Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 287-298.DOI: 10.16085/j.issn.1000-6613.2023-0837
• Industrial catalysis • Previous Articles Next Articles
SHI Yongxing1(), LIN Gang2(), SUN Xiaohang2, JIANG Weigeng1, QIAO Dawei1, YAN Binhang2()
Received:
2023-05-19
Revised:
2023-07-29
Online:
2023-11-30
Published:
2023-10-25
Contact:
YAN Binhang
时永兴1(), 林刚2(), 孙晓航2, 蒋韦庚1, 乔大伟1, 颜彬航2()
通讯作者:
颜彬航
作者简介:
时永兴(1972—),男,学士,工程师。E-mail:syx_jrhd@126.com基金资助:
CLC Number:
SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298.
时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0837
时间 | 单位/机构 | 规模 | 技术特点 |
---|---|---|---|
2009年 | 三井化学公司 | — | |
2009年 | 日本三菱重工 | 100t/a | Cu/ZnO/Al2O3,9MPa,247℃ |
2010年 | 德国鲁齐 | — | Cu/ZnO/Al2O3,5~8MPa,220~270℃ |
2013年 | 冰岛碳循环公司 | 中试及示范,1000~4000t/a | 地热CO2-发电, 托普索技术 |
2016年 | 中国科学院山西煤炭化学研究所 | 单管试验 | Cu/ZnO/Al2O3 |
2016年 | 中国科学院上海高等研究院/上海华谊集团 | — | 工业单管试验成功 |
2018年 | 德国克莱恩 | — | Cu/ZnO/Al2O3,MegaMax |
2019年 | 中国石油大庆油田 | 实验室放大 | Cu/ZnO/Al2O3,大连瑞克技术 |
2020年 | 中国科学院大连化学物理研究所 | 中试及示范,1200t/a | 光伏-电解水制氢,ZnZrO x |
2020年 | 中国科学院上海高等研究院 | 工业侧线,5000t/a | 富碳天然气,Cu/ZnO/Al2O3 |
时间 | 单位/机构 | 规模 | 技术特点 |
---|---|---|---|
2009年 | 三井化学公司 | — | |
2009年 | 日本三菱重工 | 100t/a | Cu/ZnO/Al2O3,9MPa,247℃ |
2010年 | 德国鲁齐 | — | Cu/ZnO/Al2O3,5~8MPa,220~270℃ |
2013年 | 冰岛碳循环公司 | 中试及示范,1000~4000t/a | 地热CO2-发电, 托普索技术 |
2016年 | 中国科学院山西煤炭化学研究所 | 单管试验 | Cu/ZnO/Al2O3 |
2016年 | 中国科学院上海高等研究院/上海华谊集团 | — | 工业单管试验成功 |
2018年 | 德国克莱恩 | — | Cu/ZnO/Al2O3,MegaMax |
2019年 | 中国石油大庆油田 | 实验室放大 | Cu/ZnO/Al2O3,大连瑞克技术 |
2020年 | 中国科学院大连化学物理研究所 | 中试及示范,1200t/a | 光伏-电解水制氢,ZnZrO x |
2020年 | 中国科学院上海高等研究院 | 工业侧线,5000t/a | 富碳天然气,Cu/ZnO/Al2O3 |
活性位点 | 催化剂 | 温度 /℃ | 压力 /MPa | 转化率/% | 甲醇选择性/% |
---|---|---|---|---|---|
Cu0 | Cu/ZnO/ZrO2[ | 200 | — | 15.5 | 42.1 |
Cu/ZnO/Al2O3[ | 200 | — | 15.27 | 40.47 | |
Cu/ZnO/TiO2[ | 200 | — | 10.57 | 53.89 | |
Cu/ZnO/Y2O3[ | 200 | — | 10.46 | 49.21 | |
Cu/t-ZrO2[ | 300 | 8 | 13.96 | 92.62 | |
Cu/m-ZrO2[ | 300 | 8 | 9.28 | 79.87 | |
Cu/am-ZrO2[ | 300 | 8 | 11.3 | 74.69 | |
Cu/ZnO/Al2O3/SiO2[ | 210 | 3.4 | 11.7 | 48.0 | |
Cu/ZnO-In2O3[ | 280 | 2 | 6.3 | 84.5 | |
Cu+ | K-Cu x O/ Cu (111)[ | 220 | 5 | — | 64.14 |
Cu/ZnO/Al2O3[ | 200 | 2 | 5.19 | 67.5 | |
Cu/SiO2[ | 320 | 3 | 28.0 | 21.3 | |
YBa2Cu3O7[ | 240 | 3 | 3.4 | 34.8 | |
Cu/SiO2[ | 190 | 3 | 5.0 | 79.3 | |
Cu δ+ | CuO/ZrO2[ | 240 | 2 | 2.4 | 49.4 |
Cu/ZrO2[ | 240 | 1.5 | 0.36 | 43.08 | |
Pd-Cu/ZrO2[ | 240 | 1.5 | 1.72 | 53.83 | |
Cu/ZrO2[ | 220 | 3 | 6.8 | 64.4 | |
Cu-ZnO/ Al2O3-ZrO2[ | 240 | 5 | 14.8 | 75.8 | |
Cu/ZnO 界面 | CuZnAuAl[ | 270 | 5 | 30.0 | 98.8 |
活性位点 | 催化剂 | 温度 /℃ | 压力 /MPa | 转化率/% | 甲醇选择性/% |
---|---|---|---|---|---|
Cu0 | Cu/ZnO/ZrO2[ | 200 | — | 15.5 | 42.1 |
Cu/ZnO/Al2O3[ | 200 | — | 15.27 | 40.47 | |
Cu/ZnO/TiO2[ | 200 | — | 10.57 | 53.89 | |
Cu/ZnO/Y2O3[ | 200 | — | 10.46 | 49.21 | |
Cu/t-ZrO2[ | 300 | 8 | 13.96 | 92.62 | |
Cu/m-ZrO2[ | 300 | 8 | 9.28 | 79.87 | |
Cu/am-ZrO2[ | 300 | 8 | 11.3 | 74.69 | |
Cu/ZnO/Al2O3/SiO2[ | 210 | 3.4 | 11.7 | 48.0 | |
Cu/ZnO-In2O3[ | 280 | 2 | 6.3 | 84.5 | |
Cu+ | K-Cu x O/ Cu (111)[ | 220 | 5 | — | 64.14 |
Cu/ZnO/Al2O3[ | 200 | 2 | 5.19 | 67.5 | |
Cu/SiO2[ | 320 | 3 | 28.0 | 21.3 | |
YBa2Cu3O7[ | 240 | 3 | 3.4 | 34.8 | |
Cu/SiO2[ | 190 | 3 | 5.0 | 79.3 | |
Cu δ+ | CuO/ZrO2[ | 240 | 2 | 2.4 | 49.4 |
Cu/ZrO2[ | 240 | 1.5 | 0.36 | 43.08 | |
Pd-Cu/ZrO2[ | 240 | 1.5 | 1.72 | 53.83 | |
Cu/ZrO2[ | 220 | 3 | 6.8 | 64.4 | |
Cu-ZnO/ Al2O3-ZrO2[ | 240 | 5 | 14.8 | 75.8 | |
Cu/ZnO 界面 | CuZnAuAl[ | 270 | 5 | 30.0 | 98.8 |
原位表征技术 | 类型 | 原理 | 工作条件 | 探测深度 | 用于识别活性位点的 结构信息 | 局限性 |
---|---|---|---|---|---|---|
扫描隧道显微镜 | — | 隧道效应 | 大气、真空 | 1~2原子层 | 结构和缺陷 | (1)表面微粒之间的沟槽不能准确探测 (2)受限于材料的导电性 |
X射线衍射 | 散射光谱 | Bragg衍射 | 超高真空至30MPa 77~2273K | 体相 | 相结构和 缺陷位置 | 不适用于结晶度低的催化剂 |
拉曼光谱 | 散射光谱 | Raman散射 | 超高真空至50MPa 77~1237K | 约10nm | 相结构 | (1)拉曼散射效应的低频导致的微弱信号强度 (2)激光可能会加热样品并扰动分析区域 |
红外光谱 | 吸收光谱 | 共振吸收 | 超高真空至3MPa 77~1237K | 表面 | 吸附中间体 /化学结构 | (1)不适用于水溶液 (2)由于高温下红外区域中的样品发射,无法在高温下用傅里叶变换红外光谱进行原位研究 |
X射线光电子能谱 | 激发光谱 | 光电效应 | 超高真空至3kPa 80~1200K | <2nm | 电子结构 | 不适用于具有压敏表面结构的催化剂 |
X射线吸收光谱 | 吸收光谱 | 共振吸收 | 超高真空至30MPa 80~1773K | 体相 | 电子结构和局部协调环境 | (1)相对不适用于含有有机分子的轻元素 (2)内部工作通常成本高昂,需要基础设施和辐射源 |
原位表征技术 | 类型 | 原理 | 工作条件 | 探测深度 | 用于识别活性位点的 结构信息 | 局限性 |
---|---|---|---|---|---|---|
扫描隧道显微镜 | — | 隧道效应 | 大气、真空 | 1~2原子层 | 结构和缺陷 | (1)表面微粒之间的沟槽不能准确探测 (2)受限于材料的导电性 |
X射线衍射 | 散射光谱 | Bragg衍射 | 超高真空至30MPa 77~2273K | 体相 | 相结构和 缺陷位置 | 不适用于结晶度低的催化剂 |
拉曼光谱 | 散射光谱 | Raman散射 | 超高真空至50MPa 77~1237K | 约10nm | 相结构 | (1)拉曼散射效应的低频导致的微弱信号强度 (2)激光可能会加热样品并扰动分析区域 |
红外光谱 | 吸收光谱 | 共振吸收 | 超高真空至3MPa 77~1237K | 表面 | 吸附中间体 /化学结构 | (1)不适用于水溶液 (2)由于高温下红外区域中的样品发射,无法在高温下用傅里叶变换红外光谱进行原位研究 |
X射线光电子能谱 | 激发光谱 | 光电效应 | 超高真空至3kPa 80~1200K | <2nm | 电子结构 | 不适用于具有压敏表面结构的催化剂 |
X射线吸收光谱 | 吸收光谱 | 共振吸收 | 超高真空至30MPa 80~1773K | 体相 | 电子结构和局部协调环境 | (1)相对不适用于含有有机分子的轻元素 (2)内部工作通常成本高昂,需要基础设施和辐射源 |
1 | NOA A. Carbon dioxide now more than 50% higher than pre-industrial levels[R]. 2022. https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels. |
2 | WANG Y, WINTER L R, CHEN J G, et al. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic properties to product selectivity[J]. Green Chemistry, 2021, 23(1): 249-267. |
3 | ZHANG Zhihe, YU Zihang, FENG Kai, et al. Eu3+ doping-promoted Ni-CeO2 interaction for efficient low-temperature CO2 methanation[J]. Applied Catalysis B: Environmental, 2022, 317: 121800. |
4 | WANG Yaning, FENG Kai, TIAN Jiaming, et al. Atomically dispersed Zn-stabilized Ni δ + enabling tunable selectivity for CO2 hydrogenation[J]. ChemSusChem, 2022, 15(7): e202102439. |
5 | RIPLINGER C, SAMPSON M D, RITZMANN A M, et al. Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide[J]. Journal of the American Chemical Society, 2014, 136(46): 16285-16298. |
6 | ZHANG Xing, WU Zishan, ZHANG Xiao, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8: 14675. |
7 | ZHOU Yan, LIU Shengtang, GU Yuming, et al. In(Ⅲ) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction[J]. Journal of the American Chemical Society, 2021, 143(35): 14071-14076. |
8 | LIN Gang, ZHANG Yuanyuan, HUA Yutao, et al. Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three-phase enzymatic CO2 reduction[J]. Angewandte Chemie International Edition, 2022, 61(31): e202206283. |
9 | HUANG Huining, SHI Run, LI Zhengwen, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie International Edition, 2022, 61(17): e202200802. |
10 | WU H, KONG X Y, WEN X, et al. Metal-organic frameworks decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4 [J]. Angewandte Chemie International Edition, 2021, 60(15): 8455-8459. |
11 | GOEPPERT A, CZAUN M, JONES J P, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop[J]. Chemical Society Reviews, 2014, 43(23): 7995-8048. |
12 | 史建公, 刘志坚, 刘春生. 二氧化碳加氢制备甲醇技术进展[J]. 中外能源, 2018, 23(9): 56-70. |
SHI Jiangong, LIU Zhijian, LIU Chunsheng. Advances in technologies for CO2 hydrogenation to methanol[J]. Sino-Global Energy, 2018, 23(9): 56-70. | |
13 | IEA. Putting CO2 to use creating value from emissions[R]. 2019. https://www.iea.org/reports/putting-CO2-to-use. |
14 | 中国石化有机原料科技情报中心站. 山西煤炭化学研究所CO2加氢制甲醇技术取得进展[J]. 石油炼制与化工, 2016, 47(9): 45. |
Sinopec Organic Raw Materials Science and Technology Information Center. Shanxi Institute of Coal Chemistry makes progress in CO2 hydrogenation to methanol technology[J]. Petroleum Processing and Petrochemicals, 2016, 47(9): 45. | |
15 | 李灿. 累计稳定运行超1000h,全球首套液态阳光加氢站示范项目通过考核[J]. 上海节能, 2020, 382(10): 1225. |
LI Can. The world’s first demonstration project of liquid sunlight hydrogenrefueling station passed the evaluation with a total stable operationof over 1000 h [J]. Shanghai Energy Conservation, 2020, 382(10): 1225. | |
16 | Andrea ÁLVAREZ, BANSODE Atul, URAKAWA Atsushi, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838. |
17 | ZHONG Jiawei, YANG Xiaofeng, WU Zhilian, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. |
18 | 贾晨喜, 邵敬爱, 白小薇, 等. 二氧化碳加氢制甲醇铜基催化剂性能的研究进展[J]. 化工进展, 2020, 39(9): 3658-3668. |
JIA Chenxi, SHAO Jinai, BAI Xiaowei, et al. Review on Cu-based catalysts for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3658-3668. | |
19 | NIE Xiaowa, LI Wenhui, JIANG Xiao, et al. Chapter two-recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons[J]. Advances in Catalysis, 2019: 121-233. |
20 | CALAZA Florencia, STIEHLER Christian, FUJIMORI Yuichi, et al. Carbon dioxide activation and reaction induced by electron transfer at an oxide-metal interface[J]. Angewandte Chemie International Edition, 2015, 54(42): 12484-12487. |
21 | LI Yawei, CHAN Siew Hwa, SUN Qiang. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review[J]. Nanoscale, 2015, 7(19): 8663-8683. |
22 | ZHANG Wenbo, WANG Liangbing, LIU Haoyu, et al. Integration of quantum confinement and alloy effect to modulate electronic properties of RhW nanocrystals for improved catalytic performance toward CO2 hydrogenation[J]. Nano Letters, 2017, 17(2): 788-793. |
23 | RODRIGUEZ J A, LIU P, STACCHIOLA D J, et al. Hydrogenation of CO2 to methanol: Importance of metal-oxide and metal-carbide interfaces in the activation of CO2 [J]. ACS Catalysis, 2015, 5(11): 6696-6706. |
24 | LIAO Fenglin, HUANG Yaqun, GE Junwei, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH[J]. Angewandte Chemie International Edition, 2011, 50(9): 2162-2165. |
25 | LIAO Fenglin, ZENG Ziyan, ELEY Clive, et al. Electronic modulation of a copper/zinc oxide catalyst by a heterojunction for selective hydrogenation of carbon dioxide to methanol[J]. Angewandte Chemie International Edition, 2012, 51(24): 5832-5836. |
26 | FROST J C. Junction effect interactions in methanol synthesis catalysts[J]. Nature, 1988, 334(6183): 577-580. |
27 | YANG X, KATTEL S, SENANAYAKE S D., et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeO x /TiO2 interface[J]. Journal of the American Chemical Society, 2015, 137(32): 10104-10107. |
28 | LIU Cong, YANG Bing, Eric TYO, et al. Carbon dioxide conversion to methanol over size-selected Cu4 clusters at low pressures[J]. Journal of the American Chemical Society, 2015, 137(27): 8676-8679. |
29 | NORSKOV J K, ABILD-PEDERSEN F, STUDT F, et al. Density functional theory in surface chemistry and catalysis[J]. Proceedings of the National Academy of Sciences of The United States of America, 2011, 108(3): 937-943. |
30 | ACERBI N, TSANG S C, JONES G, et al. Rationalization of interactions in precious metal/ceria catalysts using the d-band center model[J]. Angewandte Chemie International Edition, 2013, 52(30): 7737-7741. |
31 | KHAN M U, WANG L, LIU Z, et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(33): 9548-9552. |
32 | PAN W X, CAO R, ROBERTS D L, et al. Methanol synthesis activity of CuZnO catalysts[J]. Journal of Catalysis, 1988, 114(2): 440-446. |
33 | NATESAKHAWAT S, LEKSE J W, BALTRUS J P, et al. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol[J]. ACS Catalysis, 2012, 2(8): 1667-1676. |
34 | YANG Y, MIMS C A, MEI D H, et al. Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: The source of C in methanol and the role of water[J]. Journal of Catalysis, 2013, 298: 10-17. |
35 | OSTROVSKII V E. Mechanisms of methanol synthesis from hydrogen and carbon oxides at Cu-Zn-containing catalysts in the context of some fundamental problems of heterogeneous catalysis[J]. Catalysis Today, 2002, 77(3): 141-160. |
36 | CHOI Y, FUTAGAMI K, FUJITANI T, et al. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model?[J]. Applied Catalysis A: General, 2001, 208(1/2): 163-167. |
37 | CHINCHEN G C, DENNY P J, JENNINGS J R, et al. Synthesis of methanol: Part 1. Catalysts and kinetics[J]. Applied Catalysis, 1988, 36: 1-65. |
38 | WAUGH K C. Methanol synthesis[J]. Catalysis Today, 1992, 15(1): 51-75. |
39 | 沈百荣, 韩继红, 孙琦, 等. EXAFS研究合成甲醇催化剂Cu/ZnO/M x O y [J]. 高等学校化学学报, 1997, 18(12): 2038-2040. |
SHEN Bairong, HAN Jihong, SUN Qi, et al. EXAFS studies on Cu/ZnO/M x O y catalysts for methanol synthesis[J]. Chemical Journal of Chinese Universities, 1997, 18(12): 2038-2040. | |
40 | 沈百荣, 方志刚, 孙琦, 等. EXAFS研究合成甲醇催化剂Cu/ZnO/Al2O3的制备条件[J]. 复旦学报(自然科学版), 1999, 38(6): 681-684. |
SHEN Bairong, FANG Zhigang, SUN Qi, et al. EXAFS study on the preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis[J]. Journal of Fudan University (Natural Science), 1999, 38(6): 681-684. | |
41 | MA Z Y, YANG C, WEI W, et al. Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2005, 231(1/2): 75-81. |
42 | SZANYI J, Wayne GOODMAN D.. Methanol synthesis on a Cu(100) catalyst[J]. Catalysis Letters, 1991, 10(5): 383-390. |
43 | LIAO Wenjie, LIU Ping. Methanol synthesis from CO2 hydrogenation over a potassium-promoted Cu x O/Cu(111) (x≤2) model surface: Rationalizing the potential of potassium in catalysis[J]. ACS Catalysis, 2020, 10(10): 5723-5733. |
44 | DASIREDDY V D, LIKOZAR B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity[J]. Renewable Energy, 2019, 140: 452-460. |
45 | WANG Z Q, XU Z N, PENG S Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. |
46 | GAO L Z, AU C T. CO2 hydrogenation to methanol on a YBa2Cu3O7 catalyst[J]. Journal of Catalysis, 2000, 189(1): 1-15. |
47 | YU Jiafeng, YANG Meng, ZHANG Jixin, et al. Stabilizing Cu+ in Cu/SiO2 catalysts with a Shattuckite-like structure boosts CO2 hydrogenation into methanol[J]. ACS Catalysis, 2020, 10(24): 14694-14706. |
48 | KULKARNI G U. EXAFS and XPS investigations of Cu/ZnO catalysts and their interaction with CO and methanol[J]. Topics in Catalysis, 2003, 22(3/4): 183-189. |
49 | NAKAMURA J, UCHIJIMA T, KANAI Y, et al. The role of ZnO in Cu/ZnO methanol synthesis catalysts[J]. Catalysis Today, 1996, 28(3): 223-230. |
50 | DAI W L, SUN Q, DENG J F, et al. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2 [J]. Applied Surface Science, 2001, 177(3): 172-179. |
51 | OKAMOTO Yasuaki, FUKINO Kiyotaka, IMANAKA Toshinobu, et al. Surface characterization of copper(Ⅱ) oxide-zinc oxide methanol-synthesis catalysts by X-ray photoelectron spectroscopy. 2. Reduced catalysts[J]. The Journal of Physical Chemistry, 1983, 87(19): 3747-3754. |
52 | LIU Jinyao, SHI Jiangliu, HE Dehua, et al. Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+H2 to methanol reaction[J]. Applied Catalysis A: General, 2001, 218(1/2): 113-119. |
53 | HAN Aizhe, DING Jie, ZHONG Qin. Role of single-atom Pd in Cu/ZrO2 catalysts for CO2 hydrogenation to methanol[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128535. |
54 | YU Jiahui, LIU Shuai, MU Xueliang, et al. Cu-ZrO2 catalysts with highly dispersed Cu nanoclusters derived from ZrO2@HKUST-1 composites for the enhanced CO2 hydrogenation to methanol[J]. Chemical Engineering Journal, 2021, 419: 129656. |
55 | GUO Qing, LI Shaozhong, LI Jin, et al. Enhanced CO2 hydrogenation to methanol on the mesostructured Cu-ZnO/Al2O3-ZrO2 catalyst[J]. ACS Applied Energy Materials, 2021, 4(8): 8311-8321. |
56 | KULD S, CONRADSEN C, MOSES P G, et al. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst[J]. Angewandte Chemie International Edition, 2014, 53(23): 5941-5945. |
57 | FUJITANI T, NAKAMURA J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts[J]. Applied Catalysis A: General, 2000, 191(1/2): 111-129. |
58 | MARTIN Oliver, MONDELLI Cecilia, Daniel CURULLA-FERRé, et al. Zinc-rich copper catalysts promoted by gold for methanol synthesis[J]. ACS Catalysis, 2015, 5(9): 5607-5616. |
59 | KATTEL S, RAMIREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299. |
60 | KATTEL S, RAMIREZ P J, CHEN J G, et al. Response to comment on “Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”[J]. Science, 2017, 357(6354): eaan8210. |
61 | LUNKENBEIN Thomas, SCHUMANN Julia, BEHRENS Malte, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions[J]. Angewandte Chemie International Edition, 2015, 54(15): 4544-4548. |
62 | BEHRENS Malte, FURCHE Andreas, KASATKIN Igor, et al. The potential of microstructural optimization in metal/oxide catalysts: Higher intrinsic activity of copper by partial embedding of copper nanoparticles[J]. ChemCatChem, 2010, 2(7): 816-818. |
63 | 崔晓静, 颜丽红, 王慧芳, 等. CO2加氢制甲醇铜基催化剂:分散度调控选择性[J]. 高校化学工程学报, 2022, 36(4): 562-569. |
CUI Xiaojing, YAN Lihong, WANG Huifang, et al. Improvement of methanol selectivity in CO2 hydrogenation via tuning Cu dispersion on support[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(4): 562-569. | |
64 | 李金林, 白瑞洁, 张煜华, 等. Cu/ZnO-In2O3催化剂用于CO2加氢制甲醇的催化性能[J]. 中南民族大学学报(自然科学版), 2022, 41(3): 257-262. |
LI Jinlin, BAI Ruijie, ZHANG Yuhua, et al. Catalytic performances of Cu/ZnO-In2O3 catalysts for CO2 hydrogenation to methanol[J]. Journal of South-Central Minzu University (Natural Science Edition), 2022, 41(3): 257-262. | |
65 | FENG Kai, WANG Yaning, GUO Man, et al. In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts[J]. Journal of Energy Chemistry, 2021, 62: 153-171. |
66 | ZENG Shanghong, SHAN Shiyao, LU Aolin, et al. Copper-alloy catalysts: Structural characterization and catalytic synergies[J]. Catalysis Science & Technology, 2021, 11(17): 5712-5733. |
67 | EREN Baran, TORRES Daniel, KARSLIOGLU Osman, et al. Structure of copper-cobalt surface alloys in equilibrium with carbon monoxide gas[J]. Journal of the American Chemical Society, 2018, 140(21): 6575-6581. |
68 | MARCINKOWSKI M D, DARBY M T, LIU J, et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation[J]. Nature Chemistry, 2018, 10(3): 325-332. |
69 | BERSANI M, GUPTA K, MISHRA A K, et al. Combined EXAFS, XRD, DRIFTS, and DFT study of nano copper-based catalysts for CO2 hydrogenation[J]. ACS Catalysis, 2016, 6(9): 5823-5833. |
70 | LUM Y, AGER J W. Evidence for product-specific active sites on oxide-derived Cu catalysts for electrochemical CO2 reduction[J]. Nature Catalysis, 2019, 2(1): 86-93. |
71 | ZHANG Baohua, GUO Zhihao, ZUO Zhuang, et al. The ensemble effect of nitrogen doping and ultrasmall SnO2 nanocrystals on graphene sheets for efficient electroreduction of carbon dioxide[J]. Applied Catalysis B: Environmental, 2018, 239: 441-449. |
72 | LI Fengwang, CHEN Lu, XUE Mianqi, et al. Towards a better Sn: Efficient electrocatalytic reduction of CO2 to formate by Sn/SnS2 derived from SnS2 nanosheets[J]. Nano Energy, 2017, 31: 270-277. |
73 | LIU X M, LU G Q, YAN Z F, et al. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2 [J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6518-6530. |
74 | WU Jianbo, SHAN Hao, CHEN Wenlong, et al. In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research[J]. Advanced Materials, 2016, 28(44): 9686-9712. |
75 | MUKUNDAN Vineetha, SHAN Shiyao, ZHONG Chuanjian, et al. Effect of chemical composition on the nanoscale ordering transformations of physical mixtures of Pd and Cu nanoparticles[J]. Journal of Nanomaterials, 2018, 2018: 9087320. |
76 | MA L, LUO X, Jeremy KROPF A., et al. Insight into the catalytic mechanism of bimetallic platinum-copper core-shell nanostructures for nonaqueous oxygen evolution reactions[J]. Nano Letters, 2016, 16(1): 781-785. |
77 | WU Jinfang, SHAN Shiyao, PETKOV Valeri, et al. Composition-structure-activity relationships for palladium-alloyed nanocatalysts in oxygen reduction reaction: An ex-situ/in-situ high energy X-ray diffraction study[J]. ACS Catalysis, 2015, 5(9): 5317-5327. |
78 | MUKUNDAN Vineetha, YIN Jun, JOSEPH Pharrah, et al. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles[J]. Science and Technology of Advanced Materials, 2014, 15(2): 025002. |
79 | SHAN Shiyao, PETKOV Valeri, PRASAI Binay, et al. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale[J]. Nanoscale, 2015, 7(45): 18936-18948. |
80 | KAUFFMAN D R, ALFONSO D R, TAFEN D N, et al. Selective electrocatalytic reduction of CO2 into CO at small, thiol-capped Au/Cu nanoparticles[J]. The Journal of Physical Chemistry C, 2018, 122(49): 27991-28000. |
81 | CHUNG W C, HSU S Y, PAO C W, et al. Correlation of photocatalytic CO2 conversion and electronic structure of UiO-66 and Cu-UiO-66-NH2 under irradiation studied by in-situ X-ray absorption spectroscopy[J]. Journal of CO2 Utilization, 2022, 60: 101961. |
82 | JANGAM A, HONGMANOROM P, HUI W M, et al. CO2 hydrogenation to methanol over partially reduced Cu-SiO2P catalysts: The crucial role of hydroxyls for methanol selectivity[J]. ACS Applied Energy Materials, 2021, 4(11): 12149-12162. |
83 | FAN Ruoyu, ZHANG Yange, HU Zhi, et al. Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation[J]. Nano Research, 2021, 14(12): 4601-4609. |
84 | PETER M, FENDT J, PLEINTINGER S, et al. On the interaction of carbon monoxide with ternary Cu/ZnO/Al2O3 catalysts: Modeling of dynamic morphological changes and the influence on elementary step kinetics[J]. Catalysis Science & Technology, 2012, 2(11): 2249-2257. |
85 | MARCOS F C, CAVALCANTI F M, PETROLINI D D, et al. Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics[J]. Chemical Engineering Journal, 2022, 427: 130947. |
86 | WANG Weiwei, QU Zhenping, SONG Lixin, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction[J]. Journal of Energy Chemistry, 2020, 40: 22-30. |
87 | BUKHTIYAROVA M V, BULAVCHENKO O A, BUKHTIYAROV A V, et al. Selective hydrogenation of 5-acetoxymethylfurfural over Cu-based catalysts in a flow reactor: Effect of Cu-Al layered double hydroxides synthesis conditions on catalytic properties[J]. Catalysts, 2022, 12(8): 878. |
88 | JIN Sen, SHAO Wei, CHEN Shichuan, et al. Ultrathin in-plane heterostructures for efficient CO2 chemical fixation[J]. Angewandte Chemie International Edition, 2022, 61(3): e202113411. |
89 | CUI Xiaojing, YAN Wenjun, YANG Huanhuan, et al. Preserving the active Cu-ZnO interface for selective hydrogenation of CO2 to dimethyl ether and methanol[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(7): 2661-2672. |
90 | ZHU Jiadong, SU Yaqiong, CHAI Jiachun, et al. Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2 [J]. ACS Catalysis, 2020, 10(19): 11532-11544. |
91 | MARCOS F C, LIN L, BETANCOURT L E, et al. Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio[J]. Journal of CO2 Utilization, 2020, 41: 101215. |
92 | ZHU M, TIAN P, FORD M E, et al. Nature of reactive oxygen intermediates on copper-promoted iron-chromium oxide catalysts during CO2 activation[J]. ACS Catalysis, 2020, 10(14): 7857-7863. |
93 | CHEN Aling, YU Xiaojuan, ZHOU Yan, et al. Structure of the catalytically active copper-ceria interfacial perimeter[J]. Nature Catalysis, 2019, 2(4): 334-341. |
94 | LI Didi, XU Fang, TANG Xuan, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol[J]. Nature Catalysis, 2022, 5(2): 99-108. |
95 | LIU Xinyu, LUO Jie, WANG Hengwei, et al. In situ spectroscopic characterization and theoretical calculations identify partially reduced ZnO1- x /Cu interfaces for methanol synthesis from CO2 [J]. Angewandte Chemie International Edition, 2022, 61(23): e202202330. |
96 | ZHANG Jingpeng, WANG Yaning, TIAN Jiaming, et al. Cu/LaFeO3 as an efficient and stable catalyst for CO2 reduction: Exploring synergistic effect between Cu and LaFeO3 [J]. AIChE Journal, 2022, 68(6): e17640. |
97 | ZHANG Jingpeng, SUN Xiaohang, WU Congyi, et al. Engineering Cu+/CeZrO x interfaces to promote CO2 hydrogenation to methanol[J]. Journal of Energy Chemistry, 2023, 77: 45-53. |
98 | FENG Kai, TIAN Jiaming, GUO Man, et al. Experimentally unveiling the origin of tunable selectivity for CO2 hydrogenation over Ni-based catalysts[J]. Applied Catalysis B: Environmental, 2021, 292: 120191. |
99 | YAN Binhang, WU Qiyuan, CEN Jiajie, et al. Highly active subnanometer Rh clusters derived from Rh-doped SrTiO3 for CO2 reduction[J]. Applied Catalysis B: Environmental, 2018, 237: 1003-1011. |
[1] | WANG Jijie, HAN Zhe, CHEN Siyu, TANG Chizhou, SHA Feng, TANG Shan, YAO Tingting, LI Can. Liquid sunshine methanol [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. |
[2] | LIU Chang, LIU Zhongwen. Perspective on the one-step CO2 hydrogenation to dimethyl ether [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1115-1120. |
[3] | ZHENG Renyang. Advances in structure design and alkane isomerization performance of metal-zeolite bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3785-3790. |
[4] | WANG Yimeng, LIU Jianjun, ZUO Shengli, LI Kang. Research progress of active sites of MoS2 photoelectrocatalyst: optimization and performance [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3747-3759. |
[5] | YANG Panpan, SUN Qi, ZHANG Yulong, HAN Yifan. Research progress of the role of CO2 in methanol synthesis [J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 94-101. |
[6] | AN Xia, NING Wensheng, LIU Huazhang. Research progress of Cu-Co bimetallic catalysts to the production of higher alcohols from syngas [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3843-3849. |
[7] | CHEN Xiong,ZHENG Huayan,YANG Hao,LI Zhong. Influence of CO2 in ageing process on the catalytic property of CuO/ZnO/Al2O3 catalyst [J]. Chemical Industry and Engineering Progree, 2013, 32(11): 2644-2649. |
[8] | QIN Zhiqiang,GAO Wengui,WANG Hua,HAN Chong,GUO Wei. Research on rare-earth promoter Pr-modified Cu/Zn/ZrO2 catalyst for methanol synthesis [J]. Chemical Industry and Engineering Progree, 2013, 32(04): 820-823. |
[9] | SUN Zhiwei,ZHANG Li,YAN Yunfei. Numerical analysis on the characteristics of carbon deposition of catalytic partial oxidation of methane under gravity [J]. Chemical Industry and Engineering Progree, 2012, 31(04): 839-843. |
[10] | GUO Xiaoming,MAO Dongsen,LU Guanzhong,WANG Song. Progress in catalysts for methanol synthesis from CO2 hydrogenation [J]. Chemical Industry and Engineering Progree, 2012, 31(03): 477-488. |
[11] | BAI Shaofen,LIU Xinmei,YAN Zifeng. Advance in research on reaction mechanism and active sites for methanol synthesis [J]. Chemical Industry and Engineering Progree, 2011, 30(7): 1466-. |
[12] | GE Hui,LI Xuekuan,QIN Zhangfeng,WANG Jianguo. Recent progress of catalyst development for deep hydrodesulfurization of oil products [J]. Chemical Industry and Engineering Progree, 2008, 27(10): 1490-. |
[13] | ZHANG Juntao,ZHANG Guoli,LIANG Shengrong,FENG Xiao. Recent developments in heterogeneous catalyst of ethylene oligomerization to α-olefins [J]. Chemical Industry and Engineering Progree, 2008, 27(1): 57-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |