[1] SKRZYPEK J, LACHOWSKA M, GRZESIK M, et al. Thermodynamics and kinetics of low pressure methanol synthesis[J]. The Chemical Engineering Journal, 1995, 58(2):101-108.
[2] ORTELLI E E, WAMBACH J, WOKAUN J. Methanol synthesis reactions over a CuZr based catalyst investigated using periodic variations of reactant concentrations[J]. Applied Catalysis A:General, 2001, 216(1/2):227-241.
[3] 薛金召, 汪希领, 王先锋, 等. 我国甲醇新兴应用领域前景分析[J].化工进展, 2016, 35(s1):144-151.
[4] LUYBEN W L. Design and control of a methanol reactor/column process[J]. Industrial & Engineering Chemistry Research, 2010, 49(13):6150-6163.
[5] PALO D R, DAGLE R A, HOLLADAY J D. Methanol steam reforming for hydrogen production[J]. Chemical Reviews, 2007, 107(10):3992-4021.
[6] BEHRENS M. Chemical hydrogen storage by methanol:challenges for the catalytic methanol synthesis from CO2[J]. Recyclable Catalysis, 2015, 2(1):78-86.
[7] OLAH G A, GOEPPERT A, PRAKASH G K S. Beyond oil and gas:the methanol economy[M]. Germany:Wiley-VCH, 2006.
[8] XU X Y, LIU Y, ZHANG F, et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298:61-68.
[9] BOZZANO G, MANEATI F. Efficient methanol synthesis:perspectives, technologies and optimization strategies[J]. Progress in Energy and Combustion Science, 2016, 56:71-105.
[10] OTT J, GRONEMANN V, PONTZEN F, et al. Methanol. Ullmann's encylopedia of industrial chemistry[M]. Weily-VCH, 2012.
[11] 张明宇, 王华, 高文桂. 真空冷冻干燥法制备CuO-ZnO-ZrO2甲醇合成催化剂[J]. 化工进展, 2013, 32(6):1290-1295.
[12] BAO Y F, HUANG C L, CHEN L M, et al. Highly efficient Cu/anatase TiO2{001}-nanosheets catalysts for methanol synthesis from CO2[J]. Journal of Energy Chemistry, 2018, 27(2):381-388.
[13] CHU Z, CHEN H, YU Y, et al. Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas[J]. Journal of Applied Catalysis A:General, 2013, 366(1):48-53.
[14] KLIER K. Methanol synthesis[J]. Advances in Catalysis, 1982, 31(10):243-313.
[15] DENISE B, SNEEDEN R P A. Oxide-supported copper catalysts prepared from copper formate:differences in behavior in methanol synthesis from CO/H2 and CO2/H2 mixtures[J]. Applied Catalysis, 1986, 28:235-239.
[16] FAN R G, KYODO M, TAN L, et al. Preparation and application of Cu/ZnO catalyst by urea hydrolysis method for low-temperature methanol synthesis form syngas[J]. Fuel Processing Technology, 2017, 167:69-77.
[17] WATER L G A, WILKINSON S K, SMITH R A P, et al. Understanding methanol synthesis from CO/H2 feeds over Cu/CeO2 catalysts[J]. Journal of Catalysis, 2018, 364:57-68.
[18] CHINCHEN G C, WAUGH K C, WHAN D A. The activity and state of the copper surface in methanol synthesis catalysts[J]. Applied Catalysis, 1986, 25:101-107.
[19] JANSEN W P A, BECKERS J, HEUVEL J C, et al. Dynamic behavior of the surface structure of Cu/ZnO/SiO2 catalysts[J]. Journal of Catalysis, 2002, 210(1):229-236.
[20] MEHTA S, SIMMONS G W, KLIER K, et al. Catalytic synthesis of methanol from CO/H2:Ⅱ. Electron microscopy (TEM, STEM, microdiffraction, and energy dispersive analysis) of the Cu/ZnO and Cu/ZnO/Cr2O3 catalysts[J]. Journal of Catalysis, 1979, 57(3):339-360.
[21] BULKO J B, HERMAN R G, KLIER K, et al. Optical properties and electronic interactions of microcrystalline Cu/ZnO catalysts[J]. The Journal of Physical Chemistry, 1979, 83(24):3118-3122.
[22] OVESEN C V, CLAUSEN B S, SCHIOTZ J, et al. Kinetic implications of dynamical changes in catalyst morphology during methanol synthesis over Cu/ZnO catalysts[J]. Journal of Catalysis, 1997, 168(2):133-142.
[23] LUNKENBEIN T, SCHUMANN J, BEHRENS M, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interaction[J]. Angewandte Chemie International Edition, 2015, 54(15):1-6.
[24] BEHRENS M, STUDT F, KASATKIN I, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083):893-897.
[25] BALTES C, VUKOJEVIC S, SCHUTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. Journal of Catalysis, 2008, 258(2):334-344.
[26] ZANDER S, KUNKES E L, SCHUSTER M E, et al. The role of the oxide component in the development of copper composite catalysts for methanol synthesis[J]. Angewandte Chemie International Edition, 2013, 52(25):6536-6540.
[27] LUNKENBEIN T, GIRGSDIES F, KANDEMIR T, et al. Bridging the time gap:a copper/zinc oxide/aluminum oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales[J]. Angewandte Chemie International Edition, 2016, 55(41):12708-12712.
[28] KLIER K, CHATIKAVANIJ V, HERMAN R G, et al. Catalytic synthesis of methanol from CO/H2:IV. The effects of carbon dioxide[J]. Journal of Catalysis, 1982, 74(2):343-360.
[29] 陈宝树, 赵九生, 张鎏, 等. 由XPS研究CO2在低压甲醇合成中的作用[J]. 分子催化, 1989, 8(4):253-259.
[30] MONNIER J R, APAI G, HANRAHAN M J. Effect of CO2 on the conversion of H2/CO to methanol over copper-chromia catalysts[J]. Journal of Catalysis, 1984, 88(2):523-525.
[31] DAI W L, SUN Q, DENG J F, et al. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2[J]. Applied Surface Science, 2001, 177(3):172-179.
[32] TANG Q L, HONG Q J, LIU Z P. CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo[J]. Journal of Catalysis, 2009, 263(1):114-122.
[33] GAO L Z, LI J T, AU C T. Mechanistic studies of CO and CO2 hydrogenation to methanol over a 50Cu/45Zn/5Al catalyst by in-situ FT-IR, chemical trapping and isotope labelling methods[J]. Studies in Surface Science and Catalysis, 2000, 130:3711-3716.
[34] LIM H W, PARK M J, KANG S H, et al. Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst:influence of carbon dioxide during hydrogenation[J]. Industrial & Engineering Chemistry Research, 2009, 48(23):10448-10455.
[35] SAHIBZAFA M, METCALFE I S, CHADWICK D. Methanol synthesis from CO/CO2/H2 over Cu/ZnO/Al2O3 at differential and finite conversions[J]. Journal of Catalysis, 1998, 174(2):111-118.
[36] GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1:365-384.
[37] YANG Y, MIMS C A, MEI D H, et al. Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures:the source of C in methanol and the role of water[J]. Journal of Catalysis, 2013, 298(1):10-17.
[38] 吴贵升, 赵宁, 陈小平, 等. CO/H2在Cu/ZrO2催化剂表面吸附行为原位红外表征[J]. 燃料化学学报, 2001, 29(6):490-493.
[39] RHODES M D, BELL A T. The effects of zirconia morphology on methanol synthesis from CO and H2 over Cu/ZrO2 catalysts Part I. Steady-state studies[J]. Journal of Catalysis, 2005, 233(1):198-209.
[40] CHINCHEN G C, DENNY P J, PARKER D G, et al. Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts:use of 14C-labelled reactants[J]. Applied Catalysis, 1987, 30(2):333-338.
[41] ZHANG Y L, SUN Q, DENG J F, et al. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis:preparation and catalytic properties[J]. Applied Catalysis A:General, 1997, 158(1/2):105-120.
[42] LEE J S, LEE K H, LEE S Y, et al. A comparative study of methanol synthesis from CO2/H2 and CO/H2 over a Cu/ZnO/Al2O3 catalyst[J]. Journal of Catalysis, 1993, 144(2):414-424.
[43] LIU G, WILLCOX D, GAELAND M, et al. The role of CO2 in methanol synthesis on Cu/Zn oxide:an isotope labeling study[J]. Journal of Catalysis, 1985, 96(1):251-260.
[44] YANG R Q, ZHANG Y, TSUBAKI N. Dual catalysis mechanism of alcohol solvent and Cu catalyst for a new methanol synthesis method[J]. Catalysis Communications, 2005, 6(4):275-279.
[45] ZHANG Y, YANG R Q, TSUBAKI N. A new low-temperature methanol synthesis method:mechanistic and kinetics study of catalytic process[J]. Catalysis Today, 2008, 132(1/2/3/4):93-100.
[46] CHOI Y, FUTAGAMI K, FUJITANI T, et al. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model[J]. Applied Catalysis A:General, 2001, 208(1/2):163-167. |