Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (S1): 80-93.DOI: 10.16085/j.issn.1000-6613.2018-0183
Previous Articles Next Articles
WANG Di1,2, HU Yan2, GAO Weimin1, CUI Yanbin2
Received:
2018-01-22
Revised:
2018-05-16
Online:
2018-12-13
Published:
2018-11-30
王迪1,2, 胡燕2, 高卫民1, 崔彦斌2
通讯作者:
崔彦斌,研究员,研究方向为甲烷转化、纳米材料等。
作者简介:
王迪(1993-),女,硕士研究生,研究方向为甲烷催化裂解。E-mail:930524867@qq.com。
基金资助:
CLC Number:
WANG Di, HU Yan, GAO Weimin, CUI Yanbin. Progress of methane catalytic decomposition for hydrogen and carbon nanomaterials production[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 80-93.
王迪, 胡燕, 高卫民, 崔彦斌. 甲烷催化裂解制氢和碳纳米材料研究进展[J]. 化工进展, 2018, 37(S1): 80-93.
[1] CHEN W H, CHIU I H. Modeling of transient hydrogen permeation process across a palladium membrane[J]. Applied Energy, 2010, 87(3):1023-1032. [2] ASHIK U P M, DAUD W M A W, ABBAS H F. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane-A review[J]. Renewable Sustainable Energy Reviews, 2015, 44:221-256. [3] ACAR C, DINCER I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources[J]. International Journal of Hydrogen Energy, 2014, 39(1):1-12. [4] 乔春珍. 含碳能源直接制氢中CO2吸收剂的研究[D]. 北京:中国科学院研究生院(工程热物理研究所), 2006. [5] ROSTRUPNIELSEN J R. Catalysis and large-scale conversion of natural gas[J]. Catalysis Today, 1994, 21(2/3):257-267. [6] NAVARRO R M, PENA M A, FIERRO J L G. Hydrogen production reactions from carbon feedstocks:fossils fuels and biomass[J]. Chemical Reviews, 2007, 107(10):3952-3991. [7] CHEN W H, CHENG Y C, HUNG C I. Transient reaction and exergy analysis of catalytic partial oxidation of methane in a Swiss-roll reactor for hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(8):6608-6619. [8] LI C, SIVARAM P. Low temperature synthesis of metal doped perovskites catalyst for hydrogen production by autothermal reforming of methane[J]. International Journal of Hydrogen Energy, 2016, 41(33):14605-14614. [9] MONDAL K C, CHANDRAN S R. Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process[J]. International Journal of Hydrogen Energy, 2014, 39(18):9670-9674. [10] WANG H Y, LUA A C. Methane decomposition using Ni-Cu alloy nano-particle catalysts and catalyst deactivation studies[J]. Chemical Engineering Journal, 2015, 262:1077-1089. [11] PING D, WANG C, DONG X, et al. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition[J]. Applied Surface Science, 2016, 369:299-307. [12] ERMAKOVA M A, ERMAKOV D Y, KUVSHINOV G G, et al. New nickel catalysts for the formation of filamentous carbon in the reaction of methane decomposition[J]. Journal of Catalysis, 1999, 187(1):77-84. [13] AVDEEVA L B, GONCHAROVA O V, KOCHUBEY D I, et al. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. Ⅱ. Evolution of the catalysts in reaction[J]. Applied Catalysis A:General, 1996, 141(1/2):117-129. [14] AVDEEVA L B, KOCHUBEY D I, SHAIKHUTDINOV S K. Cobalt catalysts of methane decomposition:accumulation of the filamentous carbon[J]. Applied Catalysis A:General, 1999, 177(1):43. [15] RESHETENKO T V, AVDEEVA L B, USHAKOV V A, et al. Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperatures:Part Ⅱ. Evolution of the catalysts in reaction[J]. Applied Catalysis A:General, 2004, 270(1/2):87-99. [16] MANEERUNG T K, HIDAJAT K, KAWI S. LaNiO3 perovskite catalyst precursor for rapid decomposition of methane:influence of temperature and presence of H2 in feed stream[J]. Catalysis Today, 2011, 171(1):24-35. [17] PIAO L Y, LI Y D, CHEN R L, et al. Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst[J]. Catalysis Today, 2002, 74(1/2):145-154. [18] ECHEGOYEN Y, SUElLVES I, LAZARO M J, et al. Thermocatalytic decomposition of methane over Ni-Mg and Ni-Cu-Mg catalysts:effect of catalyst preparation method[J]. Applied Catalysis A:General, 2007, 333(2):229-237. [19] KOERTS T, DEELEN M J A G, VANSANTEN R A. Hydrocarbon formation from methane by a low-temperature 2-step reaction sequence[J]. Journal of Catalysis, 1992, 138(1):101-114. [20] BAYAT N, REZAEI M, MESHKANI F. Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni-Pd/Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2016, 41(12):5494-5503. [21] PINILLA J L, UTRILLA R, KARN R K, et al. High temperature iron-based catalysts for hydrogen and nanostructured carbon production by methane decomposition[J]. International Journal of Hydrogen Energy, 2011, 36(13):7832-7843. [22] AWADALLAH A E, ABOUL-ENEIN A A, ABOUL-GHEIT A K. Various nickel doping in commercial Ni-Mo/Al2O3 as catalysts for natural gas decomposition to COx-free hydrogen production[J]. Renewable Energy, 2013, 57:671-678. [23] LI J M, DONG L, XIONG L P, et al. High-loaded Ni-Cu-SiO2 catalysts for methane decomposition to prepare hydrogen and carbon filaments[J]. International Journal of Hydrogen Energy, 2016, 41(28):12038-12048. [24] SARASWAT S K, PANT K K. Ni-Cu-Zn/MCM-22 catalysts for simultaneous production of hydrogen and multiwall carbon nanotubes via thermo-catalytic decomposition of methane[J]. International Journal of Hydrogen Energy, 2011, 36(21):13352-13360. [25] BAYAT N, MESHKANI F, REZAEI M. Thermocatalytic decomposition of methane to COx-free hydrogen and carbon over Ni-Fe-Cu/Al2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(30):13039-13049. [26] CHEN J, HE M, WANG G W, et al. Production of hydrogen from methane decomposition using nanosized carbon black as catalyst in a fluidized-bed reactor[J]. International Journal of Hydrogen Energy, 2009, 34(24):9730-9736. [27] SZYMANSKA M, MALAIKA A, RECHNIA P, et al. Metal/activated carbon systems as catalysts of methane decomposition reaction[J]. Catalysis Today, 2015, 249:94-102. [28] FAKEEHA A H, KHAN W U, AL-FATESH A S, et al. Production of hydrogen from methane over lanthanum supported bimetallic catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(19):8193-8198. [29] UDDIN M N, DAUD, W M A W, ABBAS H F. Co-production of hydrogen and carbon nanofibers from methane decomposition over zeolite Y supported Ni catalysts[J]. Energy Conversion and management, 2015, 90:218-229. [30] AWADALLAH A E, Aboul-Enein A A. Catalytic decomposition of methane to COx-free hydrogen and carbon nanotubes over Co-W/MgO catalysts[J]. Egyptian Journal of petroleum, 2015, 24:299-306. [31] AWADALLAH A E, EL-DESOUKI D S, ABOUL-ENEIN A A, et al. Catalytic thermal decomposition of methane to COx-free hydrogen and carbon nanotubes over MgO supported bimetallic group VⅢ catalysts[J]. Applied Surface Science, 2014, 296:100-107. [32] LI J, KEVIN J S. Methane decomposition and catalyst regeneration in a cyclic mode over supported Co and Ni catalysts[J]. Applied Catalysis A:General, 2008, 349(1/2):116. [33] ERMAKOVA M A, ERMAKOV D Y. Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition[J]. Catalysis Today, 2002, 77(3):225-235. [34] TAKENAKA S, KOBAVASHI S, OGIHARA H, et al. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofibers[J]. Journal of Catalysis, 2003, 217(1):79-81. [35] LI J Z, LU G X, LI K, et al. Active Nb2O5-supported nickel and nickel-copper catalysts for methane decomposition to hydrogen and filamentous carbon[J]. Journal of Molecular Catalysis A:Chemical, 2004, 221(1/2):105-112. [36] HITOSHI O, SAKAE T, ICHIRO Y, et al. Formation of highly concentrated hydrogen through methane decomposition over Pd-based alloy catalysts[J]. Journal of Catalysis, 2006, 238(2):353-360. [37] TAKENAKA S, SHIGETA Y, TANABE E, et al. Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts[J]. Journal of Catalysis, 2003, 220(2):468-477. [38] OTSUKA K, SEINO T, KOBAYASHI S, et al. Production of hydrogen through decomposition of methane with Ni-supported catalysts[J]. Chemistry Letters, 1999(11):1179-1180. [39] AWADALLAH A E, EL-DESOUKI D S, ABOUL-GHEITET N A K, et al. Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials[J]. International Journal of Hydrogen Energy, 2016, 41(38):16890-16902. [40] TAKENAKA S, OGIHARA H, YAMANAKA I, et al. Decomposition of methane over supported-Ni catalysts:effects of the supports on the catalytic lifetime[J]. Applied Catalysis A:General, 2001, 217(1/2):101-110. [41] PUDUKUDY M, YAAKOB Z, TAKRIFF M S. Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method[J]. Energy Conversion and Management, 2016, 126:302-315. [42] MANEERUNG T, HIDAJAT K, KAWI S. Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi(1-x)MxO3-α perovskite (where M=Co, Fe and X=0, 0. 2, 0. 5, 0. 8, 1)[J]. International Journal of Hydrogen Energy, 2015, 40(39):13399-13411. [43] LI Y, ZHANG B C, XIE X W, et al. Novel Ni catalysts for methane decomposition to hydrogen and carbon nanofibers[J]. Journal of Catalysis, 2006, 238(2):412-424. [44] PUDUKUDY M, KADIER A, YAAKOB Z, et al. Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts[J]. International Journal of Hydrogen Energy, 2016, 41:18509-18521. [45] LUA A C, WANG H Y. Hydrogen production by catalytic decomposition of methane over Ni-Cu-Co alloy particles[J]. Applied Catalysis B:Environmental, 2014, 156:84-93. [46] SUELVES I, LAZARO M J, MOLINER R, et al. Characterization of NiAl and NiCuAl catalysts prepared by different methods for hydrogen production by thermo catalytic decomposition of methane[J]. Catalysis Today, 2006, 116(3):271-280. [47] SUELVES I, LAZARO M J, ECHEGOYEN Y, et al. Decomposition of methane over Ni-SiO2 and Ni-Cu-SiO2 catalysts:effect of catalyst preparation method[J]. Applied Catalysis A:General, 2007, 329:22-29. [48] 曾群. 催化剂制备及反应条件对制备纳米碳管的影响[D]. 天津:天津大学, 2007. [49] 梁威, 陈晨, 李腾, 等. 还原条件对甲烷催化裂解催化剂活性影响探究[J]. 天然气化工(C1化学与化工), 2016, 41(1):15-20, 74. [50] SUELVES I, LAZARO M J, MOLINER R, et al. Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts:influence of operating conditions on catalyst deactivation and carbon characteristics[J]. International Journal of Hydrogen Energy, 2005, 30(15):1555-1567. [51] 潘智勇, 沈师孔. Ni/SiO2催化剂上甲烷催化裂解制氢[J]. 燃料化学学报, 2003, 36(5):466-470. [52] 彭乔. 甲烷裂解制氢催化剂的制备及其性能与模拟研究[D]. 武汉:华中师范大学, 2016. [53] OTSUKA K, KOBAYASHI S, TAKENAKA S. Hydrogen-deuterium exchange studies on the decomposition of methane over Ni/SiO2[J]. Journal of Catalysis, 2001, 200(1):4-9. [54] BAKER R T K, BARBER M A, HARRIS P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J]. Journal of Catalysis, 1972, 26(1):51-62. [55] NIELSEN J R, TRIMM D L. Mechanisms of carbon formation on nickel-containing catalysts[J]. Journal of Catalysis, 1977, 48(1/2/3):155-165. [56] MARINAA E, DMITRY Y E, ANDREY L, et al. Decomposition of methane over iron catalysts at the range of moderate temperatures:the influence of structure of the catalytic systems and the reaction conditions on the yeild of carbon and morphology of carbon filaments[J]. Journal of Catalysis, 2001, 201(2):183-197. [57] 曹磊. 纳米镍基催化剂用于甲烷裂解反应的研究[D]. 天津:天津大学, 2003. [58] ZAVARUKHIN S G, KUVSHINOV G G. The kinetic model of formation of nanofibrous carbon from CH4-H2 mixture over a high-loaded nickel catalyst with consideration for the catalyst deactivation[J]. Applied Catalysis A:General, 2004, 272(1/2):219-227. [59] 张志, 唐涛, 陆光达. 甲烷催化裂解制氢技术研究进展[J]. 化学研究与应用, 2007, 19(1):1-9. [60] AIELLO R, FISCUS J E, ZUR LOYE H C, et al. Hydrogen production via the direct cracking of methane over Ni/SiO2:catalyst deactivation and regeneration[J]. Applied Catalysis A:General, 2000, 192(2):227-234. [61] TAKENAKA S, KATO E, TOMIKUBO Y, et al. Structural change of Ni species during the methane decomposition and the subsequent gasification of deposited carbon with CO2 over supported Ni catalysts[J]. Journal of Catalysis, 2003, 219(1):176-185. [62] 李建中, 吕功煊, 李克. 甲烷在Ni/SiO2催化剂上裂解制碳纳米管和氢气[J]. 石油与天然气化工, 2004, 33(4):222-225. [63] 金鑫. 甲烷催化裂解制备氢气和碳纳米管[J]. 应用化工, 2011, 40(8):1390-1392. [64] 张志, 唐涛, 陆光达, 等. 催化裂解甲烷制备氢气和碳纳米纤维[J]. 应用化学, 2008, 25(2):245-250. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2181
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 963
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |