[1] 户英杰, 王志强, 程星星, 等. 燃烧处理挥发性有机污染物的研究进展[J]. 化工进展, 2018, 37(1):319-329.
[2] YANG P, YANG S S, SHI Z N, et al. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Applied Catalysis B:Environmental, 2015, 162:227-235.
[3] KULKARNI P S, CREPO J G, AFONSO C A. Dioxins sources and current remediation technologies - A review[J]. Environment International, 2008, 34(1):139-153.
[4] 阚家伟, 李兵, 李林, 等. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展, 2016, 35(2):499-505.
[5] 于旭霞, 冯俊小. 催化燃烧治理氯苯类挥发性有机化合物的最新进展[J]. 化工进展, 2016, 35(5):1514-1518.
[6] ASSAL Z E, OJALA S, PTKAAHO S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts[J]. Chemical Engineering Journal, 2017, 313:1010-1022.
[7] PAVEL T, DELAIGLEB R, KALUZAA L, et al. Performance of platinum and gold catalysts supported on ceria-zirconia mixed oxide in the oxidation of chlorobenzene[J]. Catalysis Today, 2015, 253:172-177.
[8] WANG Y, LIU H H, WANG S Y, et al. Remarkable enhancement of dichloromethane oxidation over potassium-promoted Pt/Al2O3 catalysts[J]. Journal of Catalysis, 2014, 311:314-324.
[9] HUANG Q Q, XUE X M, ZHOU R X. Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts:effect of acidity and redox property on the catalytic behavior[J]. Journal of Hazardous Materials, 2010, 183(1-3):694-700.
[10] YANG P, XUE X M, MENG Z H, et al. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds[J]. Chemical Engineering Journal, 2013, 234:203-210.
[11] STEVENS W R, ZHAO Y X, ZHAO R, et al. Decomposition of trace chlorobenzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas[J]. Applied Catalysis B:Environmental, 2017, 61(3):314.
[12] SHI Z, YANG P, TAO F, et al. New insight into the structure of CeO2-TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation[J]. Chemical Engineering Journal, 2016, 295:99-108.
[13] JI L, CAO X, LU S, et al. Catalytic oxidation of PCDD/F on a V2O5-WO3/TiO2 catalyst:effect of chlorinated benzenes and chlorinated phenols[J]. Journal of Hazardous Materials, 2018, 342:220-230.
[14] MIRAN H A, ALTARAWNEH M, JIANG Z T, et al. Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2)[J]. Catalysis Science & Technology, 2017, 7(17):3902-3919.
[15] KAN J W, DENG L, Li B, et al. Performance of Co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A:General, 2017, 530:21-29.
[16] 李志荣, 赵津. 催化燃烧技术机理及其研究进展初探[J]. 科技情报开发与经济, 2005(15):163-164.
[17] KHALEEL A, ALNAYLI A. Supported and mixed oxide catalysts based on iron and titanium for the oxidative decomposition of chlorobenzene[J]. Applied Catalysis B:Environmental, 2008, 80:176-184.
[18] KRISHNAMOORTHY S, RIVAS J A, AMIRIDIS M D. Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides[J]. Journal of Catalysis, 2000, 193(2):264-272.
[19] LICHTENBERGER J, AMIRIDIS M D. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2, catalysts[J]. Journal of Catalysis, 2004, 223(2):296-308.
[20] DAI Q G, WANG X Y, LU G Z. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation[J]. Applied Catalysis B:Environmental, 2008, 81:192-202.
[21] CEN W L, LIU Y, WU Z B, et al. Cl species transformation on CeO2(111) surface and its effects on CVOCs catalytic abatement:a first-principles investigation[J]. The Journal of Physical Chemistry C, 2014, 118:6758-6766.
[22] BERTINCHAMPS F, POLEUNIS C, GREGOIRE C, et al. Elucidation of deactivation or resistance mechanisms of CrOx, VOx and MnOx supported phases in the total oxidation of chlorobenzene via ToF-SIMS and XPS analyses[J]. Surface and Interface Analysis, 2008, 40:231-236.
[23] RACHAPUDI R, CHINTAWAR P S, GREENE H L. Aging and structure/activity characteristics of Cr-ZSM-5 catalysts during exposure to chlorinated VOCs[J]. Journal of Catalysis, 1999, 185:58-72.
[24] YIM S D, CHANG K H, NAM I S. Deactivation of chromium oxide catalyst for the removal of perchloroethylene (PCE)[J]. Studies in Surface Science and Catalysis, 2001, 139:173-180.
[25] KULAZYNSKI M, OMMEN J G V, RAWCZYNSKI J, et al. Catalytic combustion of trichloroethylene over TiO2-SiO2 supported catalysts[J]. Applied Catalysis B:Environmental, 2002, 36:239-247.
[26] AMRUTE A P, MONDELLI C, MOSER M, et al. Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2[J]. Journal of Catalysis, 2012, 286:287-297.
[27] DOBBER D, KIEBLING D, SCHMITZ W, et al. MnOx/ZrO catalysts for the total oxidation of methane and chloromethane[J]. Applied Catalysis B:Environmental, 2004, 52(2):135-143.
[28] YAN L, LUO M, WEI Z, et al. Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts[J]. Applied Catalysis B:Environmental, 2001, 29(1):61-67.
[29] NAGANUMA T, TRAVERSA E. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers[J]. Nanoscale, 2012, 4(16):4950-4953.
[30] BUSCA G, DATURI M, FINOCCHIO E, et al. Transition metal mixed oxides as combustion catalysts:preparation, characterization and activity mechanisms[J]. Catalysis Today, 1997, 33(1):239-249.
[31] ZHAI D, LI B, XU C, et al. A study on charge storage mechanism of α-MnO2, by occupying tunnels with metal cations (Ba2+, K+)[J]. Journal of Power Sources, 2011, 196(18):7860-7867.
[32] 靳福娅, 余林, 蓝邦, 等. 水热法制备二氧化锰及在过氧化氢传感器中的应用[J]. 化工进展, 2017, 36(9):3380-3387. JIN F Y, YU L, LAN B, et al. Preparation of MnO2 nanomaterials in hydrothermal method and applied in hydrogen peroxide sensing[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3380-3387.
[33] CUI H J, HUANG H Z, FU M L, et al. Facile synthesis and catalytic properties of single crystalline β-MnO2 nanorods[J]. Catalysis Communications, 2011, 12(14):1339-1343.
[34] KIJIMA N, IKEDA T, OIKAWA K, et al. Crystal structure of an open-tunnel oxide α-MnO2 analyzed by rietveld refinements and MEM-based pattern fitting[J]. Journal of Solid State Chemistry, 2004, 177(4):1258-1267.
[35] 李经纬, 宋灿, 刘善堂. 不同晶型二氧化锰纳米棒催化氧化氯苯性能的研究[J]. 化学学报, 2012, 70:1-9.
[36] 侯扶林, 李红欣, 杨阳, 等. 特定形貌和多孔纳米CeO2的制备及其CO催化氧化研究进展[J]. 化工进展, 2017, 36(7):2481-2487.
[37] LI H F, LU G Z, DAI Q G, et al. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes[J]. ACS Applied Materials & Interfaces, 2010, 2(3):838-846.
[38] LI H F, LU G Z, DAI Q G, et al. Efficient low-temperature catalytic combustion of trichloroethylene over flower-like mesoporous Mn-doped CeO2 microspheres[J]. Applied Catalysis B:Environmental, 2011, 102:475-483.
[39] ZHAO P, WANG C, HE F, et al. Effect of ceria morphology on the activity of MnOx/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. RSC Advances, 2014, 4(86):45665-45672.
[40] WU L, HE F, LUO J, et al. Synthesis of three-dimensional ordered mesoporous MnOx/CeO2 bimetal oxides for the catalytic combustion of chlorobenzene[J]. RSC Advances, 2017, 7(43):26952-26959.
[41] LUO J, HE F, LIU S T. Catalytic combustion of chlorobenzene over core-shell Mn/TiO2 catalysts[J]. Journal of Porous Materials, 2017, 24:821-828.
[42] TANG A D, HU L Q, YANG X H, et al. Promoting effect of the addition of Ce and Fe on manganese oxide catalyst for 1,2-dichlorobenzene catalytic combustion[J]. Catalysis Communications, 2016, 82:41-45.
[43] HE C, YU Y K, SHI J W, et al. Mesostructured Cu-Mn-Ce-O composites with homogeneous bulk composition for chlorobenzene removal:Catalytic performance and microactivation course[J]. Materials Chemistry and Physics, 2015, 157:87-100.
[44] YANG P, YANG S H, SHI Z N, et al. Accelerating effect of ZrO2 doping on catalytic performance and thermal stability of CeO2-CrOx mixed oxide for 1,2-dichloroethane elimination[J]. Chemical Engineering Journal, 2016, 285:544-553.
[45] KAN J W, DENG L, LI B, et al. Performance of Co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A:General, 2017, 530:21-29.
[46] CAO S, WANG H Q, YU F X, et al. Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2[J]. Journal of Colloid and Interface Science, 2016, 463:233-241.
[47] RIVAS B D, LOPEZ-FONSECA R, GUTIERREZ-ORTIZ M A, et al. Catalytic performance of chlorinated Ce/Zr mixed oxides for Cl-VOC oxidation[J]. Waste Management, 2008, 109:857-866.
[48] RIVAS B D, LOPEZ-FONSECA R, GUTIERREZ-ORTIZ M A, et al. Impact of induced chlorine-poisoning on the catalytic behaviour of Ce0.5Zr0.5O2 and Ce0.15Zr0.85O2 in the gas-phase oxidation of chlorinated VOCs[J]. Applied Catalysis B:Environmental, 2011, 104:373-381.
[49] RIVAS B D, SAMPEDRO C, GARCIA-REAL M, et al. Promoted activity of sulphated Ce/Zr mixed oxides for chlorinated VOC oxidative abatement[J]. Applied Catalysis B:Environmental, 2013, 129:225-235. |