Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 186-197.DOI: 10.16085/j.issn.1000-6613.2023-1479
• Column: Chemical process intensification • Previous Articles
ZHANG Jiahao(), LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong()
Received:
2023-08-23
Revised:
2023-11-21
Online:
2024-02-05
Published:
2024-01-20
Contact:
ZHANG Jisong
通讯作者:
张吉松
作者简介:
张家昊(1999—),男,博士研究生,研究方向为微填充床反应器内还原胺化。E-mail: zhang-jh21@mails.tsinghua.edu.cn。
基金资助:
CLC Number:
ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197.
张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1479
催化剂 | 模板反应 | 反应条件 | 收率/% | 参考文献 |
---|---|---|---|---|
Ru/Cox | 90℃,4MPa | 98 | [ | |
Ru1/NC | 100℃,2MPa | 97 | [ | |
Ru/TiP | 30℃,1.4MPa | 97 | [ | |
[Rh(cod)Cl]2 | 135℃,6.5MPa | 86 | [ | |
Rh/Al2O3 | 80℃,2MPa | 92 | [ | |
Ni/Al2O3 | 80℃,1MPa | 99 | [ | |
Ni y AlO x | 100℃,0.1MPa | 99 | [ | |
Ni/SiO2 | 70℃,1MPa | 99 | [ | |
Fe/SiC | 140℃,6.5MPa | 99 | [ | |
Co/SiC | 50℃,1MPa | 99 | [ | |
Pd/C | 80℃,3.5MPa | 100 | [ | |
Pd/NiO | 25℃,0.1MPa | 98 | [ | |
Pt/Al2O3 | 25℃,0.5MPa | 99 | [ | |
Au/CeO2/TiO2 | 100℃,3MPa | 79 | [ | |
Ru(DMP)2Cl2 | 60℃,1.2MPa | 98 | [ | |
Co/NC | 110℃,1MPa | 98 | [ | |
[Rh(COD)Cl]2 | 100℃,1.4MPa | 86 | [ | |
Cu/AlO x | 80℃,1MPa | 99 | [ | |
Cu/SiO2TiO3 | 100℃,0.1MPa | 97 | [ | |
Pt nanowire | 80℃,0.1MPa | 93.3 | [ | |
PtMo nanowire | 100℃,0.1MPa | 96.1 | [ | |
Pd/Fe2O3 | 0℃,0.1MPa | 96.6 | [ |
催化剂 | 模板反应 | 反应条件 | 收率/% | 参考文献 |
---|---|---|---|---|
Ru/Cox | 90℃,4MPa | 98 | [ | |
Ru1/NC | 100℃,2MPa | 97 | [ | |
Ru/TiP | 30℃,1.4MPa | 97 | [ | |
[Rh(cod)Cl]2 | 135℃,6.5MPa | 86 | [ | |
Rh/Al2O3 | 80℃,2MPa | 92 | [ | |
Ni/Al2O3 | 80℃,1MPa | 99 | [ | |
Ni y AlO x | 100℃,0.1MPa | 99 | [ | |
Ni/SiO2 | 70℃,1MPa | 99 | [ | |
Fe/SiC | 140℃,6.5MPa | 99 | [ | |
Co/SiC | 50℃,1MPa | 99 | [ | |
Pd/C | 80℃,3.5MPa | 100 | [ | |
Pd/NiO | 25℃,0.1MPa | 98 | [ | |
Pt/Al2O3 | 25℃,0.5MPa | 99 | [ | |
Au/CeO2/TiO2 | 100℃,3MPa | 79 | [ | |
Ru(DMP)2Cl2 | 60℃,1.2MPa | 98 | [ | |
Co/NC | 110℃,1MPa | 98 | [ | |
[Rh(COD)Cl]2 | 100℃,1.4MPa | 86 | [ | |
Cu/AlO x | 80℃,1MPa | 99 | [ | |
Cu/SiO2TiO3 | 100℃,0.1MPa | 97 | [ | |
Pt nanowire | 80℃,0.1MPa | 93.3 | [ | |
PtMo nanowire | 100℃,0.1MPa | 96.1 | [ | |
Pd/Fe2O3 | 0℃,0.1MPa | 96.6 | [ |
1 | SMITH M. March’s advanced organic chemistry: Reactions, mechanisms, and structure[M]. 7th Edition. Hoboken, New Jersey: Wiley, 2013 |
2 | LINDLEY James. Tetrahedron report number 163[J]. Tetrahedron, 1984, 40(9): 1433-1456. |
3 | BELFIELD A J, BROWN G R, FOUBISTER A J. Recent synthetic advances in the nucleophilic amination of benzenes[J]. Tetrahedron, 1999, 55(38): 11399-11428. |
4 | AFANASYEV O I, KUCHUK E, USANOV D L, et al. Reductive amination in the synthesis of pharmaceuticals[J]. Chemical Reviews, 2019, 119(23): 11857-11911. |
5 | TOKMIC K, JACKSON B J, SALAZAR A, et al. Cobalt-catalyzed and lewis acid-assisted nitrile hydrogenation to primary amines: A combined effort[J]. Journal of the American Chemical Society, 2017, 139(38): 13554-13561. |
6 | BAGAL D B, BHANAGE B M. Recent advances in transition metal-catalyzed hydrogenation of nitriles[J]. Advanced Synthesis and Catalysis, 2015, 357(5): 883-900. |
7 | TOMKINS Patrick, Ewa GEBAUER-HENKE, LEITNER Walter, et al. Concurrent hydrogenation of aromatic and nitro groups over carbon-supported ruthenium catalysts[J]. ACS Catalysis, 2015, 5(1): 203-209. |
8 | SARMAH P P, DUTTA D K. Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified montmorillonite clay[J]. Green Chemistry, 2012, 14(4): 1086-1093. |
9 | LANG Fengrui, ZEWGE Daniel, HOUPIS Ioannis N, et al. Amination of aryl halides using copper catalysis[J]. Tetrahedron Letters, 2001, 42(19): 3251-3254. |
10 | AUBIN Y, FISCHMEISTER C, THOMAS C M, et al. Direct amination of aryl halides with ammonia[J]. Chemical Society Reviews, 2010, 39(11): 4130-4145. |
11 | GOMEZ S, J A PETERS, MASCHMEYER T. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: Mechanistic aspects and selectivity control[J]. Advanced Synthesis & Catalysis, 2002, 344(10): 1037-1057. |
12 | YUAN Ziliang, LIU Bing, ZHOU Peng, et al. Preparation of nitrogen-doped carbon supported cobalt catalysts and its application in the reductive amination[J]. Journal of Catalysis, 2019, 370: 347-356. |
13 | MURUGESAN K, SENTHAMARAI T, CHANDRASHEKHAR V G, et al. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines[J]. Chemical Society Reviews, 2020, 49(17): 6273-6328. |
14 | IRRGANG Torsten, KEMPE Rhett. Transition-metal-catalyzed reductive amination employing hydrogen[J]. Chemical Reviews, 2020, 120(17): 9583-9674. |
15 | HAHN G, KUNNAS P, DE JONGE N, et al. General synthesis of primary amines via reductive amination employing a reusable nickel catalyst[J]. Nature Catalysis, 2019, 2(1): 71-77. |
16 | QI Haifeng, YANG Ji, LIU Fei, et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones[J]. Nature Communications, 2021, 12: 3295. |
17 | HEINEN A W, PETERS J A, VAN BEKKUM H. The reductive amination of benzaldehyde over Pd/C catalysts: Mechanism and effect of carbon modifications on the selectivity[J]. European Journal of Organic Chemistry, 2000, 2000(13): 2501-2506. |
18 | LU Shuanglong, XU Pengyao, CAO Xueqin, et al. A highly active worm-like PtMo nanowire for the selective synthesis of dibenzylamines[J]. RSC Advances, 2018, 8(16): 8755-8760. |
19 | FROST C G, MUTTON L. Heterogeneous catalytic synthesis using microreactor technology[J]. Green Chemistry, 2010, 12(10): 1687-1703. |
20 | 骆广生, 王凯, 王玉军, 等. 微化工系统的原理和应用[J]. 化工进展, 2011, 30(8): 1637-1642. |
LUO Guangsheng, WANG Kai, WANG Yujun, et al. Principles and applications of micro-structured chemical system[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1637-1642. | |
21 | MASON B P, PRICE K E, STEINBACHER J L, et al. Greener approaches to organic synthesis using microreactor technology[J]. Chemical Reviews, 2007, 107(6): 2300-2318. |
22 | CHAMBERS R D, SPINK R C H. Microreactors for elemental fluorine[J]. Chemical Communications, 1999(10): 883-884. |
23 | NAGY K D, SHEN Bo, JAMISON T F, et al. Mixing and dispersion in small-scale flow systems[J]. Organic Process Research & Development, 2012, 16(5): 976-981. |
24 | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
ZHANG Chenghao, LUO Jing, ZHANG Jisong. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors[J]. CIESC Journal, 2023, 74(2): 511-524. | |
25 | 屠佳成, 桑乐, 艾宁, 等. 连续微反应加氢技术在有机合成中的研究进展[J]. 化工学报, 2019, 70(10): 3859-3868. |
TU Jiacheng, SANG Le, AI Ning, et al. Research progress of continuous hydrogenation in organic synthesis[J]. CIESC Journal, 2019, 70(10): 3859-3868. | |
26 | GENET C, NGUYEN X, BAYATSARMADI B, et al. Reductive aminations using a 3D printed supported metal(0) catalyst system[J]. Journal of Flow Chemistry, 2018, 8(2): 81-88. |
27 | GOMEZ S, PETERS J A, VAN DER WAAL J C, et al. Preparation of benzylamine by highly selective reductive amination of benzaldehyde over Ru on an acidic activated carbon support as the catalyst[J]. Catalysis Letters, 2002, 84(1): 1-5. |
28 | DONG Chenglong, WU Yushan, WANG Hongtao, et al. Facile and efficient synthesis of primary amines via reductive amination over a Ni/Al2O3 catalyst[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(21): 7318-7327. |
29 | GOMEZ S, PETERS J A, VAN DER WAAL J C, et al. The rationalization of catalyst behaviour in the reductive amination of benzaldehyde with ammonia using a simple computer model[J]. Applied Catalysis A: General, 2004, 261(1): 119-125. |
30 | LUO Dan, HE Yurong, YU Xin, et al. Intrinsic mechanism of active metal dependent primary amine selectivity in the reductive amination of carbonyl compounds[J]. Journal of Catalysis, 2021, 395: 293-301. |
31 | GOULD N S, LANDFIELD H, DINKELACKER B, et al. Selectivity control in catalytic reductive amination of furfural to furfurylamine on supported catalysts[J]. ChemCatChem, 2020, 12(7): 2106-2115. |
32 | XIE Chao, SONG Jinliang, HUA Manli, et al. Ambient-temperature synthesis of primary amines via reductive amination of carbonyl compounds[J]. ACS Catalysis, 2020, 10(14): 7763-7772. |
33 | GROSS Thoralf, SEAYAD Abdul Majeed, AHMAD Moballigh, et al. Synthesis of primary amines: First homogeneously catalyzed reductive amination with ammonia[J]. Organic Letters, 2002, 4(12): 2055-2058. |
34 | CHATTERJEE Maya, ISHIZAKA Takayuki, KAWANAMI Hajime. Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: An environmentally friendly approach[J]. Green Chemistry, 2016, 18(2): 487-496. |
35 | EMERSON W S. The preparation of amines by reductive alkylation[M]. New Yourk: Wiley, 2011: 174-255. |
36 | KRUPKA Jiri, Libor DLUHOŠ, Lech MRÓZEK. Evaluation of benzylamine production via reductive amination of benzaldehyde in a slurry reactor[J]. Chemical Engineering & Technology, 2017, 40(5): 870-877. |
37 | YUAN Hangkong, LI Jerry-Peng, SU Fangzheng, et al. Reductive amination of furanic aldehydes in aqueous solution over versatile Ni y AlO x catalysts[J]. ACS Omega, 2019, 4(2): 2510-2516. |
38 | ZHANG Jiahao, YIN Jiabin, DUAN Xiaonan, et al. Continuous reductive amination to synthesize primary amines with high selectivity in flow[J]. Journal of Catalysis, 2023, 420: 89-98. |
39 | Christoph BÄUMLER, BAUER Christof, KEMPE Rhett. The synthesis of primary amines through reductive amination employing an iron catalyst[J]. ChemSusChem, 2020, 13(12): 3110-3114. |
40 | ELFINGER Matthias, Timon SCHÖNAUER, THOMÄ Sabrina L J, et al. Co-catalyzed synthesis of primary amines via reductive amination employing hydrogen under very mild conditions[J]. ChemSusChem, 2021, 14(11): 2360-2366. |
41 | GARCÍA-ORTIZ A, VIDAL J D, CLIMENT M J, et al. Chemicals from biomass: Selective synthesis of N-substituted furfuryl amines by the one-pot direct reductive amination of furanic aldehydes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6243-6250. |
42 | YANG Huimin, CUI Xinjiang, DENG Youquan, et al. Reductive amination of aldehydes and amines with an efficient Pd/NiO catalyst[J]. Synthetic Communications, 2014, 44(9): 1314-1322. |
43 | NUZHDIN A L, SIMONOV P A, BUKHTIYAROVA G A, et al. Reductive amination of 5-acetoxymethylfurfural over Pt/Al2O3 catalyst in a flow reactor[J]. Molecular Catalysis, 2021, 499: 111297. |
44 | LAROCHE Benjamin, ISHITANI Haruro, KOBAYASHI Shū. Direct reductive amination of carbonyl compounds with H2 using heterogeneous catalysts in continuous flow as an alternative to N-alkylation with alkyl halides[J]. Advanced Synthesis & Catalysis, 2018, 360(24): 4699-4704. |
45 | GAO Liang, LAI Liangchuan, YE Baijun, et al. Continuous-flow synthesis of N, N'-bis(2, 2, 6, 6-tetramethyl-4-piperidinyl)-1, 6-hexanediamine (DTMPA) in a micro fixed-bed reactor[J]. Journal of Flow Chemistry, 2022, 12(4): 419-427. |
46 | KOLOBOVA E, MÄKI-ARVELA P, PESTRYAKOV A, et al. Reductive amination of ketones with benzylamine over gold supported on different oxides[J]. Catalysis Letters, 2019, 149(12): 3432-3446. |
47 | XU Zhanwei, YAN Peifang, XU Wenjuan, et al. Direct reductive amination of 5-hydroxymethylfurfural with primary/secondary amines via Ru-complex catalyzed hydrogenation[J]. RSC Advances, 2014, 4(103): 59083-59087. |
48 | MAO Fei, SUI Dejun, QI Zhengliang, et al. Heterogeneous cobalt catalysts for reductive amination with H2: General synthesis of secondary and tertiary amines[J]. RSC Advances, 2016, 6(96): 94068-94073. |
49 | ROBICHAUD André, NAIT AJJOU Abdelaziz. First example of direct reductive amination of aldehydes with primary and secondary amines catalyzed by water-soluble transition metal catalysts[J]. Tetrahedron Letters, 2006, 47(22): 3633-3636. |
50 | NUZHDIN A L, BUKHTIYAROVA M V, BUKHTIYAROV V I. Two-step one-pot reductive amination of furanic aldehydes using CuAlO x catalyst in a flow reactor[J]. Molecules, 2020, 25(20): 4771. |
51 | SANTORO Federica, PSARO Rinaldo, RAVASIO Nicoletta, et al. Reductive amination of ketones or amination of alcohols over heterogeneous Cu catalysts: Matching the catalyst support with the N-alkylating agent[J]. ChemCatChem, 2012, 4(9): 1249-1254. |
52 | QI Fenqiang, HU Lei, LU Shuanglong, et al. Selective synthesis of secondary amines by Pt nanowire catalyzed reductive amination of aldehydes and ketones with ammonia[J]. Chemical Communications, 2012, 48(77): 9631-9633. |
53 | YUAN Ziliang, ZHOU Peng, LIU Xixi, et al. Mild and selective synthesis of secondary amines direct from the coupling of two aldehydes with ammonia[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14766-14770. |
54 | SONG Song, WANG Yunzhu, YAN Ning. A remarkable solvent effect on reductive amination of ketones[J]. Molecular Catalysis, 2018, 454: 87-93. |
55 | VIDAL J D, CLIMENT M J, CONCEPCION P, et al. Chemicals from biomass: Chemoselective reductive amination of ethyl levulinate with amines[J]. ACS Catalysis, 2015, 5(10): 5812-5821. |
56 | WU Hongguo, YU Zhaozhuo, LI Yan, et al. Hot water-promoted catalyst-free reductive cycloamination of (bio-) keto acids with HCOONH4 toward cyclic amides[J]. The Journal of Supercritical Fluids, 2020, 157: 104698. |
57 | MA Tengfei, ZHANG Hongyu, YIN Guohui, et al. Catalyst-free reductive amination of levulinic acid to N-substituted pyrrolidinones with formic acid in continuous-flow microreactor[J]. Journal of Flow Chemistry, 2018, 8(1): 35-43. |
58 | CHRISTIE Francesca, Antonio ZANOTTI-GEROSA, GRAINGER Damian. Hydrogenation and reductive amination of aldehydes using triphos ruthenium catalysts[J]. ChemCatChem, 2018, 10(5): 1012-1018. |
59 | HUANG Haizhou, LIU Xiaoyan, ZHOU Le, et al. Direct asymmetric reductive amination for the synthesis of chiral β-arylamines[J]. Angewandte Chemie, 2016, 128(17): 5395-5398. |
60 | CHEN Yuzhen, ZHOU Yuxiao, WANG Hengwei, et al. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: Combination of host-guest cooperation and bimetallic synergy in catalysis[J]. ACS Catalysis, 2015, 5(4): 2062-2069. |
61 | SAINI Ms Kanika, KUMAR Sahil, LI Hu, et al. Advances in the catalytic reductive amination of furfural to furfural amine: The momentous role of active metal sites[J]. ChemSusChem, 2022, 15(7): e202200107. |
62 | DENG Dian, KITA Yusuke, KAMATA Keigo, et al. Low-temperature reductive amination of carbonyl compounds over Ru deposited on Nb2O5·nH2O[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4692-4698. |
63 | NUZHDIN A L, BUKHTIYAROVA M V, BUKHTIYAROVA G A. Cu-Al mixed oxide derived from layered double hydroxide as an efficient catalyst for continuous-flow reductive amination of aromatic aldehydes[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(12): 3292-3299. |
64 | CAO Pengwei, MA Tengfei, ZHANG Hongyu, et al. Conversion of levulinic acid to N-substituted pyrrolidinones over a nonnoble bimetallic catalyst Cu15Pr3/Al2O3 [J]. Catalysis Communications, 2018, 116: 85-90. |
65 | BOMANN M D, GUCH I C, DIMARE M. A mild, pyridine-borane-based reductive amination protocol[J]. The Journal of Organic Chemistry, 1995, 60(18): 5995-5996. |
66 | LE Ngoc-Thuc, BYUN Areum, HAN Yohan, et al. Preparation of 2,5-bis(aminomethyl)furan by direct reductive amination of 2,5-diformylfuran over nickel-raney catalysts[J]. Green and Sustainable Chemistry, 2015, 5(3): 115-127. |
67 | ENTHALER Stephan. Synthesis of secondary amines by iron-catalyzed reductive amination[J]. ChemCatChem, 2010, 2(11): 1411-1415. |
68 | BLANDEN A R, MUKHERJEE K, DILEK O, et al. 4-Aminophenylalanine as a biocompatible nucleophilic catalyst for hydrazone ligations at low temperature and neutral pH[J]. Bioconjugate Chemistry, 2011, 22(10): 1954-1961. |
69 | 朱建新. 醛/酮与有机胺的缩合反应研究[D]. 南京: 南京大学, 2018. |
ZHU Jianxin. Studies on the condensation reactions of aldehydes/ketones with amines[D]. Nanjing: Nanjing University, 2018. | |
70 | LEI Qian, WEI Yawen, TALWAR Dinesh, et al. Fast reductive amination by transfer hydrogenation “on water”[J]. Chemistry – A European Journal, 2013, 19(12): 4021-4029. |
71 | LAWRENCE S A. Amines: Synthesis, properties and applications[M]. Cambridge, UK: Cambridge University Press, 2004. |
72 | SALVATORE R N, YOON C H, JUNG K W. Synthesis of secondary amines[J]. Tetrahedron, 2001, 57(37): 7785-7811. |
73 | POLIDORO Daniele, Daily RODRIGUEZ-PADRON, PEROSA Alvise, et al. Chitin-derived nanocatalysts for reductive amination reactions[J]. Materials, 2023, 16(2): 575. |
74 | CHIEFFI Gianpaolo, BRAUN Max, ESPOSITO Davide. Continuous reductive amination of biomass-derived molecules over carbonized filter paper-supported FeNi alloy[J]. ChemSusChem, 2015, 8(21): 3590-3594. |
75 | WANG Y, NUZHDIN A L, SHAMANAEV I V, et al. Flow synthesis of N-alkyl-5-methyl-2-pyrrolidones over Ni2P/SiO2 catalyst[J]. Molecular Catalysis, 2021, 515: 111884. |
76 | WANG Y, NUZHDIN A L, SHAMANAEV I V, et al. Effect of phosphorus precursor, reduction temperature, and support on the catalytic properties of nickel phosphide catalysts in continuous-flow reductive amination of ethyl levulinate[J]. International Journal of Molecular Sciences, 2022, 23(3): 1106. |
77 | GUNANATHAN Chidambaram, MILSTEIN David. Selective synthesis of primary amines directly from alcohols and ammonia[J]. Angewandte Chemie, 2008, 120(45): 8789-8792. |
78 | FALUS Péter, BOROS Zoltn, Gbor HORNYÁNSZKY, et al. Reductive amination of ketones: Novel one-step transfer hydrogenations in batch and continuous-flow mode[J]. Tetrahedron Letters, 2011, 52(12): 1310-1312. |
79 | LI Xinyue, NISHIMURA Shun. Synthesis of 5-hydroxymethyl-2-furfurylamine via reductive amination of 5-hydroxymethyl-2-furaldehyde with supported Ni-Co bimetallic catalysts[J]. Catalysis Letters, 2022: 1-8. |
80 | ZHANG Jiahao, YIN Jiabin, DUAN Xiaonan, et al. Continuous reductive amination of carbonyl compounds with ammonia to synthesize secondary amines with high selectivity[J]. Journal of Catalysis, 2023, 427: 115123. |
81 | ARTIUKHA E A, NUZHDIN A L, BUKHTIYAROVA Galina A, et al. Flow synthesis of secondary amines over Ag/Al2O3 catalyst by one-pot reductive amination of aldehydes with nitroarenes[J]. RSC Advances, 2017, 7(72): 45856-45861. |
82 | ARTIUKHA E A, NUZHDIN A L, BUKHTIYAROVA G A, et al. One-pot reductive amination of aldehydes with nitroarenes over an Au/Al2O3 catalyst in a continuous flow reactor[J]. Catalysis Science & Technology, 2015, 5(10): 4741-4745. |
83 | NUZHDIN A L, ARTIUKHA E A, BUKHTIYAROVA G A, et al. Synthesis of unsaturated secondary amines by direct reductive amination of aliphatic aldehydes with nitroarenes over Au/Al2O3 catalyst in continuous flow mode[J]. RSC Advances, 2016, 6(91): 88366-88372. |
84 | NUZHDIN A L, ARTIUKHA E A, BUKHTIYAROVA G A, et al. Synthesis of secondary amines by reductive amination of aldehydes with nitroarenes over supported copper catalysts in a flow reactor[J]. Catalysis Communications, 2017, 102: 108-113. |
85 | MANGAS-SANCHEZ J, SHARMA M, COSGROVE S C, et al. Asymmetric synthesis of primary amines catalyzed by thermotolerant fungal reductive aminases[J]. Chemical Science, 2020, 11(19): 5052-5057. |
86 | CROCI F, VILÍM J, ADAMOPOULOU T, et al. Continuous flow biocatalytic reductive amination by co‐entrapping dehydrogenases with agarose gel in a 3D‐printed mould reactor[J]. ChemBioChem, 2022, 23(22): e202200549. |
87 | KIM Hong Won, BYUN Sangmoon, KIM Seong Min, et al. Simple reversible fixation of a magnetic catalyst in a continuous flow system: Ultrafast reduction of nitroarenes and subsequent reductive amination using ammonia borane[J]. Catalysis Science & Technology, 2020, 10(4): 944-949. |
88 | GILMORE K, VUKELIĆ S, MCQUADE D T, et al. Continuous reductions and reductive aminations using solid NaBH4 [J]. Organic Process Research & Development, 2014, 18(12): 1771-1776. |
[1] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[2] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[3] | LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163. |
[4] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[5] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[6] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[7] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[8] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[9] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[10] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[11] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[12] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |