Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3747-3759.DOI: 10.16085/j.issn.1000-6613.2020-1571
• Industrial catalysis • Previous Articles Next Articles
WANG Yimeng(), LIU Jianjun(), ZUO Shengli, LI Kang
Received:
2020-08-07
Revised:
2021-02-14
Online:
2021-07-19
Published:
2021-07-06
Contact:
LIU Jianjun
通讯作者:
刘建军
作者简介:
王艺蒙(1997—),女,硕士研究生,研究方向为层状光催化剂。E-mail:基金资助:
CLC Number:
WANG Yimeng, LIU Jianjun, ZUO Shengli, LI Kang. Research progress of active sites of MoS2 photoelectrocatalyst: optimization and performance[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3747-3759.
王艺蒙, 刘建军, 左胜利, 李抗. MoS2光电催化剂活性位点的优化和效能研究进展[J]. 化工进展, 2021, 40(7): 3747-3759.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1571
1 | AMBROSI A, SOFER Z, PUMERA M. 2H→1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition[J]. Chemical Communications (Cambridge, England), 2015, 51(40): 8450-8453. |
2 | GONG X Y, GU Y Q, LI N, et al. Thermally stable hierarchical nanostructures of ultrathin MoS2 nanosheet-coated CeO2 hollow spheres as catalyst for ammonia decomposition[J]. Inorganic Chemistry, 2016, 55(8): 3992-3999. |
3 | LI J, PENG Y, QIAN X, et al. Few-layer Co-doped MoS2 nanosheets with rich active sites as an efficient cocatalyst for photocatalytic H2 production over CdS[J]. Applied Surface Science, 2018, 452: 437-442. |
4 | HERSAM M C. The reemergence of chemistry for post-graphene two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(5): 4661-4663. |
5 | SERVICE R F. Beyond graphene[J]. Science, 2015, 348(6234): 490-492. |
6 | HAN B, HU Y H. MoS2 as a co-catalyst for photocatalytic hydrogen production from water[J]. Energy Science & Engineering, 2016, 4(5): 285-304. |
7 | HUO N, YANG Y, WU Y N, et al. High carrier mobility in monolayer CVD-grown MoS2 through phonon suppression[J]. Nanoscale, 2018, 10(31): 15071-15077. |
8 | ABINAYA R, ARCHANA J, HARISH S, et al. Ultrathin layered MoS2 nanosheets with rich active sites for enhanced visible light photocatalytic activity[J]. RSC Advances, 2018, 8(47): 26664-26675. |
9 | LALITHAMBIKA K C, SHANMUGAPRIYA K, SRIRAM S. Photocatalytic activity of MoS2 nanoparticles: an experimental and DFT analysis[J]. Applied Physics A, 2019, 125(12): 1-8. |
10 | CHERIYAN S, BALAMURGAN D, SRIRAM S. Doping effect on monolayer MoS2 for visible light dye degradation—A DFT study[J]. Superlattices and Microstructures, 2018, 116: 238-243. |
11 | CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4):263-275. |
12 | GENG S, YANG W W, LIU Y Q, et al. Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reaction[J]. Journal of Catalysis, 2020, 391: 91-97. |
13 | ZHAO Y, ZHANG X, WANG T, et al. Fabrication of rGO/CdS@2H,1T, amorphous MoS2 heterostructure for enhanced photocatalytic and electrocatalytic activity[J]. International Journal of Hydrogen Energy, 2020, 45(41): 21409-21421. |
14 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
15 | CHEN H J, HUANG J, LEI X L, et al. Adsorption and diffusion of lithium on MoS2 monolayer: the role of strain and concentration[J]. International Journal of Electrochemical Science, 2013, 8(2): 2196-2203. |
16 | HE Z L, QUE W X. Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction[J]. Applied Materials Today, 2016, 3: 23-56. |
17 | HE H, LIN J, FU W, et al. MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(14): 1600464. |
18 | KONG D, WANG H, CHA J J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Letters, 2013, 13(3): 1341-1347. |
19 | MO J, WU S, LAU T H M, et al. Transition metal atom-doped monolayer MoS2 in a proton-exchange membrane electrolyzer[J]. Materials Today Advances, 2020, 6: 100020. |
20 | MEYER J C, GEIM A K, KATSNELSON M I, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446(7131): 60-63. |
21 | ZHOU K, MAO N, WANG H, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie, 2011, 50(46):10839-10842. |
22 | PARZINGER E, MILLER B, BLASCHKE B, et al. Photocatalytic stability of single-and few-layer MoS2[J]. ACS Nano, 2015, 9(11): 11302-11309. |
23 | MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Phys. Rev. Lett., 2010, 105(13): 136805. |
24 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
25 | SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. |
26 | MIZUKOSHI Y, NAKAMURA H, BANDOW H, et al. Sonolysis of organic liquid: effect of vapour pressure and evaporation rate[J]. Ultrasonics Sonochemistry, 1999, 6(4):203-209. |
27 | RANI A, SINGH K, PATEL A S, et al. Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites[J]. Chemical Physics Letters, 2020, 738: 136874. |
28 | DAS S, TAMA A M, DUTTA S, et al. Facile high-yield synthesis of MoS2 nanosheets with enhanced photocatalytic performance using ultrasound driven exfoliation technique[J]. Materials Research Express, 2019, 6(12): 125079. |
29 | ZHANG F, YIN Y, LI F, et al. Fabrication of ultrathin-MoS2/Ag/AgBr composite with enhanced photocatalytic activity[J]. Journal of Materials Science, 2020, 55(5): 2166-2175. |
30 | SHIN H H, KANG E, PARK H, et al. Pd-nanodot decorated MoS2 nanosheets as a highly efficient photocatalyst for the visible-light-induced Suzuki-Miyaura coupling reaction[J]. Journal of Materials Chemistry A, 2017, 5(47): 24965-24971. |
31 | ZHENG Y, YIN X, JIANG Y, et al. Nano Ag-decorated MoS2 nanosheets from 1T to 2H phase conversion for photocatalytically reducing CO2 to methanol[J]. Energy Technology, 2019, 7(11): 1900582. |
32 | ALIDO J P M, SARI F N I, TING J M. Synthesis of Ag/hybridized 1T-2H MoS2/TiO2 heterostructure for enhanced visible-light photocatalytic activity[J]. Ceramics International, 2019, 45(17): 23651-23657. |
33 | DU G, GUO Z, WANG S, et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communications(Cambridge, England), 2010, 46(7): 1106-1108. |
34 | YE G, GONG Y, LIN J, et al. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction[J]. Nano Letters, 2016, 16(2): 1097-1103. |
35 | PRABHAKAR VATTIKUTI S V, BYON C, VENKATA REDDY C, et al. Synthesis and structural characterization of MoS2 nanospheres and nanosheets using solvothermal method[J]. Journal of Materials Science, 2015, 50(14): 5024-5038. |
36 | ZHAI X, XU X, PENG J, et al. Enhanced optoelectronic performance of CVD-grown metal-semiconductor NiTe2/MoS2 heterostructures[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24093-24101. |
37 | LIANG K S, CHIANELLI R R, CHIEN F Z, et al. Structure of poorly crystalline MoS2—A modeling study[J]. Journal of Non-Crystalline Solids, 1986, 79(3): 251-273. |
38 | KUMAR D P, SONG M I, HONG S, et al. Optimization of active sites of MoS2 nanosheets using nonmetal doping and exfoliation into few layers on CdS nanorods for enhanced photocatalytic hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7651-7658. |
39 | XU H, YI J, SHE X, et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 220: 379-385. |
40 | LIAN Z Q, LIU Y C, LIU H, et al. Fabrication of CdS@1T-MoS2 core-shell nanostructure for enhanced visible-light-driven photocatalytic H2 evolution from water splitting[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 105: 57-64. |
41 | YIN Y, HAN J C, ZHANG Y M, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138(25): 7965-7972. |
42 | ZHANG X H, LI N, WU J J, et al. Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: the impact of enriched defects[J]. Applied Catalysis B: Environmental, 2018, 229: 227-236. |
43 | ZHU J, WANG Z C, DAI H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2[J]. Nature Communications, 2019, 10(1): 1348. |
44 | ZHANG Y, KUWAHARA Y, MORI K, et al. Construction of hybrid MoS2 phase coupled with SiC heterojunctions with promoted photocatalytic activity for 4-nitrophenol degradation[J]. Langmuir, 2020, 36(5): 1174-1182. |
45 | CHEN W, YAN R Q, ZHU J Q, et al. Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator[J]. Applied Surface Science, 2020, 504: 144406. |
46 | PAN J, DONG Z, JIANG Z, et al. MoS2 quantum dots modified black Ti3+-TiO2/g-C3N4 hollow nanosphere heterojunction toward photocatalytic hydrogen production enhancement[J]. Solar RRL, 2019, 3(12): 1900337. |
47 | FU Y H, LI Z J, LIU Q Q, et al. Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity[J]. Chinese Journal of Catalysis, 2017, 38(12): 2160-2170. |
48 | SHI L, HE Z, LIU S Q. MoS2 quantum dots embedded in g-C3N4 frameworks: a hybrid 0D-2D heterojunction as an efficient visible-light driven photocatalyst[J]. Applied Surface Science, 2018, 457: 30-40. |
49 | HAO X, JIN Z, YANG H, et al. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2017, 210: 45-56. |
50 | MOHANTY B, MITRA A, JENA B, et al. MoS2 quantum dots as efficient electrocatalyst for hydrogen evolution reaction over a wide pH range[J]. Energy & Fuels, 2020, 34(8): 10268-10275. |
51 | ZHANG T, HUANG J W, XIA Y D, et al. A high-efficiency electrocatalyst for hydrogen evolution based on tree-like amorphous MoS2 nanostructures prepared by glancing angle deposition[J]. Journal of Solid State Chemistry, 2020, 286: 121255. |
52 | CHAI B, YAN J, FAN G, et al. Amorphous MoS2 decorated on uniform Cd0.8Zn0.2S microspheres with dramatically improved photocatalytic hydrogen evolution performance[J]. New Journal of Chemistry, 2019, 43(20): 7846-7854. |
53 | SUN H, JI X, QIU Y, et al. Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance[J]. Journal of Alloys and Compounds, 2019, 777: 514-523. |
54 | CHANG K, PANG H, HAI X, et al. Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2018, 232: 446-453. |
55 | SONG S W, WANG Y H, LI W, et al. Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting[J]. Electrochimica Acta, 2020, 332: 135454. |
56 | PAN Z, XIA Z, TAO Y, et al. Co doping induced photocurrent enhancement in photocatalyst MoS2[J]. Catalysis Communications, 2019, 125: 56-60. |
57 | LEI Y, HOU J, WANG F, et al. Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route[J]. Applied Surface Science, 2017, 420: 456-464. |
58 | LAURSEN A B, KEGNAES S, DAHL S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2012, 5(2): 5577-5591. |
59 | WU Z, FANG B, WANG Z, et al. MoS2 nanosheets: a designed structure with high active site density for the hydrogen evolution reaction[J]. ACS Catalysis, 2013, 3(9): 2101-2107. |
60 | MEIER A J, GARG A, SUTTER B, et al. MoS2 nanoflowers as a gateway for solar-driven CO2 photoreduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 265-275. |
61 | KIBSGAARD J, CHEN Z, REINECKE B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nature Materials, 2012, 11(11): 963-969. |
62 | LI S, LEE J K, ZHOU S, et al. Synthesis of surface grown Pt nanoparticles on edge-enriched MoS2 porous thin films for enhancing electrochemical performance[J]. Chemistry of Materials, 2019, 31(2): 387-397. |
63 | LIU J, MU X, YANG Y, et al. Construct 3D Pd@MoS2-conjugated polypyrrole framworks heterojunction with unprecedented photocatalytic activity for Tsuji-Trost reaction under visible light[J]. Applied Catalysis B: Environmental, 2019, 244: 356-366. |
64 | PARK S, PARK J, ABROSHAN H, et al. Enhancing catalytic activity of MoS2 basal plane S-vacancy by Co cluster addition[J]. ACS Energy Letters, 2018, 3(11): 2685-2693. |
65 | LIU G, ROBERTSON A W, LI MOLLYM J, et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction[J]. Nature Chemistry, 2017, 9(8): 810-816. |
66 | HONG S, KUMAR D P, KIM E H, et al. Earth abundant transition metal-doped few-layered MoS2 nanosheets on CdS nanorods for ultra-efficient photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2017, 5(39): 20851-20859. |
67 | WANG H, WEN F, LI X, et al. Cerium-doped MoS2 nanostructures: efficient visible photocatalysis for Cr(Ⅵ) removal[J]. Separation and Purification Technology, 2016, 170: 190-198. |
68 | LAU T H M, LU X W, KULHAVY J, et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution[J]. Chem. Sci., 2018, 9(21): 4769-4776. |
69 | MO J, WU S, LAU T H M, et al. Transition metal atom-doped monolayer MoS2 in a proton-exchange membrane electrolyzer[J]. Materials Today Advances, 2020, 6: 100020. |
70 | GUO Y, ZHANG X, ZHANG X, et al. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(31):15927-15934. |
71 | MENG C, CHEN X, GAO Y, et al. Recent modification strategies of MoS2 for enhanced electrocatalytic hydrogen evolution[J]. Molecules, 2020, 25(5): 1136. |
72 | XIE J, XIN J, CUI G, et al. Vertically aligned oxygen-doped molybdenum disulfide nanosheets grown on carbon cloth realizing robust hydrogen evolution reaction[J]. Inorganic Chemistry Frontiers, 2016, 3(9): 1160-1166. |
73 | LIU P, LIU Y, YE W, et al. Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation[J]. Nanotechnology, 2016, 27(22):225403. |
74 | CAI W, LUO X, JIANG Y, et al. Nitrogen-doped carbon active sites boost the ultra-stable hydrogen evolution reaction on defect-rich MoS2 nanosheets[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2026-2033. |
75 | LIU P, ZHU J, ZHANG J, et al. P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution[J]. ACS Energy Letters, 2017, 2(4): 745-752. |
76 | REN X, MA Q, FAN H, et al. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chemical Communications(Cambridge, England), 2015, 51(88): 15997-16000. |
77 | LEI L, HUANG D, ZENG G, et al. A fantastic two-dimensional MoS2 material based on the inert basal planes activation: electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties[J]. Coordination Chemistry Reviews, 2019, 399: 213020. |
78 | WANG Z, LI Q, XU H, et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites[J]. Nano Energy, 2018, 49: 634-643. |
79 | HAN J H, KIM H K, BAEK B, et al. Activation of the basal plane in two dimensional transition metal chalcogenide nanostructures[J]. Journal of the American Chemical Society, 2018, 140(42): 13663-13671. |
80 | WANG W, YANG C, BAI L, et al. First-principles study on the structural and electronic properties of monolayer MoS2 with S-vacancy under uniaxial tensile strain[J]. Nanomaterials, 2018, 8(2): E74. |
81 | WANG X, ZHANG Y, SI H, et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2[J]. Journal of the American Chemical Society, 2020, 142(9): 4298-4308. |
82 | HU C, JIANG Z, ZHOU W, et al. Wafer-scale sulfur vacancy-rich monolayer MoS2 for massive hydrogen production[J]. The Journal of Physical Chemistry Letters, 2019, 10(16): 4763-4768. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[4] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[5] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[8] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[9] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[10] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[11] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[14] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[15] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |