Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (S1): 80-93.DOI: 10.16085/j.issn.1000-6613.2018-0183

Previous Articles     Next Articles

Progress of methane catalytic decomposition for hydrogen and carbon nanomaterials production

WANG Di1,2, HU Yan2, GAO Weimin1, CUI Yanbin2   

  1. 1 Key Laboratory of Material Surface Engineering, Jiangxi Province, College of Materials and Mechanics, Jiangxi Science and Technology Normal University, Nanchang 330000, Jiangxi, China;
    2 State Key Laboratory of Multiphase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-01-22 Revised:2018-05-16 Online:2018-12-13 Published:2018-11-30

甲烷催化裂解制氢和碳纳米材料研究进展

王迪1,2, 胡燕2, 高卫民1, 崔彦斌2   

  1. 1 江西科技师范大学材料与机电学院, 江西省材料表面工程重点实验室, 江西 南昌 330000;
    2 中国科学院过程工程研究所, 多相复杂系统国家重点实验室, 北京 100190
  • 通讯作者: 崔彦斌,研究员,研究方向为甲烷转化、纳米材料等。
  • 作者简介:王迪(1993-),女,硕士研究生,研究方向为甲烷催化裂解。E-mail:930524867@qq.com。
  • 基金资助:
    中国科学院过程工程研究所介尺度科学中心创新基金(COM2016A003)及多相复杂系统国家重点实验室自主研究课题(MPCS-2017-A-11)。

Abstract: Methane catalytic decomposition (MCD) can be utilized to produce high-purity hydrogen without carbon oxygen compounds (COx) and carbon nanomaterials (such as carbon nanofibers or carbon nanotubes). The catalytic decomposition of methane is of great significance to the adjustment of energy structure and application of advanced materials in China. Compared with other hydrogen production process, MCD has advantages such as simple reaction conditions, products without pollution and low cost, etc. Hence, MCD has a considerable application prospect in industry. In this review, the effects of catalysts (active components, carriers, preparation methods, etc) and reaction parameters (reduction of catalyst, space velocity, reaction temperature, etc) on methane conversion, hydrogen yield and carbon nanomaterials (morphology and yield) are discussed in detail. Meanwhile, the mechanism of MCD and the deactivation and regeneration of catalyst were also summarized. At present, the MCD is still at the stage of lab research. The high-performance catalyst and optimize of fluidized bed reactor is the essential prerequisite for the industrial application of MCD.

Key words: methane, catalytic decomposition, hydrogen production, catalyst, reaction mechanism, carbon nanomaterials, deactivation, regeneration

摘要: 甲烷通过催化裂解反应可生成不含碳氧化合物(COx)的高纯氢和碳纳米材料(如碳纤维或碳纳米管等),对我国能源结构的调整及新材料的应用具有重要意义。与其他制氢工艺相比,甲烷催化裂解制氢工艺具有反应过程简单、产物清洁无污染、反应成本低等优点,因此该工艺具有重要的工业应用前景。本文重点阐述了催化剂(活性组分、催化剂载体、制备方法等)以及反应条件(催化剂还原条件、空速、反应温度等)对甲烷转化率、氢气产率和碳纳米材料(形貌和产量)的影响并对甲烷催化裂解反应机理、催化剂的失活与再生进行了概述。甲烷催化裂解反应目前仍处于实验室研究阶段,高效催化剂的研制以及流化床反应器的优化是该反应实现工业化应用的必要前提。

关键词: 甲烷, 催化裂解, 制氢, 催化剂, 反应机理, 碳纳米材料, 失活, 再生

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd