Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 414-421.DOI: 10.16085/j.issn.1000-6613.2023-0211
• Industrial catalysis • Previous Articles
ZHANG Haipeng(), WANG Shuzhen, MA Mengxi, ZHANG Wei, XIANG Jiangnan, WANG Yuting, WANG Yan(), FAN Binbin, ZHENG Jiajun, LI Ruifeng()
Received:
2023-02-17
Revised:
2023-04-03
Online:
2024-02-05
Published:
2024-01-20
Contact:
WANG Yan, LI Ruifeng
张海鹏(), 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰(), 范彬彬, 郑家军, 李瑞丰()
通讯作者:
王琰,李瑞丰
作者简介:
张海鹏(1998—),男,硕士研究生,研究方向为工业催化。E-mail:zhanghaipeng2023@163.com。
基金资助:
CLC Number:
ZHANG Haipeng, WANG Shuzhen, MA Mengxi, ZHANG Wei, XIANG Jiangnan, WANG Yuting, WANG Yan, FAN Binbin, ZHENG Jiajun, LI Ruifeng. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421.
张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0211
样品 | watom/% | 硅铝比 | |
---|---|---|---|
Si | Al | ||
D-ZSM-22 | 96.4 | 3.6 | 26.8 |
C-ZSM-22 | 95.7 | 4.3 | 22.3 |
J-ZSM-22 | 96.1 | 3.9 | 24.6 |
Z-ZSM-22 | 96.2 | 3.8 | 25.3 |
样品 | watom/% | 硅铝比 | |
---|---|---|---|
Si | Al | ||
D-ZSM-22 | 96.4 | 3.6 | 26.8 |
C-ZSM-22 | 95.7 | 4.3 | 22.3 |
J-ZSM-22 | 96.1 | 3.9 | 24.6 |
Z-ZSM-22 | 96.2 | 3.8 | 25.3 |
样品 | 弱酸量/μmol·g-1 | 强酸量/μmol·g-1 | 总酸量/μmol·g-1 |
---|---|---|---|
D-ZSM-22 | 181 | 231 | 412 |
C-ZSM-22 | 185 | 245 | 430 |
J-ZSM-22 | 196 | 250 | 446 |
Z-ZSM-22 | 197 | 253 | 450 |
样品 | 弱酸量/μmol·g-1 | 强酸量/μmol·g-1 | 总酸量/μmol·g-1 |
---|---|---|---|
D-ZSM-22 | 181 | 231 | 412 |
C-ZSM-22 | 185 | 245 | 430 |
J-ZSM-22 | 196 | 250 | 446 |
Z-ZSM-22 | 197 | 253 | 450 |
样品 | 总比表面积/m2·g-1 | 微孔表面积/m2·g-1 | 介孔表面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 |
---|---|---|---|---|---|---|
D-ZSM-22 | 247 | 230 | 17 | 0.12 | 0.09 | 0.03 |
C-ZSM-22 | 292 | 246 | 46 | 0.17 | 0.10 | 0.07 |
J-ZSM-22 | 278 | 224 | 54 | 0.19 | 0.09 | 0.10 |
Z-ZSM-22 | 279 | 220 | 59 | 0.21 | 0.09 | 0.12 |
样品 | 总比表面积/m2·g-1 | 微孔表面积/m2·g-1 | 介孔表面积/m2·g-1 | 总孔体积/cm3·g-1 | 微孔体积/cm3·g-1 | 介孔体积/cm3·g-1 |
---|---|---|---|---|---|---|
D-ZSM-22 | 247 | 230 | 17 | 0.12 | 0.09 | 0.03 |
C-ZSM-22 | 292 | 246 | 46 | 0.17 | 0.10 | 0.07 |
J-ZSM-22 | 278 | 224 | 54 | 0.19 | 0.09 | 0.10 |
Z-ZSM-22 | 279 | 220 | 59 | 0.21 | 0.09 | 0.12 |
催化剂 | Pt/A+D | Pt/A+C | Pt/A+J | Pt/A+Z |
---|---|---|---|---|
正十二烷转化率/% | 66.1 | 69.0 | 68.9 | 68.4 |
异构产物选择性/% | 90.4 | 78.7 | 68.4 | 58.9 |
单支链异构产物选择性/% | 76.8 | 44.8 | 43.1 | 32 |
双支链异构产物选择性/% | 13.6 | 33.9 | 25.3 | 26.9 |
单/双支链异构产物比值 | 5.6 | 1.3 | 1.7 | 1.2 |
异构产物/% | ||||
2-甲基十一烷 | 25.6 | 11.0 | 11.1 | 8.3 |
3-甲基十一烷 | 19.1 | 10.8 | 10.3 | 7.7 |
4-甲基十一烷 | 12.2 | 8.1 | 7.8 | 5.6 |
5-甲基十一烷 | 19.4 | 13.4 | 12.7 | 9.3 |
6-甲基十一烷 | 0.5 | 1.5 | 1.2 | 1.1 |
2,4-二甲基癸烷 | 0.1 | 0.5 | 0.3 | 0.4 |
2,5-二甲基癸烷 | 0.2 | 2.2 | 1.6 | 1.8 |
2,6-二甲基癸烷 | 0.7 | 7.5 | 5.4 | 6.1 |
2,7-二甲基癸烷 | 2.4 | 4.9 | 3.6 | 3.9 |
2,8-二甲基癸烷 | 2.6 | 5.3 | 4.7 | 3.9 |
2,9-二甲基癸烷 | 1.6 | 5.1 | 4.2 | 3.9 |
3,3-二甲基癸烷 | 0.1 | 0.6 | 0.2 | 0.5 |
3,7-二甲基癸烷 | 2.9 | 0.3 | 0 | 0.3 |
3,8-二甲基癸烷 | 0.4 | 1.8 | 1.1 | 1.4 |
其他异构体 | 2.6 | 5.7 | 4.2 | 4.7 |
催化剂 | Pt/A+D | Pt/A+C | Pt/A+J | Pt/A+Z |
---|---|---|---|---|
正十二烷转化率/% | 66.1 | 69.0 | 68.9 | 68.4 |
异构产物选择性/% | 90.4 | 78.7 | 68.4 | 58.9 |
单支链异构产物选择性/% | 76.8 | 44.8 | 43.1 | 32 |
双支链异构产物选择性/% | 13.6 | 33.9 | 25.3 | 26.9 |
单/双支链异构产物比值 | 5.6 | 1.3 | 1.7 | 1.2 |
异构产物/% | ||||
2-甲基十一烷 | 25.6 | 11.0 | 11.1 | 8.3 |
3-甲基十一烷 | 19.1 | 10.8 | 10.3 | 7.7 |
4-甲基十一烷 | 12.2 | 8.1 | 7.8 | 5.6 |
5-甲基十一烷 | 19.4 | 13.4 | 12.7 | 9.3 |
6-甲基十一烷 | 0.5 | 1.5 | 1.2 | 1.1 |
2,4-二甲基癸烷 | 0.1 | 0.5 | 0.3 | 0.4 |
2,5-二甲基癸烷 | 0.2 | 2.2 | 1.6 | 1.8 |
2,6-二甲基癸烷 | 0.7 | 7.5 | 5.4 | 6.1 |
2,7-二甲基癸烷 | 2.4 | 4.9 | 3.6 | 3.9 |
2,8-二甲基癸烷 | 2.6 | 5.3 | 4.7 | 3.9 |
2,9-二甲基癸烷 | 1.6 | 5.1 | 4.2 | 3.9 |
3,3-二甲基癸烷 | 0.1 | 0.6 | 0.2 | 0.5 |
3,7-二甲基癸烷 | 2.9 | 0.3 | 0 | 0.3 |
3,8-二甲基癸烷 | 0.4 | 1.8 | 1.1 | 1.4 |
其他异构体 | 2.6 | 5.7 | 4.2 | 4.7 |
1 | 安军信. 国内外润滑油市场现状及发展趋势分析[J]. 合成润滑材料, 2021, 48(1): 42-47. |
AN Junxin. Analysis on current situation and developing trend of domestic and foreign lubricants market[J]. Synthetic Lubricants, 2021, 48(1): 42-47. | |
2 | 高新伟, 张智川, 韩宇凯, 等. 全国统一大市场背景下我国润滑油基础油标准化难点及对策[J]. 中国石油大学学报(社会科学版), 2022, 38(3): 11-16. |
GAO Xinwei, ZHANG Zhichuan, HAN Yukai, et al. Difficulties and countermeasures in the standardization of lubricant base oil under the background of a national unified market[J]. Journal of China University of Petroleum (Edition of Social Sciences), 2022, 38(3): 11-16. | |
3 | 李海华. 我国资源结构及煤液化发展现状[J]. 煤炭技术, 2012, 31(1): 233-234. |
LI Haihua. Resource structure and current development status of coal liquefaction in China[J]. Coal Technology, 2012, 31(1): 233-234. | |
4 | KHODAKOV A Y, CHU W, PASCAL F. Advances in the development of novel cobalt fischer-tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical Reviews, 2007, 107(5): 1692-1744. |
5 | CALEMMA V, GAMBARO C, PARKER W O, et al. Middle distillates from hydrocracking of FT waxes: Composition, characteristics and emission properties[J]. Catalysis Today, 2010, 149(1/2): 40-46. |
6 | BOUCHY C, HASTOY G, GUILLON E, et al. Fischer-tropsch waxes upgrading via hydrocracking and selective hydroisomerization[J]. Oil & Gas Science and Technology-Revue De L’IFP, 2009, 64(1): 91-112. |
7 | MARTENS J A, VANBUTSELE G, JACOBS P A, et al. Evidences for pore mouth and key-lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites[J]. Catalysis Today, 2001, 65(2/3/4): 111-116. |
8 | BAUER F, FICHT K, BERTMER M, et al. Hydroisomerization of long-chain paraffins over nano-sized bimetallic Pt-Pd/H-beta catalysts[J]. Catalysis Science & Technology, 2014, 4(11): 4045-4054. |
9 | ROLDÁN R, BEALE A M, SÁNCHEZ-SÁNCHEZ M, et al. Effect of the impregnation order on the nature of metal particles of bi-functional Pt/Pd-supported zeolite beta materials and on their catalytic activity for the hydroisomerization of alkanes[J]. Journal of Catalysis, 2008, 254(1): 12-26. |
10 | LEE Joeng-Kyu, RHEE Hyun-Ku. Sulfur tolerance of zeolite beta-supported Pd-Pt catalysts for the isomerization of n-hexane[J]. Journal of Catalysis, 1998, 177(2): 208-216. |
11 | Tiong SIE S. Acid-catalyzed cracking of paraffinic hydrocarbons. 3. Evidence for the protonated cyclopropane mechanism from hydrocracking/hydroisomerization experiments[J]. Industrial & Engineering Chemistry Research, 1993, 32(3): 403-408. |
12 | LIU Linlin, ZHANG Mingwei, WANG Li, et al. Modulating acid site distribution in MTT channels for controllable hydroisomerization of long-chain n-alkanes[J]. Fuel Processing Technology, 2023, 241: 107605. |
13 | PARMAR S, PANT K K, JOHN M, et al. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: Effect of divalent cation exchange[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404/405: 47-56. |
14 | LIU Suyao, REN Jie, ZHU Shujin, et al. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. Journal of Catalysis, 2015, 330: 485-496. |
15 | DREWS T O, TSAPATSIS M. Progress in manipulating zeolite morphology and related applications[J]. Current Opinion in Colloid & Interface Science, 2005, 10(5/6): 233-238. |
16 | HU Linyan, ZHANG Zekai, XIE Sujuan, et al. Effect of grain size of zeolite Y on its catalytic performance in olefin alkylation thiophenic sulfur process[J]. Catalysis Communications, 2009, 10(6): 900-904. |
17 | JAMIL A K, MURAZA O. Facile control of nanosized ZSM-22 crystals using dynamic crystallization technique[J]. Microporous and Mesoporous Materials, 2016, 227: 16-22. |
18 | TREACY M M J, HIGGINS J B. Ferrierite[M]//Collection of simulated XRD powder patterns for zeolites. Amsterdam: Elsevier, 2007: 178-179. |
19 | SOUSA L V, SILVA A O S, SILVA B J B, et al. Fast synthesis of ZSM-22 zeolite by the seed-assisted method of crystallization with methanol[J]. Microporous and Mesoporous Materials, 2017, 254: 192-200. |
20 | WANG Bingchun, TIAN Zhijian, LI Peng, et al. Synthesis of ZSM-23/ZSM-22 intergrowth zeolite with a novel dual-template strategy[J]. Materials Research Bulletin, 2009, 44(12): 2258-2261. |
21 | LIU Suyao, REN Jie, ZHANG Huaike, et al. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite[J]. Journal of Catalysis, 2016, 335: 11-23. |
22 | 王宏浩, 刘粟侥, 张怀科, 等. ZSM-22分子筛的合成、表征及烷基化性能研究[J]. 燃料化学学报, 2016, 44(8): 1010-1016. |
WANG Honghao, LIU Suyao, ZHANG Huaike, et al. Synthesis and characterization of ZSM-22 zeolites and their catalytic performance in alkylation reaction[J]. Journal of Fuel Chemistry and Technology, 2016, 44(8): 1010-1016. | |
23 | LIU H Y, EHSAN K. Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process[J]. Catalysis Letters, 2021, 151(3): 787-802. |
24 | 王琰, 刘伟, 李赛, 等. Pt负载位置对双功能催化剂正十二烷加氢异构化性能影响[J]. 石油学报(石油加工), 2021, 37(6): 1338-1345. |
WANG Yan, LIU Wei, LI Sai, et al. Influence of Pt position on the performance of bifunctional catalysts for n-dodecane hydroisomerization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1338-1345. | |
25 | ZECEVIC J, VANBUTSELE G, DE JONG K P, et al. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature, 2015, 528(7581): 245-248. |
26 | SAMAD J E, BLANCHARD J, SAYAG C, et al. The controlled synthesis of metal-acid bifunctional catalysts: The effect of metal: Acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization[J]. Journal of Catalysis, 2016, 342: 203-212. |
27 | LI C L, NOVARO O, MUÑOZ E, et al. Coke deactivation of Pd/H-mordenite catalysts used for C5/C6 hydroisomerization[J]. Applied Catalysis A: General, 2000, 199(2): 211-220. |
28 | 王富民, 辛峰, 廖晖, 等. 异丙苯裂化催化剂ASTRA-MB1积炭失活机理[J]. 石油学报(石油加工), 2002, 18(5): 28-33. |
WANG Fumin, XIN Feng, LIAO Hui, et al. Mechanism of ASTRA-MB1 catalyst deactivation for cumene cracking due to coking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2002, 18(5): 28-33. | |
29 | CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
30 | WANG Yan, LIU Wei, ZHANG Wei, et al. Comparison of n-dodecane hydroisomerization performance over Pt supported ZSM-48 and ZSM-22[J]. Catalysis Letters, 2021, 151(12): 3492-3500. |
[1] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[2] | LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163. |
[3] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[4] | ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197. |
[5] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[6] | WANG Yiyan, WANG Darui, SHEN Zhenhao, HE Junlin, SUN Hongmin, YANG Weimin. Preparation and catalytic performance of fully crystalline MCM-22 zeolite catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 285-291. |
[7] | YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301. |
[8] | SUN Jin, CHEN Xiaozhen, LIU Mingrui, LIU Li, NIU Shikun, GUO Rong. Deactivation mechanism of sodium poisoning hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 407-413. |
[9] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[10] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[11] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[12] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[13] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[14] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[15] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |