[1] CHEN W H, CHIU I H. Modeling of transient hydrogen permeation process across a palladium membrane[J]. Applied Energy, 2010, 87(3):1023-1032.
[2] ASHIK U P M, DAUD W M A W, ABBAS H F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane-A review[J]. Renewable Sustainable Energy Reviews, 2015, 44:221-256.
[3] ACAR C, DINCER I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources[J]. International Journal of Hydrogen Energy, 2014, 39(1):1-12.
[4] 乔春珍. 含碳能源直接制氢中CO2吸收剂的研究[D]. 北京:中国科学院研究生院(工程热物理研究所), 2006.
[5] ROSTRUPNIELSEN J R. Catalysis and large-scale conversion of natural gas[J]. Catalysis Today, 1994, 21(2/3):257-267.
[6] NAVARRO R M, PENA M A, FIERRO J L G. Hydrogen production reactions from carbon feedstocks:fossils fuels and biomass[J]. Chemical Reviews, 2007, 107(10):3952-3991.
[7] CHEN W H, CHENG Y C, HUNG C I. Transient reaction and exergy analysis of catalytic partial oxidation of methane in a Swiss-roll reactor for hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(8):6608-6619.
[8] LI C, SIVARAM P. Low temperature synthesis of metal doped perovskites catalyst for hydrogen production by autothermal reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(33):14605-14614.
[9] MONDAL K C, CHANDRAN S R. Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process[J]. International Journal of Hydrogen Energy, 2014, 39(18):9670-9674.
[10] WANG H Y, LUA A C. Methane decomposition using Ni-Cu alloy nano-particle catalysts and catalyst deactivation studies[J]. Chemical Engineering Journal, 2015, 262:1077-1089.
[11] PING D, WANG C, DONG X, et al. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition[J]. Applied Surface Science, 2016, 369:299-307.
[12] ERMAKOVA M A, ERMAKOV D Y, KUVSHINOV G G, et al. New nickel catalysts for the formation of filamentous carbon in the reaction of methane decomposition[J]. Journal of Catalysis, 1999, 187(1):77-84.
[13] AVDEEVA L B, GONCHAROVA O V, KOCHUBEY D I, et al. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. Ⅱ. Evolution of the catalysts in reaction[J]. Applied Catalysis A:General, 1996, 141(1/2):117-129.
[14] AVDEEVA L B, KOCHUBEY D I, SHAIKHUTDINOV S K. Cobalt catalysts of methane decomposition:accumulation of the filamentous carbon[J]. Applied Catalysis A:General, 1999, 177(1):43.
[15] RESHETENKO T V, AVDEEVA L B, USHAKOV V A, et al. Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures:Part Ⅱ. Evolution of the catalysts in reaction[J]. Applied Catalysis A:General, 2004, 270(1/2):87-99.
[16] MANEERUNG T K, HIDAJAT K, KAWI S. LaNiO3 perovskite catalyst precursor for rapid decomposition of methane:influence of temperature and presence of H2 in feed stream[J]. Catalysis Today, 2011, 171(1):24-35.
[17] PIAO L Y, LI Y D, CHEN R L, et al. Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst[J]. Catalysis Today, 2002, 74(1/2):145-154.
[18] ECHEGOYEN Y, SUElLVES I, LAZARO M J, et al. Thermocatalytic decomposition of methane over Ni-Mg and Ni-Cu-Mg catalysts:effect of catalyst preparation method[J]. Applied Catalysis A:General, 2007, 333(2):229-237.
[19] KOERTS T, DEELEN M J A G, VANSANTEN R A. Hydrocarbon formation from methane by a low-temperature 2-step reaction sequence[J]. Journal of Catalysis, 1992, 138(1):101-114.
[20] BAYAT N, REZAEI M, MESHKANI F. Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni-Pd/Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2016, 41(12):5494-5503.
[21] PINILLA J L, UTRILLA R, KARN R K, et al. High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition[J]. International Journal of Hydrogen Energy, 2011, 36(13):7832-7843.
[22] AWADALLAH A E, ABOUL-ENEIN A A, ABOUL-GHEIT A K. Various nickel doping in commercial Ni-Mo/Al2O3 as catalysts for natural gas decomposition to COx-free hydrogen production[J]. Renewable Energy, 2013, 57:671-678.
[23] LI J M, DONG L, XIONG L P, et al. High-loaded Ni-Cu-SiO2 catalysts for methane decomposition to prepare hydrogen and carbon filaments[J]. International Journal of Hydrogen Energy, 2016, 41(28):12038-12048.
[24] SARASWAT S K, PANT K K. Ni-Cu-Zn/MCM-22 catalysts for simultaneous production of hydrogen and multiwall carbon nanotubes via thermo-catalytic decomposition of methane[J]. International Journal of Hydrogen Energy, 2011, 36(21):13352-13360.
[25] BAYAT N, MESHKANI F, REZAEI M. Thermocatalytic decomposition of methane to COx-free hydrogen and carbon over Ni-Fe-Cu/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(30):13039-13049.
[26] CHEN J, HE M, WANG G W, et al. Production of hydrogen from methane decomposition using nanosized carbon black as catalyst in a fluidized-bed reactor[J]. International Journal of Hydrogen Energy, 2009, 34(24):9730-9736.
[27] SZYMANSKA M, MALAIKA A, RECHNIA P, et al. Metal/activated carbon systems as catalysts of methane decomposition reaction[J]. Catalysis Today, 2015, 249:94-102.
[28] FAKEEHA A H, KHAN W U, AL-FATESH A S, et al. Production of hydrogen from methane over lanthanum supported bimetallic catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(19):8193-8198.
[29] UDDIN M N, DAUD, W M A W, ABBAS H F. Co-production of hydrogen and carbon nanofibers from methane decomposition over zeolite Y supported Ni catalysts[J]. Energy Conversion and management, 2015, 90:218-229.
[30] AWADALLAH A E, Aboul-Enein A A. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co-W/MgO catalysts[J]. Egyptian Journal of petroleum, 2015, 24:299-306.
[31] AWADALLAH A E, EL-DESOUKI D S, ABOUL-ENEIN A A, et al. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VⅢ catalysts[J]. Applied Surface Science, 2014, 296:100-107.
[32] LI J, KEVIN J S. Methane decomposition and catalyst regeneration in a cyclic mode over supported Co and Ni catalysts[J]. Applied Catalysis A:General, 2008, 349(1/2):116.
[33] ERMAKOVA M A, ERMAKOV D Y. Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition[J]. Catalysis Today, 2002, 77(3):225-235.
[34] TAKENAKA S, KOBAVASHI S, OGIHARA H, et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofibers[J]. Journal of Catalysis, 2003, 217(1):79-81.
[35] LI J Z, LU G X, LI K, et al. Active Nb2O5-supported nickel and nickel-copper catalysts for methane decomposition to hydrogen and filamentous carbon[J]. Journal of Molecular Catalysis A:Chemical, 2004, 221(1/2):105-112.
[36] HITOSHI O, SAKAE T, ICHIRO Y, et al. Formation of highly concentrated hydrogen through methane decomposition over Pd-based alloy catalysts[J]. Journal of Catalysis, 2006, 238(2):353-360.
[37] TAKENAKA S, SHIGETA Y, TANABE E, et al. Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts[J]. Journal of Catalysis, 2003, 220(2):468-477.
[38] OTSUKA K, SEINO T, KOBAYASHI S, et al. Production of hydrogen through decomposition of methane with Ni-supported catalysts[J]. Chemistry Letters, 1999(11):1179-1180.
[39] AWADALLAH A E, EL-DESOUKI D S, ABOUL-GHEITET N A K, et al. Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials[J]. International Journal of Hydrogen Energy, 2016, 41(38):16890-16902.
[40] TAKENAKA S, OGIHARA H, YAMANAKA I, et al. Decomposition of methane over supported-Ni catalysts:effects of the supports on the catalytic lifetime[J]. Applied Catalysis A:General, 2001, 217(1/2):101-110.
[41] PUDUKUDY M, YAAKOB Z, TAKRIFF M S. Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method[J]. Energy Conversion and Management, 2016, 126:302-315.
[42] MANEERUNG T, HIDAJAT K, KAWI S. Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi(1-x)MxO3-α perovskite (where M=Co, Fe and X=0, 0. 2, 0. 5, 0. 8, 1)[J]. International Journal of Hydrogen Energy, 2015, 40(39):13399-13411.
[43] LI Y, ZHANG B C, XIE X W, et al. Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers[J]. Journal of Catalysis, 2006, 238(2):412-424.
[44] PUDUKUDY M, KADIER A, YAAKOB Z, et al. Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41:18509-18521.
[45] LUA A C, WANG H Y. Hydrogen production by catalytic decomposition of methane over Ni-Cu-Co alloy particles[J]. Applied Catalysis B:Environmental, 2014, 156:84-93.
[46] SUELVES I, LAZARO M J, MOLINER R, et al. Characterization of NiAl and NiCuAl catalysts prepared by different methods for hydrogen production by thermo catalytic decomposition of methane[J]. Catalysis Today, 2006, 116(3):271-280.
[47] SUELVES I, LAZARO M J, ECHEGOYEN Y, et al. Decomposition of methane over Ni-SiO2 and Ni-Cu-SiO2 catalysts:effect of catalyst preparation method[J]. Applied Catalysis A:General, 2007, 329:22-29.
[48] 曾群. 催化剂制备及反应条件对制备纳米碳管的影响[D]. 天津:天津大学, 2007.
[49] 梁威, 陈晨, 李腾, 等. 还原条件对甲烷催化裂解催化剂活性影响探究[J]. 天然气化工(C1化学与化工), 2016, 41(1):15-20, 74.
[50] SUELVES I, LAZARO M J, MOLINER R, et al. Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts:influence of operating conditions on catalyst deactivation and carbon characteristics[J]. International Journal of Hydrogen Energy, 2005, 30(15):1555-1567.
[51] 潘智勇, 沈师孔. Ni/SiO2催化剂上甲烷催化裂解制氢[J]. 燃料化学学报, 2003, 36(5):466-470.
[52] 彭乔. 甲烷裂解制氢催化剂的制备及其性能与模拟研究[D]. 武汉:华中师范大学, 2016.
[53] OTSUKA K, KOBAYASHI S, TAKENAKA S. Hydrogen-deuterium exchange studies on the decomposition of methane over Ni/SiO2[J]. Journal of Catalysis, 2001, 200(1):4-9.
[54] BAKER R T K, BARBER M A, HARRIS P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J]. Journal of Catalysis, 1972, 26(1):51-62.
[55] NIELSEN J R, TRIMM D L. Mechanisms of carbon formation on nickel-containing catalysts[J]. Journal of Catalysis, 1977, 48(1/2/3):155-165.
[56] MARINAA E, DMITRY Y E, ANDREY L, et al. Decomposition of methane over iron catalysts at the range of moderate temperatures:the influence of structure of the catalytic systems and the reaction conditions on the yeild of carbon and morphology of carbon filaments[J]. Journal of Catalysis, 2001, 201(2):183-197.
[57] 曹磊. 纳米镍基催化剂用于甲烷裂解反应的研究[D]. 天津:天津大学, 2003.
[58] ZAVARUKHIN S G, KUVSHINOV G G. The kinetic model of formation of nanofibrous carbon from CH4-H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation[J]. Applied Catalysis A:General, 2004, 272(1/2):219-227.
[59] 张志, 唐涛, 陆光达. 甲烷催化裂解制氢技术研究进展[J]. 化学研究与应用, 2007, 19(1):1-9.
[60] AIELLO R, FISCUS J E, ZUR LOYE H C, et al. Hydrogen production via the direct cracking of methane over Ni/SiO2:catalyst deactivation and regeneration[J]. Applied Catalysis A:General, 2000, 192(2):227-234.
[61] TAKENAKA S, KATO E, TOMIKUBO Y, et al. Structural change of Ni species during the methane decomposition and the subsequent gasification of deposited carbon with CO2 over supported Ni catalysts[J]. Journal of Catalysis, 2003, 219(1):176-185.
[62] 李建中, 吕功煊, 李克. 甲烷在Ni/SiO2催化剂上裂解制碳纳米管和氢气[J]. 石油与天然气化工, 2004, 33(4):222-225.
[63] 金鑫. 甲烷催化裂解制备氢气和碳纳米管[J]. 应用化工, 2011, 40(8):1390-1392.
[64] 张志, 唐涛, 陆光达, 等. 催化裂解甲烷制备氢气和碳纳米纤维[J]. 应用化学, 2008, 25(2):245-250. |