applications[J]. Chemical Reviews, 2013, 113(8): 6734-6760. |
8 | LI Shiying, LI Junfen, DONG Mei, et al. Strategies to control zeolite particle morphology[J]. Chemical Society Reviews, 2019, 48(3): 885-907. |
9 | LIU Xiaoliang, WANG Chuanming, ZHOU Jian, et al. Molecular transport in zeolite catalysts: Depicting an integrated picture from macroscopic to microscopic scales[J]. Chemical Society Reviews, 2022, 51(19): 8174-8200. |
10 | 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 2版. 北京: 科学出版社, 2015: 2-3. |
XU Ruren, PANG Wenqin, HUO Qisheng, et al. Molecular sieves and porous materials chemistry[M]. 2nd ed. Beijing: Science Press, 2015: 2-3. | |
11 | CHMIELEWSKÁ E, CHMIELEWSKÁ E. Natural zeolites as sustainable and environmental inorganic resources over the history to present[J]. General Chemistry, 2019, 5(3): 190001. |
12 | CUNDY C S, COX P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time[J]. Chemical Reviews, 2003, 103(3): 663-702. |
13 | GRAND J, AWALA H, MINTOVA S. Mechanism of zeolites crystal growth: New findings and open questions[J]. CrystEngComm, 2016, 18(5): 650-664. |
14 | DE MOOR P-P E A, BEELEN T P M, KOMANSCHEK B U, et al. Imaging the assembly process of the organic-mediated synthesis of a zeolite[J]. Chemistry—A European Journal, 1999, 5(7): 2083-2088. |
15 | WANG Yanan, LI Xiujie, GAO Yang, et al. Green synthesis route for MCM-49 zeolite using a seed-assisted method by virtue of an ultraphonic aging procedure[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2575-2583. |
16 | LI Qinghua, CREASER D, STERTE J. An investigation of the nucleation/crystallization kinetics of nanosized colloidal faujasite zeolites[J]. Chemistry of Materials, 2002, 14(3): 1319-1324. |
17 | MINTOVA S, VALTCHEV V, VULTCHEVA E, et al. Crystallization kinetics of zeolite ZSM-5[J]. Zeolites, 1992, 12(2): 210-215. |
18 | KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design, 2016, 16(11): 6663-6681. |
19 | VALTCHEV V P, BOZHILOV K N. Transmission electron microscopy study of the formation of FAU-type zeolite at room temperature[J]. The Journal of Physical Chemistry B, 2004, 108(40): 15587-15598. |
20 | MOCHIDA I, EGUCHI S, HIRONAKA M, et al. The effects of seeding in the synthesis of zeolite MCM-22 in the presence of hexamethyleneimine[J]. Zeolites, 1997, 18(2-3): 142-151. |
21 | YE Zhaoqi, ZHAO Yang, ZHANG Hongbin, et al. Mesocrystal morphology regulation by “alkali metals ion switch”: Re-examining zeolite nonclassical crystallization in seed-induced process[J]. Journal of Colloid and Interface Science, 2022, 608: 1366-1376. |
22 | IYOKI K, ITABASHI K, OKUBO T. Seed-assisted, one-pot synthesis of hollow zeolite beta without using organic structure-directing agents[J]. Chemistry—An Asian Journal, 2013, 8(7): 1419-1427. |
23 | SHEN Yufeng, LE T T, LI Rui, et al. Optimized synthesis of ZSM-11 catalysts using 1,8-diaminooctane as a structure-directing agent[J]. ChemPhysChem, 2018, 19(4): 529-537. |
24 | MENG Xiangju, XIAO Fengshou. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2014, 114(2): 1521-1543. |
25 | PAN Tao, WU Zhijie, Alex YIP. Advances in the green synthesis of microporous and hierarchical zeolites: A short review[J]. Catalysts, 2019, 9(3): 274. |
26 | LIU Yinghao, ZHANG Qiang, LI Junyan, et al. Protozeolite-seeded synthesis of single-crystalline hierarchical zeolites with facet-shaped mesopores and their catalytic application in methanol-to-propylene conversion[J]. Angewandte Chemie International Edition, 2022, 61(34): e202205716. |
27 | JAIN R, MALLETTE A J, RIMER J D. Controlling nucleation pathways in zeolite crystallization: Seeding conceptual methodologies for advanced materials design[J]. Journal of the American Chemical Society, 2021, 143(51): 21446-21460. |
28 | WANG Shuaiqi, WANG Congxin, LIU Hao, et al. Branched growth of ZSM-12 zeolite on seeds[J]. Microporous and Mesoporous Materials, 2023, 348: 112364. |
29 | AKHGAR S, TOWFIGHI J, HAMIDZADEH M. MTO performance over seed-assisted SAPO-34 zeolites synthesized by reducing template consumption[J]. Journal of Materials Research and Technology, 2020, 9(6): 12126-12136. |
30 | KERR G T. Chemistry of crystalline aluminosilicates. I. Factors affecting the formation of zeolite A[J]. The Journal of Physical Chemistry, 1966, 70(4): 1047-1050. |
31 | KERR G T. Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B[J]. The Journal of Physical Chemistry, 1968, 72(4): 1385-1386. |
32 | XIE Bin, ZHANG Haiyan, YANG Chengguang, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications, 2011, 47(13): 3945-3947. |
33 | KAMIMURA Y, CHAIKITTISILP W, ITABASHI K, et al. Critical factors in the seed-assisted synthesis of zeolite beta and “green beta” from OSDA-free Na+-aluminosilicate gels[J]. Chemistry – an Asian Journal, 2010, 5(10): 2182-2191. |
34 | XU Qinghu, GONG Yanjun, XU Wenjing, et al. Synthesis of high-silica EU-1 zeolite in the presence of hexamethonium ions: A seeded approach for inhibiting ZSM-48[J]. Journal of Colloid and Interface Science, 2011, 358(1): 252-260. |
35 | ITABASHI K, KAMIMURA Y, IYOKI K, et al. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent[J]. Journal of the American Chemical Society, 2012, 134(28): 11542-11549. |
36 | LI Qiang, CONG Wenwen, XU Changyou, et al. New insight into the inductive effect of various seeds on the template-free synthesis of ZSM-5 zeolite[J]. CrystEngComm, 2021, 23(48): 8641-8649. |
37 | YU Qingjun, ZHANG Qiang, LIU Jianwei, et al. Inductive effect of various seeds on the organic template-free synthesis of zeolite ZSM-5[J]. CrystEngComm, 2013, 15(38): 7680-7687. |
38 | CHANG Chun-Chih, WANG Zhuopeng, DORNATH P, et al. Rapid synthesis of Sn-beta for the isomerization of cellulosic sugars[J]. RSC Advances, 2012, 2(28): 10475-10477. |
39 | LI Qiang, CONG Wenwen, ZHANG Jianxia, et al. Rapid synthesis of hierarchical nanosized SSZ-13 zeolite with excellent MTO catalytic performance[J]. Microporous and Mesoporous Materials, 2022, 331: 111649. |
40 | MENG Jipeng, LI Chuang, CHEN Xiao, et al. Seed-assisted synthesis of ZSM-48 zeolite with low SiO2/Al2O3 ratio for n-hexadecane hydroisomerization[J]. Microporous and Mesoporous Materials, 2020, 309: 110565. |
41 | MALLETTE A J, SEO Seungwan, RIMER J D. Synthesis strategies and design principles for nanosized and hierarchical zeolites[J]. Nature Synthesis, 2022, 1(7): 521-534. |
42 | ZHANG Hongbin, ZHANG Hongxia, ZHAO Yang, et al. Seeding bundlelike MFI zeolite mesocrystals: A dynamic, nonclassical crystallization via epitaxially anisotropic growth[J]. Chemistry of Materials, 2017, 29(21): 9247-9255. |
43 | ZHANG Hongbin, ZHAO Yang, ZHANG Hongxia, et al. Tailoring zeolite ZSM-5 crystal morphology/porosity through flexible utilization of silicalite-1 seeds as templates: Unusual crystallization pathways in a heterogeneous system[J]. Chemistry—A European Journal, 2016, 22(21): 7141-7151. |
44 | WANG Yeqing, WANG Xiong, WU Qinming, et al. Seed-directed and organotemplate-free synthesis of TON zeolite[J]. Catalysis Today, 2014, 226: 103-108. |
45 | IYOKI K, ITABASHI K, OKUBO T. Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 189: 22-30. |
46 | BIAN Chaoqun, MAO Hui, QIU Jianping, et al. Facile and seed-direct synthesis of pure EUO zeolite with enhanced catalytic performance[J]. Materials Research Express, 2019, 6(9): 095529. |
47 | WANG Yeqing, WU Qinming, MENG Xiangju, et al. Insights into the organotemplate-free synthesis of zeolite catalysts[J]. Engineering, 2017, 3(4): 567-574. |
48 | WU Yajing, REN Xiaoqian, LU Youdong, et al. Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the static hydrothermal synthesis[J]. Microporous and Mesoporous Materials, 2008, 112(1/2/3): 138-146. |
49 | YANG Yichang, MENG Xiangyu, ZHU Longfeng, et al. Rapid synthesis of Si-rich SSZ-13 zeolite under fluoride-free conditions[J]. Inorganic Chemistry, 2022, 61(51): 21115-21122. |
50 | WANG Shuang, ZHOU Lipeng, GAO Beibei, et al. Synthesis of Sn-beta by hydrothermal method: The role of seeds[J]. Microporous and Mesoporous Materials, 2022, 335: 111812. |
51 | LIU Zhendong, WAKIHARA T, OSHIMA K, et al. Widening synthesis bottlenecks: Realization of ultrafast and continuous-flow synthesis of high-silica zeolite SSZ-13 for NO x removal[J]. Angewandte Chemie International Edition, 2015, 54(19): 5683-5687. |
52 | ZHU Jie, LIU Zhendong, IYOKI Kenta, et al. Ultrafast synthesis of high-silica erionite zeolites with improved hydrothermal stability[J]. Chemical Communications, 2017, 53(50): 6796-6799. |
53 | LIU Zhendong, WAKIHARA T, NISHIOKA D, et al. Ultrafast continuous-flow synthesis of crystalline microporous aluminophosphate AlPO4-5[J]. Chemistry of Materials, 2014, 26(7): 2327-2331. |
54 | LIU Zhendong, WAKIHARA T, NOMURA N, et al. Ultrafast and continuous flow synthesis of silicoaluminophosphates[J]. Chemistry of Materials, 2016, 28(13): 4840-4847. |
55 | LIU Zhendong, ZHU Jie, WAKIHARA T, et al. Ultrafast synthesis of zeolites: Breakthrough, progress and perspective[J]. Inorganic Chemistry Frontiers, 2019, 6(1): 14-31. |
56 | ZHU Jie, LIU Zhendong, ENDO A, et al. Ultrafast, OSDA-free synthesis of mordenite zeolite[J]. CrystEngComm, 2017, 19(4): 632-640. |
57 | ZHU Jie, LIU Zhendong, SUKENAGA S, et al. Ultrafast synthesis of *BEA zeolite without the aid of aging pretreatment[J]. Microporous and Mesoporous Materials, 2018, 268: 1-8. |
58 | ZHU Jie, LIU Zhendong, XU Le, et al. Understanding the high hydrothermal stability and NH3-SCR activity of the fast-synthesized ERI zeolite[J]. Journal of Catalysis, 2020, 391: 346-356. |
59 | ZHU Dali, WANG Linying, FAN Dong, et al. A bottom-up strategy for the synthesis of highly siliceous faujasite-type zeolite[J]. Advanced Materials, 2020, 32(26): 2000272. |
60 | SUN Chang, CHEN Wei, WANG Jianyu, et al. An anion-promoted increase of the SiO2/Al2O3 ratio of zeolites[J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1293-1299. |
61 | LI Xiaofeng, LIU Xiaozhen, ZHANG Yanting, et al. Controllable synthesis of EU-1 molecular sieve with high SiO2/Al2O3 ratios in thermodynamic stable Sol system[J]. Journal of Porous Materials, 2016, 23(6): 1557-1565. |
62 | WANG Jie, CAO Shiwei, SUN Yu, et al. β zeolite nanostructures with a high SiO2/Al2O3 ratio for the adsorption of volatile organic compounds[J]. ACS Applied Nano Materials, 2021, 4(12): 13257-13266. |
63 | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
64 | CHEN Lihua, SUN Minghui, WANG Zhao, et al. Hierarchically structured zeolites: From design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
65 | PENG Peng, GAO Xionghou, YAN Zifeng, et al. Diffusion and catalyst efficiency in hierarchical zeolite catalysts[J]. National Science Review, 2020, 7(11): 1726-1742. |
66 | WANG Xiangyu, MA Ye, WU Qinming, et al. Zeolite nanosheets for catalysis[J]. Chemical Society Reviews, 2022, 51(7): 2431-2443. |
67 | HE Pei, LI Ying, CAI Kai, et al. Nano-assembled mordenite zeolite with tunable morphology for carbonylation of dimethyl ether[J]. ACS Applied Nano Materials, 2020, 3(7): 6460-6468. |
68 | ZHANG Lina, YANG Liu, LIU Runze, et al. Design of plate-like H[Ga]MFI zeolite catalysts for high-performance methanol-to-propylene reaction[J]. Microporous and Mesoporous Materials, 2022, 333: 111767. |
69 | DAI Weijiong, ZHANG Lina, LIU Runze, et al. Plate-like ZSM-5 zeolites as robust catalysts for the cracking of hydrocarbons[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11415-11424. |
70 | 张燕挺, 党辉, 张妮妮, 等. 表面活性剂-模板化法制备多级孔β沸石及其四氢萘加氢裂化制苯、甲苯、二甲苯的催化性能[J]. 无机化学学报, 2022, 38(7): 1350-1360. |
ZHANG Yanting, DANG Hui, ZHANG Nini, et al. Hierarchical β zeolite by surfactant-templating method: Preparation and catalytic performance in tetralin hydrocracking to benzene, toluene, and xylene[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(7): 1350-1360. | |
71 | DAI Weijiong, KOUVATAS C, TAI Wenshu, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004. |
72 | DAI Heng, SHEN Yufeng, YANG Taimin, et al. Finned zeolite catalysts[J]. Nature Materials, 2020, 19(10): 1074-1080. |
73 | MIYAMOTO M, ONO S, OUMI Y, et al. Nanoporous ZSM-5 crystals coated with silicalite-1 for enhanced p-xylene separation[J]. ACS Applied Nano Materials, 2019, 2(5): 2642-2650. |
74 | IMYEN T, WANNAPAKDEE W, ITTISANRONNACHAI S, et al. Tailoring hierarchical zeolite composites with two distinct frameworks for fine-tuning the product distribution in benzene alkylation with ethanol[J]. Nanoscale Advances, 2020, 2(10): 4437-4449. |
75 | GIORDANO G, MIGLIORI M, FERRARELLI G, et al. Passivated surface of high aluminum containing ZSM-5 by silicalite-1: Synthesis and application in dehydration reaction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(15): 4839-4848. |
76 | MASOUMIFARD N, GUILLET-NICOLAS R, KLEITZ F. Synthesis of engineered zeolitic materials: From classical zeolites to hierarchical core-shell materials[J]. Advanced Materials, 2018, 30(16): 1704439. |
77 | ZHANG Jiaxing, REN Limin, ZHOU Ajuan, et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: Strategy and growth mechanism[J]. Chemistry of Materials, 2022, 34(7): 3217-3226. |
78 | ZHENG Bumei, WAN Yufeng, YANG Weiya, et al. Mechanism of seeding in hydrothermal synthesis of zeolite beta with organic structure-directing agent-free gel[J]. Chinese Journal of Catalysis, 2014, 35(11): 1800-1810. |
79 | BOK T O, ANDRIAKO E P, KNYAZEVA E E, et al. Engineering of zeolite BEA crystal size and morphology via seed-directed steam assisted conversion[J]. RSC Advances, 2020, 10(63): 38505-38514. |
80 | MAJANO G, DARWICHE A, MINTOVA S, et al. Seed-induced crystallization of nanosized Na-ZSM-5 crystals[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 7084-7091. |
81 | NADA M H, LARSEN S C. Insight into seed-assisted template free synthesis of ZSM-5 zeolites[J]. Microporous and Mesoporous Materials, 2017, 239: 444-452. |
82 | REN Nan, YANG Zhijian, Xinchun LYU, et al. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology[J]. Microporous and Mesoporous Materials, 2010, 131(1/2/3): 103-114. |
83 | MI Xiaotong, HOU Zhanggui, LI Xiaoguo, et al. Synergistic effect between organic structure-directing agent and crystal seed toward controlled morphology, and bimodal pore structure of aggregated nanosized ZSM-5[J]. Microporous and Mesoporous Materials, 2020, 302: 110255. |
84 | DAI Chengyi, LI Junjie, ZHANG Anfeng, et al. Precise control of the size of zeolite B-ZSM-5 based on seed surface crystallization[J]. RSC Advances, 2017, 7(60): 37915-37922. |
85 | JAIN R, CHAWLA A, LINARES N, et al. Spontaneous pillaring of pentasil zeolites[J]. Advanced Materials, 2021, 33(22): 2100897. |
86 | GOODARZI F, HERRERO I P, KALANTZOPOULOS G N, et al. Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion[J]. Microporous and Mesoporous Materials, 2020, 292: 109730. |
87 | SHAO Xiuli, WANG Siqi, ZHOU Youhui, et al. Synthesis of multilamellar ZSM-5 nanosheets with tailored b-axis thickness[J]. Microporous and Mesoporous Materials, 2022, 345: 112252. |
88 | 吴勤明, 王叶青, 肖丰收, 等. 硅铝沸石分子筛晶化过程再思考[J]. 高等学校化学学报, 2021, 42(1): 8. |
WU Qinming, WANG Yeqing, XIAO Fengshou, et al. Reconsideration of crystallization process for aluminosilicate zeolites[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 8. | |
89 | JI Yanyan, WANG Yeqing, XIE Bin, et al. Zeolite seeds: Third type of structure directing agents in the synthesis of zeolites[J]. Comments on Inorganic Chemistry, 2016, 36(1): 1-16. |
90 | ZHANG Haoyang, WANG Binyu, YAN Wenfu. The structure-directing role of heterologous seeds in the synthesis of zeolite[J]. Green Energy & Environment, 2023. |
91 | C-R BORUNTEA, LUNDEGAARD L F, CORMA A, et al. Crystallization of AEI and AFX zeolites through zeolite-to-zeolite transformations[J]. Microporous and Mesoporous Materials, 2019, 278: 105-114. |
92 | TOMITA J, ELANGOVAN S P, ITABASHI K, et al. OSDA-free synthesis of zeolite beta: Broadening the methodology for a successful use of the product as a seed[J]. Advanced Powder Technology, 2022, 33(9): 103741. |
93 | KAMIMURA Y, TANAHASHI S, ITABASHI K, et al. Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis[J]. The Journal of Physical Chemistry C, 2011, 115(3): 744-750. |
94 | IMAI H, HAYASHIDA N, YOKOI T, et al. Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 196: 341-348. |
95 | INAYAT A, SCHNEIDER C, SCHWIEGER W. Organic-free synthesis of layer-like FAU-type zeolites[J]. Chemical Communications, 2015, 51(2): 279-281. |
96 | AWALA H, J-P GILSON, RETOUX R, et al. Template-free nanosized faujasite-type zeolites[J]. Nature Materials, 2015, 14(4): 447-451. |
97 | DAI Shujie, TAN Yangchun, YANG Yuhan, et al. Organotemplate-free synthesis of Al-rich ZSM-35 and ZSM-22 zeolites with the addition of ZSM-57 zeolite seeds[J]. CrystEngComm, 2022, 24(39): 6987-6995. |
98 | YASHIKI A, HONDA K, FUJIMOTO A, et al. Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals[J]. Journal of Crystal Growth, 2011, 325(1): 96-100. |
99 | OGAWA A, IYOKI K, KAMIMURA Y, et al. Seed-directed, rapid synthesis of MAZ-type zeolites without using organic structure-directing agent[J]. Microporous and Mesoporous Materials, 2014, 186: 21-28. |
100 | YU Qingjun, MENG Xiaojing, LIU Jianwei, et al. A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin[J]. Microporous and Mesoporous Materials, 2013, 181: 192-200. |
101 | WANG Ziyang, WANG Yaquan, SUN Chao, et al. Seed-assisted synthesis and catalytic performance of nano-sized ZSM-5 aggregates in a one-step crystallization process[J]. Transactions of Tianjin University, 2020, 26(4): 292-304. |
102 | SHESTAKOVA D O, BABINA K A, SLADKOVSKIY D A, et al. Seed-assisted synthesis of hierarchical zeolite ZSM-5 in the absence of organic templates[J]. Materials Chemistry and Physics, 2022, 288: 126432. |
103 | ZHANG Hongxia, ZHANG Hongbin, WANG Peicheng, et al. Organic template-free synthesis of zeolite mordenite nanocrystals through exotic seed-assisted conversion[J]. RSC Advances, 2016, 6(53): 47623-47631. |
104 | LU Baowang, TSUDA Tomohiro, OUMI Yasunori, et al. Direct synthesis of high-silica mordenite using seed crystals[J]. Microporous and Mesoporous Materials, 2004, 76(1/2/3): 1-7. |
105 | ALY H M, MOUSTAFA M E, ABDELRAHMAN E A. Synthesis of mordenite zeolite in absence of organic template[J]. Advanced Powder Technology, 2012, 23(6): 757-760. |
106 | ZHAO Guoliang, TENG Jiawei, ZHANG Yahong, et al. Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions[J]. Applied Catalysis A: General, 2006, 299: 167-174. |
107 | SOGUKKANLI S, IYOKI K, ELANGOVAN S P, et al. Rational seed-directed synthesis of MSE-type zeolites using a simple organic structure-directing agent by extending the composite building unit hypothesis[J]. Microporous and Mesoporous Materials, 2017, 245: 1-7. |
108 | WU Qinming, WANG Xiong, MENG Xiangju, et al. Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene[J]. Microporous and Mesoporous Materials, 2014, 186: 106-112. |
109 | KAMIMURA Y, ITABASHI K, OKUBO T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “Green MTW” from sodium aluminosilicate gel systems[J]. Microporous and Mesoporous Materials, 2012, 147(1): 149-156. |
110 | KAMIMURA Y, IYOKI K, ELANGOVAN S, et al. OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds[J]. Microporous and Mesoporous Materials, 2012, 163: 282-290. |
111 | KAMIMURA Y, ITABASHI K, KON Y, et al. Seed-assisted synthesis of MWW-type zeolite with organic structure-directing agent-free Na-aluminosilicate gel system[J]. Chemistry—An Asian Journal, 2017, 12(5): 530-542. |
112 | IYOKI K, TAKASE M, ITABASHI K, et al. Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals[J]. Microporous and Mesoporous Materials, 2015, 215: 191-198. |
113 | YOKOI T, YOSHIOKA M, IMAI H, et al. Diversification of RTH-type zeolite and its catalytic application[J]. Angewandte Chemie, 2009, 121(52): 10068-10071. |
114 | DAI Feng-Yuen, SUZUKI M, TAKAHASHI H, et al. Crystallization of pentasil zeolite in the absence of organic templates[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 1989: 244-256. |
115 | XIE Bin, SONG Jiangwei, REN Limin, et al. Organotemplate-free and fast route for synthesizing beta zeolite[J]. Chemistry of Materials, 2008, 20(14): 4533-4535. |
116 | OLEKSIAK M D, RIMER J D. Synthesis of zeolites in the absence of organic structure-directing agents: Factors governing crystal selection and polymorphism[J]. Reviews in Chemical Engineering, 2014, 30(1): 1-49. |
117 | ZHANG Haiyan, XIE Bin, MENG Xiangju, et al. Rational synthesis of beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route[J]. Microporous and Mesoporous Materials, 2013, 180: 123-129. |
118 | ZHANG Ke, FERNANDEZ S, OSTRAAT M L. Understanding commonalities and interplay between organotemplate-free zeolite synthesis, hierarchical structure creation, and interzeolite transformation[J]. ChemCatChem, 2018, 10(19): 4197-4212. |
119 | PILAR R, MORAVKOVA J, SADOVSKA G, et al. Controlling the competitive growth of zeolite phases without using an organic structure-directing agent. Synthesis of Al-rich *BEA[J]. Microporous and Mesoporous Materials, 2022, 333: 111726. |
120 | DE BAERDEMAEKER T, YILMAZ B, MÜLLER U, et al. Catalytic applications of OSDA-free beta zeolite[J]. Journal of Catalysis, 2013, 308: 73-81. |
121 | LI Jialiang, GAO Mingkun, YAN Wenfu, et al. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties[J]. Chemical Science, 2022, 14(8): 1935-1959. |
122 | WU Qinming, ZHU Longfeng, CHU Yueying, et al. Sustainable synthesis of pure silica zeolites from a combined strategy of zeolite seeding and alcohol filling[J]. Angewandte Chemie, 2019, 131(35): 12266-12270. |
123 | CHEN Zhudan, ZHANG Huizhi, GAN Lai, et al. Hetero-epitaxial growth of chabazite zeolite membranes using an RHO-type seed layer[J]. Journal of Membrane Science, 2021, 635: 119465. |
124 | PAN Huihua, PAN Qunxiong, ZHAO Yuansheng, et al. A green and efficient synthesis of ZSM-5 using NaY as seed with mother liquid recycling and in the absence of organic template[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7294-7302. |
125 | MA Duozheng, FU Wenhua, LIU Chuang, et al. Seed-directed syntheses of zeolites in a versatile borosilicate system with the presence of Octyltrimethylammonium Chloride[J]. Microporous and Mesoporous Materials, 2022, 346: 112283. |
126 | GOEL S, ZONES S I, IGLESIA E. Synthesis of zeolites via interzeolite transformations without organic structure-directing agents[J]. Chemistry of Materials, 2015, 27(6): 2056-2066. |
127 | GOTO I, ITAKURA M, SHIBATA S, et al. Transformation of LEV-type zeolite into less dense CHA-type zeolite[J]. Microporous and Mesoporous Materials, 2012, 158: 117-122. |
128 | 王云峥. HEU和CHA分子筛的晶种辅助合成及其在环境保护中的应用[D]. 长春: 吉林大学, 2022. |
WANG Yunzheng. Seed-assisted synthesis of HEU and CHA molecular sieves and their application in environmental protection[D]. Changchun: Jilin University, 2022. | |
129 | LIU Ruiyun, LIN Sen, SHI Lei, et al. Morphology adjustment of ZSM-5 nanocrystal agglomerates and achievement of improved activity in LDPE catalytic cracking reaction[J]. Microporous and Mesoporous Materials, 2019, 285: 120-128. |
130 | HAN Shunyu, LIU Yu, YIN Chengri, et al. Fast synthesis of submicron ZSM-5 zeolite from leached illite clay using a seed-assisted method[J]. Microporous and Mesoporous Materials, 2019, 275: 223-228. |
131 | CHENG Xiaowei, MAO Jianjiang, Xinchun LYU, et al. Fast synthesis of nanosized zeolite beta from a low-seeded, low-templated dry gel with a seeding-steam-assisted conversion method[J]. Journal of Materials Chemistry A, 2014, 2(5): 1247-1251. |
132 | KALVACHEV Y, JABER M, MAVRODINOVA V, et al. Seeds-induced fluoride media synthesis of nanosized zeolite beta crystals[J]. Microporous and Mesoporous Materials, 2013, 177: 127-134. |
133 | WU Qinming, MA Ye, WANG Sai, et al. 110th Anniversary: Sustainable synthesis of zeolites: From fundamental research to industrial production[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11653-11658. |
[1] | ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197. |
[2] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[3] | ZENG Yue, WANG Yue, ZHANG Xuerui, SONG Xiwen, XIA Bowen, CHEN Ziqi. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389. |
[4] | ZHANG Haipeng, WANG Shuzhen, MA Mengxi, ZHANG Wei, XIANG Jiangnan, WANG Yuting, WANG Yan, FAN Binbin, ZHENG Jiajun, LI Ruifeng. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421. |
[5] | LI Guizhen, HU Yingyuan, ZHANG Bo, YANG Yaozu, ZHAI Rongjia, ZHAO Xin. Synthesis and properties of a Rhodamine lactam-based polymeric pH fluorescent probe [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 473-479. |
[6] | FENG Yaoguang, CHEN Kui, ZHAO Jiawei, WANG Na, WANG Ting, HUANG Xin, ZHOU Lina, HAO Hongxun. Process intensification of solution crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 87-99. |
[7] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[8] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[9] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[10] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[11] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |