Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 374-381.DOI: 10.16085/j.issn.1000-6613.2023-0999
• Materials science and technology • Previous Articles Next Articles
ZHANG Jie1(), BAI Zhongbo2, FENG Baoxin2, PENG Xiaolin2, REN Weiwei2, ZHANG Jingli1, LIU Eryong1(
)
Received:
2023-06-18
Revised:
2023-08-27
Online:
2023-11-30
Published:
2023-10-25
Contact:
LIU Eryong
张杰1(), 白忠波2, 冯宝鑫2, 彭肖林2, 任伟伟2, 张菁丽1, 刘二勇1(
)
通讯作者:
刘二勇
作者简介:
张杰(1998—),男,硕士,研究方向为材料表面技术。E-mail:2481501077@qq.com。
基金资助:
CLC Number:
ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381.
张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381.
试剂名称 | 纯度 |
---|---|
生箔 | 12μm |
CuSO4·5H2O | AR |
H2SO4 | AR |
CH3CH2OH | AR |
Na2WO4 | 纯度≥99.5% |
PEG-8000 | 纯度≥98% |
H2O | 去离子水 |
试剂名称 | 纯度 |
---|---|
生箔 | 12μm |
CuSO4·5H2O | AR |
H2SO4 | AR |
CH3CH2OH | AR |
Na2WO4 | 纯度≥99.5% |
PEG-8000 | 纯度≥98% |
H2O | 去离子水 |
PEG/g·L-1 | TC(111) | TC(200) | TC(220) |
---|---|---|---|
0 | 30.212 | 10.895 | 58.893 |
0.05 | 30.628 | 10.130 | 59.242 |
0.07 | 31.128 | 9.805 | 59.067 |
0.09 | 32.469 | 9.959 | 57.571 |
0.11 | 31.149 | 9.753 | 58.754 |
PEG/g·L-1 | TC(111) | TC(200) | TC(220) |
---|---|---|---|
0 | 30.212 | 10.895 | 58.893 |
0.05 | 30.628 | 10.130 | 59.242 |
0.07 | 31.128 | 9.805 | 59.067 |
0.09 | 32.469 | 9.959 | 57.571 |
0.11 | 31.149 | 9.753 | 58.754 |
PEG/g·L-1 | TC(111) | TC(200) | TC(220) |
---|---|---|---|
0 | 27.345 | 11.343 | 61.312 |
0.001 | 29.091 | 8.589 | 62.696 |
0.005 | 28.951 | 9.924 | 61.125 |
0.01 | 29.894 | 10.118 | 59.988 |
0.015 | 28.616 | 10.445 | 60.938 |
PEG/g·L-1 | TC(111) | TC(200) | TC(220) |
---|---|---|---|
0 | 27.345 | 11.343 | 61.312 |
0.001 | 29.091 | 8.589 | 62.696 |
0.005 | 28.951 | 9.924 | 61.125 |
0.01 | 29.894 | 10.118 | 59.988 |
0.015 | 28.616 | 10.445 | 60.938 |
1 | WANG Xiyong, LIU Xuefeng, SHI Laixin, et al. Characteristic and formation mechanism of Matt surface of double-rolled copper foil[J]. Journal of Materials Processing Technology, 2015, 216: 463-471. |
2 | WOO T G, PARK I S, SEOL K W. Effect of additives on the elongation and surface properties of copper foils[J]. Electronic Materials Letters, 2013, 9(3): 341-345. |
3 | 周文木, 胡智宏. 电解铜箔在印制电路板端的评估方法研究[J]. 印制电路信息, 2021, 29(12): 6-12. |
ZHOU Wenmu, HU Zhihong. Research on measuring methods for ED copper foil by the PCB enterprises[J]. Printed Circuit Information, 2021, 29(12): 6-12. | |
4 | 文雯. 高频超薄载体铜箔制作及应用研究[D]. 成都: 电子科技大学, 2022. |
WEN Wen. Study on fabrication and application of high frequency ultra-thin carrier copper foil[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
5 | YIN Xiangqian, PENG Lijun, SAIF Kayani, et al. Mechanical properties and microstructure of rolled and electrodeposited thin copper foil[J]. Rare Metals, 2016, 35(12): 909-914. |
6 | DONG Zhichao, FEI Xiangyu, GONG Benkui, et al. Effects of deep cryogenic treatment on the microstructure and properties of rolled Cu foil[J]. Materials, 2021, 14(19): 5498. |
7 | ZHAO Weichao, FENG Rui, WANG Xiaowen, et al. Relationship between microstructure and etching performance of 12 μm thick rolled copper foil[J]. Journal of Materials Research and Technology, 2022, 21: 1666-1681. |
8 | COONROD John. The impact of electrical and thermal interactions on microwave PCB performance[J]. Microwave Journal, 2014, 57(2): 68-78. |
9 | YU Weiyi, LIN Chaoyu, LI Qingyang, et al. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current[J]. Journal of Applied Electrochemistry, 2021, 51(3): 489-501. |
10 | XUE Shaoxi, WANG Chunju, CHEN Pengyu, et al. Investigation of electrically-assisted rolling process of corrugated surface microstructure with T2 copper foil[J]. Materials, 2019, 12(24): 4144. |
11 | FANG C, TRAN D P, LIU H C, et al. Effect of electroplating current density on tensile properties of nanotwinned copper foils[J]. Journal of the Electrochemical Society, 2022, 169(4): 042503. |
12 | CHANG H K, CHOE B H, LEE J K. Influence of titanium oxide films on copper nucleation during electrodeposition[J]. Materials Science and Engineering: A, 2005, 409(1/2): 317-328. |
13 | KURIHARA Hiroaki, KONDO Kazuo, OKAMOTO Yasuyuki. Effect of titanium cathode surface condition on initial copper deposition during electrolytic fabrication of copper foil[J]. Journal of Chemical Engineering of Japan, 2010, 43(7): 612-617. |
14 | CHENG H Y, TRAN D P, TU K N, et al. Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating[J]. Materials Science and Engineering: A, 2021, 811: 141065. |
15 | APAKASHEV R A, KHAZIN M L, VALIEV N G. Effect of temperature on the structure and properties of fine-grain copper foil[J]. Metal Science and Heat Treatment, 2020, 61(11/12): 787-791. |
16 | GETROUW M A, DUTRA A J. The influence of some parameters on the surface roughness of thin copper foils using statistical analysis[J]. Journal of Applied Electrochemistry, 2001, 31(12): 1359-1366. |
17 | DE LA R F, RAMOS A. Study of the copper electrodeposition on titanium electrodes[J]. ECS Transactions, 2010, 29(1): 155-161. |
18 | HAN Haneul, LEE Chaerin, KIM Youjung, et al. Cu to Cu direct bonding at low temperature with high density defect in electrodeposited Cu[J]. Applied Surface Science, 2021, 550: 149337. |
19 | 马秀玲, 李永贞, 姚恩东, 等. 不同厚度电解铜箔的组织与性能研究[J]. 稀有金属材料与工程, 2019, 48(9): 2905-2909. |
MA Xiuling, LI Yongzhen, YAO Endong, et al. Microstructure and properties of electrolytic copper foil with different thicknesses[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2905-2909. | |
20 | XU Xiaofei, ZHU Zengwei, XUE Ziming, et al. Friction-assisted pulse electrodeposition of high-performance ultrafine-grained Cu deposits[J]. Surface Engineering, 2021, 37(11): 1414-1421. |
21 | TAO J M, CHEN X F, HONG P, et al. Microstructure and electrical conductivity of laminated Cu/CNT/Cu composites prepared by electrodeposition[J]. Journal of Alloys and Compounds, 2017, 717: 232-239. |
22 | 左慧, 张凯, 曹旭, 等. 铜箔激光冲击微成形微观组织与残余应力研究[J]. 激光技术, 2018, 42(1): 94-99. |
ZUO Hui, ZHANG Kai, CAO Xu, et al. Research of microstructure and residual stress of copper foils processed by laser shock forming[J]. Laser Technology, 2018, 42(1): 94-99. | |
23 | HONG Bo, JIANG Chuanhai, WANG Xinjian. XRD characterization of texture and internal stress in electrodeposited copper films on Al substrates[J]. Powder Diffraction, 2007, 22(4): 324-327. |
24 | 洪波. 电沉积铜薄膜中织构与内应力的研究[D]. 上海: 上海交通大学, 2008. |
HONG Bo. Study on texture and internal stress in electrodeposited copper films[D].Shanghai: Shanghai Jiao Tong University, 2008. | |
25 | LIU Lingling, BU Yeqiang, SUN Yue, et al. Trace bis-(3-sulfopropyl)-disulfide enhanced electrodeposited copper foils[J]. Journal of Materials Science & Technology, 2021, 74: 237-245. |
26 | WANG Wei, LI Yabing. Effect of Cl– on the adsorption-desorption behavior of PEG[J]. Journal of the Electrochemical Society, 2008, 155(4): D263. |
27 | TANG J, ZHU Q S, ZHANG Y, et al. Copper bottom-up filling for through silicon via (TSV) using single JGB additive[J]. ECS Electrochemistry Letters, 2015, 4(9): D28-D30. |
28 | ZENG T W, YEN S C. Effects of additives in an electrodeposition bath on the surface morphologic evolution of electrodeposited copper[J]. International Journal of Electrochemical Science, 2021, 16(2): 210245. |
29 | ZHANG Pengyuan, XU Zhengyi, ZHANG Bo, et al. Enhanced inhibition on hydrogen permeation during electrodeposition process by rare earth (RE = Ce) salt additive[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13803-13814. |
30 | 程庆, 李宁, 潘钦敏, 等. 电解铜箔添加剂的研究进展及应用现状[J]. 电镀与精饰, 2022, 44(12): 69-79. |
CHENG Qing, LI Ning, PAN Qinmin, et al. Research progress and application status of electrolytic copper foil additives[J]. Plating and Finishing, 2022, 44(12): 69-79. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[5] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[6] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[7] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[8] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[9] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[10] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[11] | FENG Jianghan, SONG Fang. Research progress of anion exchange membrane water electrolysis cells [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3501-3509. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[14] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[15] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 381
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |