Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 246-259.DOI: 10.16085/j.issn.1000-6613.2023-0937
• Column: Chemical process intensification • Previous Articles
HENG Linyu1,2(), DENG Zhuoran2,3, CHENG Daojian2,3(), WEI Bin1,2, ZHAO Liqiang4
Received:
2023-06-07
Revised:
2023-09-02
Online:
2024-02-05
Published:
2024-01-20
Contact:
CHENG Daojian
衡霖宇1,2(), 邓卓然2,3, 程道建2,3(), 魏彬1,2, 赵利强4
通讯作者:
程道建
作者简介:
衡霖宇(2000—),男,硕士研究生,研究方向为化工过程及装备。E-mail:L18234722057@163.com。
CLC Number:
HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259.
衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0937
1 | SENKAN S. Combinatorial heterogeneous catalysis―A new path in an old field[J]. Angewandte Chemie International Edition, 2001, 40(2): 312-329. |
2 | SCHÜTH F, BUSCH O, HOFFMANN C, et al. High-throughput experimentation in oxidation catalysis[J]. Topics in Catalysis, 2002, 21(1): 55-66. |
3 | WILDONGER R A, DEEGAN T L, LEE J W. Is combinatorial chemistry on the right track for drug discovery?[J]. Journal of Automated Methods & Management in Chemistry, 2003, 25(3): 57-61. |
4 | MCFARLAND E W, WEINBERG W H. Combinatorial approaches to materials discovery[J]. Trends in Biotechnology, 1999, 17(3): 107-115. |
5 | ROSENFELD A, LEVKIN P A. High-throughput combinatorial synthesis of stimuli-responsive materials[J]. Advanced Biosystems, 2019, 3(3): 1800293. |
6 | SCHUMACHER E F, WENDELBO R. Automated imaging of combinatorial chemistry synthesis arrays in a large chamber low vacuum SEM[J]. Microscopy and Microanalysis, 2001, 7(S2): 1076-1077. |
7 | HAGEMEYER A, JANDELEIT B, LIU Yumin, et al. Applications of combinatorial methods in catalysis[J]. Applied Catalysis A: General, 2001, 221(1/2): 23-43. |
8 | KUMAR G, BOSSERT H, MCDONALD D, et al. Catalysis-in-a-box: Robotic screening of catalytic materials in the time of COVID-19 and beyond[J]. Matter, 2020, 3(3): 805-823. |
9 | WEIDENHOF B, REISER M, STÖWE K, et al. High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts[J]. Journal of the American Chemical Society, 2009, 131(26): 9207-9219. |
10 | LIU Xiaorui, LIU Bin, DING Jia, et al. Building a library for catalysts research using high-throughput approaches[J]. Advanced Functional Materials, 2022, 32(1): 2107862. |
11 | MATSUBARA M, SUZUMURA A, OHBA N, et al. Identifying superionic conductors by materials informatics and high-throughput synthesis[J]. Communications Materials, 2020, 1: 5. |
12 | POTYRAILO R A, MIRSKY V M. Combinatorial and high-throughput development of sensing materials: The first 10 years[J]. Chemical Reviews, 2008, 108(2): 770-813. |
13 | HUANG Zeng, WANG Chenxue, SU Qian, et al. Structure optimization of a pipetting device to improve the insertion effect of tips[J]. Mechanical Sciences, 2021, 12(1): 501-510. |
14 | RENOM-CARRASCO M, LEFORT L. Ligand libraries for high throughput screening of homogeneous catalysts[J]. Chemical Society Reviews, 2018, 47(13): 5038-5060. |
15 | LIU Yihao, HU Ziheng, SUO Zhiguang, et al. High-throughput experiments facilitate materials innovation: A review[J]. Science China Technological Sciences, 2019, 62(4): 521-545. |
16 | WATTS P, HASWELL S J. The application of micro reactors for organic synthesis[J]. Chemical Society Reviews, 2005, 34(3): 235-246. |
17 | CHIGHINE A, SECHI G, BRADLEY M. Tools for efficient high-throughput synthesis[J]. Drug Discovery Today, 2007, 12(11/12): 459-464. |
18 | GUO Shaojun, WANG Erkang. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264. |
19 | JIN Rongchao. The impacts of nanotechnology on catalysis by precious metal nanoparticles[J]. Nanotechnology Reviews, 2012, 1(1): 31-56. |
20 | ARAI T, KONISHI Y, IWASAKI Y, et al. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors[J]. Journal of Combinatorial Chemistry, 2007, 9(4): 574-581. |
21 | DENG Zhuoran, ZHAO Liqiang, CHENG Daojian. A high-throughput catalyst synthesis system for Ag-based catalysts[J]. Review of Scientific Instruments, 2022, 93(11): 114101. |
22 | YAMADA Y, AKITA T, UEDA A, et al. Instruments for preparation of heterogeneous catalysts by an impregnation method[J]. Review of Scientific Instruments, 2005, 76(6): 062226. |
23 | CONG P, DEHESTANI A, DOOLEN R, et al. Combinatorial discovery of oxidative dehydrogenation catalysts within the Mo-V-Nb-O system[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20): 11077-11080. |
24 | LIU Yumin, CONG Peijun, DOOLEN R D, et al. High-throughput synthesis and screening of V-Al-Nb and Cr-Al-Nb oxide libraries for ethane oxidative dehydrogenation to ethylene[J]. Catalysis Today, 2000, 61(1-4): 87-92. |
25 | SAALFRANK J W, MAIER W F. Doping, selection and composition spreads, a combinatorial strategy for the discovery of new mixed oxide catalysts for low-temperature CO oxidation[J]. Comptes Rendus Chimie, 2004, 7(5): 483-494. |
26 | SELIM S, KEVIN K, SUKRU O, et al. High-throughput testing of heterogeneous catalyst libraries using array microreactors and mass spectrometry[J]. Angewandte Chemie International Edition, 1999, 38(18): 2794-2799. |
27 | BERGH S, GUAN Shenheng, HAGEMEYER A, et al. Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system[J]. Applied Catalysis A: General, 2003, 254(1): 67-76. |
28 | TOPALOV A A, KATSOUNAROS I, MEIER J C, et al. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing[J]. Review of Scientific Instruments, 2011, 82(11): 114103. |
29 | Kwang Seok OH, PARK Yong Ki, Seong Ihl WOO. Highly reliable 64-channel sequential and parallel tubular reactor system for high-throughput screening of heterogeneous catalysts[J]. Review of Scientific Instruments, 2005, 76(6): 062219. |
30 | JAYARAMAN S, S-H BAECK, JARAMILLO T F, et al. Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol[J]. Review of Scientific Instruments, 2005, 76(6): 062227. |
31 | HOOGENBOOM R, SCHUBERT U S. High-throughput synthesis equipment applied to polymer research[J]. Review of Scientific Instruments. 2005;76(6):062202(1-7. |
32 | HERNÁNDEZ-PICHARDO M L, MONTOYA J A, DEL ANGEL P, et al. A comparative study of the WO x dispersion on Mn-promoted tungstated zirconia catalysts prepared by conventional and high-throughput experimentation[J]. Applied Catalysis A: General, 2008, 345(2): 233-240. |
33 | PESCARMONA P P, JANSSEN K P F, JACOBS P A. Novel transition-metal-free heterogeneous epoxidation catalysts discovered by means of high-throughput experimentation[J]. Chemistry: A European Journal, 2007, 13(23): 6562-6572. |
34 | WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373. |
35 | LIU Yanwu, LI Gang. A power-free, parallel loading microfluidic reactor array for biochemical screening[J]. Scientific Reports, 2018, 8(1): 1-9. |
36 | NGUYEN H V, KIM K Y, NAM H, et al. Centrifugal microfluidic device for the high-throughput synthesis of Pd@AuPt core-shell nanoparticles to evaluate the performance of hydrogen peroxide generation[J]. Lab on a Chip, 2020, 20(18): 3293-3301. |
37 | NIU Guangda, ZHANG Lei, RUDITSKIY A, et al. A droplet-reactor system capable of automation for the continuous and scalable production of noble-metal nanocrystals[J]. Nano Letters, 2018, 18(6): 3879-3884. |
38 | HU Yang, LIU Bin, WU Yating, et al. Facile high throughput wet-chemical synthesis approach using a microfluidic-based composition and temperature controlling platform[J]. Frontiers in Chemistry, 2020, 8: 579828. |
39 | NIU Guangda, RUDITSKIY A, VARA M, et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors[J]. Chemical Society Reviews, 2015, 44(16): 5806-5820. |
40 | KIM Yun Ho, ZHANG Lei, YU Taekyung, et al. Droplet-based microreactors for continuous production of palladium nanocrystals with controlled sizes and shapes[J]. Small, 2013, 9(20): 3462-3467. |
41 | ZHANG Lei, NIU Guangda, LU Ning, et al. Continuous and scalable production of well-controlled noble-metal nanocrystals in milliliter-sized droplet reactors[J]. Nano Letters, 2014, 14(11): 6626-6631. |
42 | SANTANA J S, KOCZKUR K M, SKRABALAK S E. Synthesis of core@shell nanostructures in a continuous flow droplet reactor: Controlling structure through relative flow rates[J]. Langmuir, 2017, 33(24): 6054-6061. |
43 | GURAM A, HAGEMEYER A, LUGMAIR C G, et al. Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis[J]. Advanced Synthesis & Catalysis, 2004, 346(2/3): 215-230. |
44 | MOON Hyoseung, JEONG Seok Jae, LEE Yun Tack, et al. Preparation of a water-based Al/Fe/Mo catalyst using a microfluidic system[J]. Chemistry Letters, 2010, 39(8): 814-815. |
45 | ZHOU Jianhua, ZENG Jie, GRANT J, et al. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies[J]. Small, 2011, 7(23): 3308-3316. |
46 | CARBONELL C, STYLIANOU K C, HERNANDO J, et al. Femtolitre chemistry assisted by microfluidic pen lithography[J]. Nature Communications, 2013, 4(1): 1-7. |
47 | JIN Si Hyung, JEONG Heon-Ho, LEE Byungjin, et al. A programmable microfluidic static droplet array for droplet generation, transportation, fusion, storage, and retrieval[J]. Lab on a Chip, 2015, 15(18): 3677-3686. |
48 | CHENG Yue, ZHANG Xiaozhang, CAO Yuan, et al. Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers[J]. Applied Materials Today, 2018, 13: 116-125. |
49 | SERP P, KALCK P, FEURER R. Chemical vapor deposition methods for the controlled preparation of supported catalytic materials[J]. Chemical Reviews, 2002, 102(9): 3085-3128. |
50 | CAUSSAT B, VAHLAS C. CVD and powders: A great potential to create new materials[J]. Chemical Vapor Deposition, 2007, 13(9): 443-445. |
51 | SENKAN S M, OZTURK S. Discovery and optimization of heterogeneous catalysts by using combinatorial chemistry[J]. Angewandte Chemie International Edition, 1999, 38(6): 791-795. |
52 | RAR A, FRAFJORD J J, FOWLKES J D, et al. PVD synthesis and high-throughput property characterization of Ni-Fe-Cr alloy libraries[J]. Measurement Science and Technology, 2005, 16(1): 46-53. |
53 | MÜLLER C M, SOLOGUBENKO A S, GERSTL S S A, et al. Nanoscale Cu/Ta multilayer deposition by co-sputtering on a rotating substrate. Empirical model and experiment[J]. Surface and Coatings Technology, 2016, 302: 284-292. |
54 | MAO S S. High throughput growth and characterization of thin film materials[J]. Journal of Crystal Growth, 2013, 379: 123-130. |
55 | LÖBEL R, THIENHAUS S, SAVAN A, et al. Combinatorial fabrication and high-throughput characterization of a Ti-Ni-Cu shape memory thin film composition spread[J]. Materials Science and Engineering: A, 2008, 481/482: 151-155. |
56 | THIENHAUS S, NAUJOKS D, PFETZING-MICKLICH J, et al. Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: A case study for the system Ni-Al[J]. ACS Combinatorial Science, 2014, 16(12): 686-694. |
57 | MOTEMANI Y, KHARE C, SAVAN A, et al. Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition[J]. Nanotechnology, 2016, 27(49): 495604. |
58 | XIANG Xiaodong, WANG Gang, ZHANG Xiaokun, et al. Individualized pixel synthesis and characterization of combinatorial materials chips[J]. Engineering, 2015, 1(2): 225-233. |
59 | XING Hui, ZHAO Bingbing, WANG Yujie, et al. Rapid construction of Fe-Co-Ni composition-phase map by combinatorial materials chip approach[J]. ACS Combinatorial Science, 2018, 20(3): 127-131. |
60 | DECKER P, NAUJOKS D, LANGENKÄMPER D, et al. High-throughput structural and functional characterization of the thin film materials system Ni-Co-Al[J]. ACS Combinatorial Science, 2017, 19(10): 618-624. |
61 | COOPER J S, MCGINN P J. Combinatorial screening of thin film electrocatalysts for a direct methanol fuel cell anode[J]. Journal of Power Sources, 2006, 163(1): 330-338. |
62 | COOPER J S, MCGINN P J. Combinatorial screening of fuel cell cathode catalyst compositions[J]. Applied Surface Science, 2007, 254(3): 662-668. |
63 | COOPER J S, JEON Min Ku, MCGINN P J. Combinatorial screening of ternary Pt-Ni-Cr catalysts for methanol electro-oxidation[J]. ElectroChemistry Communications, 2008, 10(10): 1545-1547. |
64 | JEON Min Ku, COOPER J S, MCGINN P J. Methanol electro-oxidation by a ternary Pt-Ru-Cu catalyst identified by a combinatorial approach[J]. Journal of Power Sources, 2008, 185(2): 913-916. |
65 | ZHANG Yuan, MCGINN P J. Combinatorial screening for methanol oxidation catalysts in alloys of Pt, Cr, Co and V[J]. Journal of Power Sources, 2012, 206: 29-36. |
66 | MCGINN P J. Combinatorial electrochemistry—Processing and characterization for materials discovery[J]. Materials Discovery, 2015, 1: 38-53. |
67 | S-H BAECK, JARAMILLO T F, KLEIMAN-SHWARSCTEIN A, et al. Automated electrochemical synthesis and characterization of TiO2 supported Au nanoparticle electrocatalysts[J]. Measurement Science and Technology, 2005, 16(1): 54-59. |
68 | JIANG Chunping, WANG Ruilin, PARKINSON B A. Combinatorial approach to improve photoelectrodes based on BiVO4 [J]. ACS Combinatorial Science, 2013, 15(12): 639-645. |
69 | HABER J A, CAI Yun, JUNG Suho, et al. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis[J]. Energy & Environmental Science, 2014, 7(2): 682-688. |
70 | CHEN Lei, BAO Jun, GAO Chen, et al. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system[J]. Journal of Combinatorial Chemistry, 2004, 6(5): 699-702. |
71 | CHAN Tingshan, KANG Chia-Chen, LIU Rushi, et al. Combinatorial study of the optimization of Y2O3: Bi, Eu red phosphors[J]. Journal of Combinatorial Chemistry, 2007, 9(3): 343-346. |
72 | OKAMURA S, TAKEUCHI R, SHIOSAKI T. Fabrication of ferroelectric Pb(Zr,Ti)O3Thin films with various Zr/Ti ratios by ink-jet printing[J]. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 11B): 6714-6717. |
73 | BHARATHAN J, YANG Yang. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo[J]. Applied Physics Letters, 1998, 72(21): 2660-2662. |
74 | CHEN Lei, CHEN Kuoju, LIN Chunche, et al. Combinatorial approach to the development of a single mass YVO4: Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes[J]. Journal of Combinatorial Chemistry, 2010, 12(4): 587-594. |
75 | WANG Jian, MOHEBI M M, EVANS J R G. Two methods to generate multiple compositions in combinatorial ink-jet printing of ceramics[J]. Macromolecular Rapid Communications, 2005, 26(4): 304-309. |
76 | WANG Jian, EVANS J R G. Library preparation using an aspirating-dispensing ink-jet printer for combinatorial studies in ceramics[J]. Journal of Materials Research, 2005, 20(10): 2733-2740. |
77 | CHEN Lei, LUO Anqi, ZHANG Yao, et al. Optimization of the single-phased white phosphor of Li2SrSiO4: Eu2+, Ce3+ for light-emitting diodes by using the combinatorial approach assisted with the Taguchi method[J]. ACS Combinatorial Science, 2012, 14(12): 636-644. |
78 | HABER J A, GUEVARRA D, JUNG S, et al. Discovery of new oxygen evolution reaction electrocatalysts by combinatorial investigation of the Ni-La-Co-Ce oxide composition space[J]. ChemElectroChem, 2014, 1(10): 1613-1617. |
79 | ANIKETA S, JONES R J R, DAN G, et al. High-throughput screening for acid-stable oxygen evolution electrocatalysts in the (Mn-Co-Ta-Sb)O[J]. Electrocatalysis, 2015, 6(2): 229-236. |
80 | LIU Xiaonao, SHEN Yi, YANG Ruoting, et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration[J]. Nano Letters, 2012, 12(11): 5733-5739. |
81 | REICHENBACH H M, MCGINN P J. Combinatorial solution synthesis and characterization of complex oxide catalyst powders based on the LaMO3 system[J]. Applied Catalysis A: General, 2003, 244(1): 101-114. |
82 | MOHAMED D K B, YU Xingjian, LI Jiesheng, et al. Reaction screening in continuous flow reactors[J]. Tetrahedron Letters, 2016, 57(36): 3965-3977. |
83 | GUTMANN B, CANTILLO D, KAPPE C O. Continuous-flow technology―A tool for the safe manufacturing of active pharmaceutical ingredients[J]. Angewandte Chemie International Edition, 2015, 54(23): 6688-6728. |
84 | HARTMAN R L, MCMULLEN J P, JENSEN K F. Deciding whether to go with the flow: Evaluating the merits of flow reactors for synthesis[J]. Angewandte Chemie International Edition, 2011, 50(33): 7502-7519. |
85 | DE BELLEFON C, TANCHOUX N, CARAVIEILHES S, et al. Microreactors for dynamic, high throughput screening of fluid/liquid molecular catalysis[J]. Angewandte Chemie, 2000, 112(19): 3584-3587. |
[1] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[2] | LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163. |
[3] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[4] | ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197. |
[5] | LI Wenpeng, LIU Qing, YANG Zhirong, GAO Zhanpeng, WANG Jingtao, ZHOU Mingliang, ZHANG Jinli. Advances in efficient preparation of graphene by liquid-phase exfoliation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 215-231. |
[6] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[7] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[8] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[9] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[10] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[11] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[12] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[13] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[14] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[15] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |