Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4076-4092.DOI: 10.16085/j.issn.1000-6613.2023-0291
Previous Articles Next Articles
YIN Xinyu(), PI Pihui, WEN Xiufang(), QIAN Yu
Received:
2023-02-28
Revised:
2023-05-10
Online:
2023-09-19
Published:
2023-08-15
Contact:
WEN Xiufang
通讯作者:
文秀芳
作者简介:
尹新宇(1991—),男,博士研究生,研究方向为特殊润湿性材料、天然气水合物。E-mail:qqcom1129919@163.com。
基金资助:
CLC Number:
YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092.
尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0291
基材 | 涂层 | 接触角/(°) | 黏附力 | 降低百分比/% | 参考文献 |
---|---|---|---|---|---|
碳钢 | 蜡 | 170.7±3.1 | (18.4±2.9)kPa | 93.7 | [ |
碳钢 | 聚四氟乙烯 | 164.0±3.1 | (13.1±1.75)kPa | 95.5 | [ |
不锈钢 | pPFDA/pDVB | 157.0±4.5 | (34±12)kPa | 84.5 | [ |
X90无缝钢 | 烷烃涂层修饰的氧化铜 | 160±3.1 | 0.13mN | >91.9 | [ |
X80无缝钢 | CeO2/pDA | 154.7±0.8 | 0.001mN/m | 98.9 | [ |
不锈钢 | 石墨 | 154±7 | 0.85mN/m | 79 | [ |
铜 | 氟化石墨 | 150 | 0.01mN/m | >99.7 | [ |
基材 | 涂层 | 接触角/(°) | 黏附力 | 降低百分比/% | 参考文献 |
---|---|---|---|---|---|
碳钢 | 蜡 | 170.7±3.1 | (18.4±2.9)kPa | 93.7 | [ |
碳钢 | 聚四氟乙烯 | 164.0±3.1 | (13.1±1.75)kPa | 95.5 | [ |
不锈钢 | pPFDA/pDVB | 157.0±4.5 | (34±12)kPa | 84.5 | [ |
X90无缝钢 | 烷烃涂层修饰的氧化铜 | 160±3.1 | 0.13mN | >91.9 | [ |
X80无缝钢 | CeO2/pDA | 154.7±0.8 | 0.001mN/m | 98.9 | [ |
不锈钢 | 石墨 | 154±7 | 0.85mN/m | 79 | [ |
铜 | 氟化石墨 | 150 | 0.01mN/m | >99.7 | [ |
1 | YU Yisong, ZHANG Xianwei, LIU Jianwu, et al. Natural gas hydrate resources and hydrate technologies: A review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
2 | SUBRAMANIAN S, KINI R A, DEC S F, et al. Evidence of structure Ⅱ hydrate formation from methane+ethane mixtures[J]. Chemical Engineering Science, 2000, 55(11): 1981-1999. |
3 | DAVIES Simon R, BOXALL John A, DIEKER Laura E, et al. Predicting hydrate plug formation in oil-dominated flowlines[J]. Journal of Petroleum Science and Engineering, 2010, 72(3/4): 302-309. |
4 | KHURANA Maninder, YIN Zhenyuan, LINGA Praveen. A review of clathrate hydrate nucleation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11176-11203. |
5 | ZHENG Haimin, HUANG Qiyu, WANG Wei, et al. Induction time of hydrate formation in water-in-oil emulsions[J]. Industrial & Engineering Chemistry Research, 2017, 56(29): 8330-8339. |
6 | KNOTT Brandon C, VALERIA Molinero, DOHERTY Michael F, et al. Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions[J]. Journal of the American Chemical Society, 2012, 134(48): 19544-19547. |
7 | YANG Liang, LI Chunxiao, PEI Junhua, et al. Enhanced clathrate hydrate phase change with open-cell copper foam for efficient methane storage[J]. Chemical Engineering Journal, 2022, 440: 135912. |
8 | SLOAN E Dendy Carolyn A, Carolyn A KOH. Clathrate Hydrates of Natural Gases[M]. Boca Raton: CRC Press, 2007. |
9 | FLORUSSE Louw J, PETERS Cor J, SCHOONMAN Joop, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate[J]. Science, 2004, 306(5695): 469-471. |
10 | KOGA Tadanori, WONG Johnny, ENDOH Maya K, et al. Hydrate formation at the methane/water interface on the molecular scale[J]. Langmuir, 2010, 26(7): 4627-4630. |
11 | MOON Changman, TAYLOR Paul C, Mark RODGER P. Molecular dynamics study of gas hydrate formation[J]. Journal of the American Chemical Society, 2003, 125(16): 4706-4707. |
12 | TAYLOR Craig J, MILLER Kelly T, Carolyn A KOH, et al. Macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[J]. Chemical Engineering Science, 2007, 62(23): 6524-6533. |
13 | RODGER P M, FORESTER T R, SMITH W. Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions[J]. Fluid Phase Equilibria, 1996, 116(1/2): 326-332. |
14 | BOEWER Lars, NASE Julia, PAULUS Michael, et al. On the spontaneous formation of clathrate hydrates at water-guest interfaces[J]. The Journal of Physical Chemistry C, 2012, 116(15): 8548-8553. |
15 | GUO Yong, XIAO Wei, PU Wanfen, et al. CH4 nanobubbles on the hydrophobic solid-water interface serving as the nucleation sites of methane hydrate[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(34): 10181-10186. |
16 | BAI Dongsheng, CHEN Guangjin, ZHANG Xianren, et al. Nucleation of the CO2 hydrate from three-phase contact lines[J]. Langmuir, 2012, 28(20): 7730-7736. |
17 | ZHANG Zhengcai, GUO Guangjun. The effects of ice on methane hydrate nucleation: A microcanonical molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2017, 19(29): 19496-19505. |
18 | NGUYEN Andrew H, Matthew A KOC, SHEPHERD Tricia D, et al. Structure of the ice-clathrate interface[J]. The Journal of Physical Chemistry C, 2015, 119(8): 4104-4117. |
19 | ODENDAHL Nathan L, GEISSLER Phillip L. Local ice-like structure at the liquid water surface[J]. Journal of the American Chemical Society, 2022, 144(25): 11178-11188. |
20 | SUN Zhigao, DAI Mengling, ZHU Minggui, et al. Improving THF hydrate formation in the presence of nonanoic acid[J]. Journal of Molecular Liquids, 2020, 299: 112188. |
21 | NASHED Omar, PARTOON Behzad, Bhajan LAL, et al. Review the impact of nanoparticles on the thermodynamics and kinetics of gas hydrate formation[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 452-465. |
22 | WANG Weixing, BRAY Christopher L, ADAMS Dave J, et al. Methane storage in dry water gas hydrates[J]. Journal of the American Chemical Society, 2008, 130(35): 11608-11609. |
23 | LU Yiyu, GE Binbin, ZHONG Dongliang. Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage[J]. Energy, 2020, 199: 117424. |
24 | ALIABADI Masoud, RASOOLZADEH Ali, ESMAEILZADEH Feridun, et al. Experimental study of using CuO nanoparticles as a methane hydrate promoter[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1518-1522. |
25 | LIU Ni, ZHU Hanqi, ZHOU Jiali, et al. Molecular dynamics simulations on formation of CO2 hydrate in the presence of metal particles[J]. Journal of Molecular Liquids, 2021, 331: 115793. |
26 | YANG Liang, LIU Zhenzhen, LIU Daoping, et al. Enhanced natural gas hydrates formation in the suspension with metal particles and fibers[J]. Journal of Molecular Liquids, 2020, 301: 112410. |
27 | PAHLAVANZADEH Hassan, REZAEI Sajjad, KHANLARKHANI Mehrdad, et al. Kinetic study of methane hydrate formation in the presence of copper nanoparticles and CTAB[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 803-810. |
28 | SONG Yuanmei, LIANG Ruquan, WANG Fei, et al. Enhanced methane hydrate formation in the highly dispersed carbon nanotubes-based nanofluid[J]. Fuel, 2021, 285: 119234. |
29 | XIE Yan, LI Rui, WANG Xiaohui, et al. Review on the accumulation behavior of natural gas hydrates in porous sediments[J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103520. |
30 | YANG Liang, FAN Shuanshi, WANG Yanhong, et al. Accelerated formation of methane hydrate in aluminum foam[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11563-11569. |
31 | Kim Daeok, LEE Huen. Phase behavior of gas hydrates in nanoporous materials: Review[J]. Korean Journal of Chemical Engineering, 2016, 33(7): 1977-1988. |
32 | QIN Yue, PAN Zhen, LIU Zhiming, et al. Influence of the particle size of porous media on the formation of natural gas hydrate: A review[J]. Energy & Fuels, 2021, 35(15): 11640-11664. |
33 | LIU Xiaowan, TIAN Linqing, CHEN Daoyi, et al. Accelerated formation of methane hydrates in the porous SiC foam ceramic packed reactor[J]. Fuel, 2019, 257: 115858. |
34 | LI Renliang, LIU Daoping, YANG Liang, et al. Rapid methane hydrate formation in aluminum honeycomb[J]. Fuel, 2019, 252: 574-580. |
35 | Stephen J COX, TAYLOR Diana J F, YOUNGS Tristan G A, et al. Formation of methane hydrate in the presence of natural and synthetic nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(9): 3277-3284. |
36 | MIN Juwon, KANG Dong Woo, LEE Wonhyeong, et al. Molecular dynamics simulations of hydrophobic nanoparticle effects on gas hydrate formation[J]. The Journal of Physical Chemistry C, 2020, 124(7): 4162-4171. |
37 | PASIEKA James, COULOMBE Sylvain, SERVIO Phillip. Investigating the effects of hydrophobic and hydrophilic multi-wall carbon nanotubes on methane hydrate growth kinetics[J]. Chemical Engineering Science, 2013, 104: 998-1002. |
38 | MCELLIGOTT Adam, UDDIN Hasan, MEUNIER Jean-Luc, et al. Effects of hydrophobic and hydrophilic graphene nanoflakes on methane hydrate kinetics[J]. Energy & Fuels, 2019, 33(11): 11705-11711. |
39 | LI Huijuan, WANG Liguang. Hydrophobized particles can accelerate nucleation of clathrate hydrates[J]. Fuel, 2015, 140: 440-445. |
40 | DING Lin, SHI Bohui, LV Xiaofang, et al. Hydrate formation and plugging mechanisms in different gas-liquid flow patterns[J]. Industrial & Engineering Chemistry Research, 2017, 56(14): 4173-4184. |
41 | DING Lin, SHI Bohui, WANG Jiaqi, et al. Hydrate deposition on cold pipe walls in water-in-oil (W/O) emulsion systems[J]. Energy & Fuels, 2017, 31(9): 8865-8876. |
42 | AMAN Zachary M, Dendy Sloan E, Amadeu K SUM, et al. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(45): 25121-25128. |
43 | JOSHI Sanjeev V, GRASSO Giovanny A, LAFOND Patrick G, et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical Engineering Science, 2013, 97: 198-209. |
44 | RAO Ishan, Carolyn A KOH, SLOAN E Dendy, et al. Gas hydrate deposition on a cold surface in water-saturated gas systems[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6262-6269. |
45 | AMAN Zachary M, BROWN Erika P, Dendy Sloan E, et al. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19796-19806. |
46 | KELLAND Malcolm A. A review of kinetic hydrate inhibitors from an environmental perspective[J]. Energy & Fuels, 2018, 32(12): 12001-12012. |
47 | MOKHATAB S, WILKENS R J, LEONTARITIS K J. A review of strategies for solving gas-hydrate problems in subsea pipelines[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2007, 29(1): 39-45. |
48 | WANG Yanhong, FAN Shuanshi, LANG Xuemei. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132. |
49 | Carolyn A KOH. Towards a fundamental understanding of natural gas hydrates[J]. Chemical Society Reviews, 2002, 31(3): 157-167. |
50 | ZHAO Xin, QIU Zhengsong, ZHANG Zhen, et al. Relationship between the gas hydrate suppression temperature and water activity in the presence of thermodynamic hydrate inhibitor[J]. Fuel, 2020, 264: 116776. |
51 | YAQUB Sana, Bhajan LAL, PARTOON Behzad, et al. Investigation of the task oriented dual function inhibitors in gas hydrate inhibition: A review[J]. Fluid Phase Equilibria, 2018, 477: 40-57. |
52 | TARIQ Mohammad, ROONEY David, OTHMAN Enas, et al. Gas hydrate inhibition: A review of the role of ionic liquids[J]. Industrial & Engineering Chemistry Research, 2014, 53(46): 17855-17868. |
53 | BAVOH Cornelius B, Bhajan LAL, OSEI Harrison, et al. A review on the role of amino acids in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage[J]. Journal of Natural Gas Science and Engineering, 2019, 64: 52-71. |
54 | KIM K, Cho Sang-Gyu, Sa Jeong-Hoon. Natural hydrophilic amino acids as environment-friendly gas hydrate inhibitors for carbon capture and sequestration[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(51): 17413-17419. |
55 | WANG Qingyu, WANG Chen, MA Shang, et al. Amphiphilic optimization enables polyaspartamides with effective kinetic inhibition of tetrahydrofuran hydrate formation: Structure-property relationships[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13532-13542. |
56 | KE Wei, CHEN Daoyi. A short review on natural gas hydrate, kinetic hydrate inhibitors and inhibitor synergists[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2049-2061. |
57 | ZHANG Qian, KELLAND Malcolm A, LU Hailong. Non-amide kinetic hydrate inhibitors: A review[J]. Fuel, 2022, 315: 123179. |
58 | GAO Shuqiang. Hydrate risk management at high watercuts with anti-agglomerant hydrate inhibitors[J]. Energy & Fuels, 2009, 23(4): 2118-2121. |
59 | ANDREA Perrin, MUSA Osama M, STEED Jonathan W. The chemistry of low dosage clathrate hydrate inhibitors[J]. Chemical Society Reviews, 2013, 42(5): 1996-2015. |
60 | KELLAND Malcolm A, SVARTAAS Thor M, Jorunn ØVSTHUS, et al. Studies on some alkylamide surfactant gas hydrate anti-agglomerants[J]. Chemical Engineering Science, 2006, 61(13): 4290-4298. |
61 | David SMITH J, MEULER Adam J, BRALOWER Harrison L, et al. Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(17): 6013-6020. |
62 | AMAN Zachary M, LEITH William J, GRASSO Giovanny A, et al. Adhesion force between cyclopentane hydrate and mineral surfaces[J]. Langmuir, 2013, 29(50): 15551-15557. |
63 | LIU Chenwei, WANG Zhiyuan, TIAN Jinlin, et al. Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials[J]. Chemical Engineering Science, 2020, 217: 115524. |
64 | ASPENES G, DIEKER L E, AMAN Z M, et al. Adhesion force between cyclopentane hydrates and solid surface materials[J]. Journal of Colloid and Interface Science, 2010, 343(2): 529-536. |
65 | LEE Bo Ram, Amadeu K SUM. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions[J]. Langmuir, 2015, 31(13): 3884-3888. |
66 | ASPENES G, HØILAND S, BARTH T, et al. The influence of petroleum acids and solid surface energy on pipeline wettability in relation to hydrate deposition[J]. Journal of Colloid and Interface Science, 2009, 333(2): 533-539. |
67 | Tai BUI, SICARD Francois, MONTEIRO Deepak, et al. Antiagglomerants affect gas hydrate growth[J]. The Journal of Physical Chemistry Letters, 2018, 9(12): 3491-3496. |
68 | WANG Shutao, LIU Kesong, YAO Xi, et al. Bioinspired surfaces with superwettability: New insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230-8293. |
69 | SU Bin, TIAN Ye, JIANG Lei. Bioinspired interfaces with superwettability: From materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748. |
70 | LIU Mingjie, WANG Shutao, JIANG Lei. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2: 17036. |
71 | KREDER Michael J, ALVARENGA Jack, KIM Philseok, et al. Design of anti-icing surfaces: Smooth, textured or slippery?[J]. Nature Reviews Materials, 2016, 1: 15003. |
72 | RAJU KUMAR Gupta, DUNDERDALE Gary J, ENGLAND Matt W, et al. Oil/water separation techniques: A review of recent progresses and future directions[J]. Journal of Materials Chemistry A, 2017, 5(31): 16025-16058. |
73 | XIANG Bin, SUN Qing, ZHONG Qi, et al. Current research situation and future prospect of superwetting smart oil/water separation materials[J]. Journal of Materials Chemistry A, 2022, 10(38): 20190-20217. |
74 | LI Haoyu, ZHONG Qi, SUN Qing, et al. Upcycling waste pine nut shell membrane for highly efficient separation of crude oil-in-water emulsion[J]. Langmuir, 2022, 38(11): 3493-3500. |
75 | LI Jiaqian, ZHOU Xiaofeng, LI Jing, et al. Topological liquid diode[J]. Science Advances, 2017, 3(10): eaao3530. |
76 | WU Yuchen, FENG Jiangang, GAO Hanfei, et al. Superwettability-based interfacial chemical reactions[J]. Advanced Materials, 2019, 31(8): 1800718. |
77 | Sonalee DAS, KUMAR Sudheer, SAMAL Sushanta K, et al. A review on superhydrophobic polymer nanocoatings: Recent development and applications[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2727-2745. |
78 | WANG Zhangxin, ELIMELECH Menachem, LIN Shihong. Environmental applications of interfacial materials with special wettability[J]. Environmental Science & Technology, 2016, 50(5): 2132-2150. |
79 | LAURICELLA Marco, CICCOTTI Giovanni, ENGLISH Niall J, et al. Mechanisms and nucleation rate of methane hydrate by dynamical nonequilibrium molecular dynamics[J]. The Journal of Physical Chemistry C, 2017, 121(43): 24223-24234. |
80 | FARHANG Faezeh, NGUYEN Anh V, SEWELL Kim B. Fundamental investigation of the effects of hydrophobic fumed silica on the formation of carbon dioxide gas hydrates[J]. Energy & Fuels, 2014, 28(11): 7025-7037. |
81 | NGUYEN Ngoc N, NGUYEN Anh V, STEEL Karen M, et al. Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles[J]. The Journal of Physical Chemistry C, 2017, 121(7): 3830-3840. |
82 | NGUYEN Ngoc N, GALIB Mirza, NGUYEN Anh V. Critical review on gas hydrate formation at solid surfaces and in confined spaces—Why and how does interfacial regime matter?[J]. Energy & Fuels, 2020, 34(6): 6751-6760. |
83 | WANG Jialin, WANG Ruijia, YOON Roe-Hoan, et al. Use of hydrophobic particles as kinetic promoters for gas hydrate formation[J]. Journal of Chemical & Engineering Data, 2015, 60(2): 383-388. |
84 | HU Peng, CHEN Daoyi, ZI Mucong, et al. Effects of carbon steel corrosion on the methane hydrate formation and dissociation[J]. Fuel, 2018, 230: 126-133. |
85 | DENG Ganghua, SHEN Yuneng, CHEN Hailong, et al. Ordered-to-disordered transformation of enhanced water structure on hydrophobic surfaces in concentrated alcohol-water solutions[J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7922-7928. |
86 | HU Yuanchao, TANAKA Hajime. Revealing the role of liquid preordering in crystallisation of supercooled liquids[J]. Nature Communications, 2022, 13: 4519. |
87 | NGUYEN Ngoc N, NGUYEN Anh V. Hydrophobic effect on gas hydrate formation in the presence of additives[J]. Energy & Fuels, 2017, 31(10): 10311-10323. |
88 | PARK Taehyung, KWON Tae-Hyuk. Effect of electric field on gas hydrate nucleation kinetics: Evidence for the enhanced kinetics of hydrate nucleation by negatively charged clay surfaces[J]. Environmental Science & Technology, 2018, 52(5): 3267-3274. |
89 | NGUYEN Ngoc N, NGUYEN Anh V, DANG Liem X. The inhibition of methane hydrate formation by water alignment underneath surface adsorption of surfactants[J]. Fuel, 2017, 197: 488-496. |
90 | LI Huijuan, STANWIX Paul, AMAN Zachary, et al. Raman spectroscopic studies of clathrate hydrate formation in the presence of hydrophobized particles[J]. The Journal of Physical Chemistry A, 2016, 120(3): 417-424. |
91 | WANG Ren, LIU Tianle, NING Fulong, et al. Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study[J]. Journal of Energy Chemistry, 2019, 30: 90-100. |
92 | SONG Yuanmei, WANG Fei, GUO Gang, et al. Amphiphilic-polymer-coated carbon nanotubes as promoters for methane hydrate formation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9271-9278. |
93 | WU Yongji, TANG Tianqi, SHI Lei, et al. Rapid hydrate-based methane storage promoted by bilayer surfactant-coated Fe3O4 nanoparticles under a magnetic field[J]. Fuel, 2021, 303: 121248. |
94 | MIN Juwon, KANG Dong Woo, Yun-Ho AHN, et al. Recoverable magnetic nanoparticles as hydrate inhibitors[J]. Chemical Engineering Journal, 2020, 389: 124461. |
95 | WANG Tao, CUI Jing, OUYANG Shenshen, et al. A new approach to understand the Cassie state of liquids on superamphiphobic materials[J]. Nanoscale, 2016, 8(5): 3031-3039. |
96 | LI Fang, DU Miao, ZHENG Qiang. Dopamine/silica nanoparticle assembled, microscale porous structure for versatile superamphiphobic coating[J]. ACS Nano, 2016, 10(2): 2910-2921. |
97 | PARK Juwoon, SHIN Kyuchul, KIM Jakyung, et al. Effect of hydrate shell formation on the stability of dry water[J]. The Journal of Physical Chemistry C, 2015, 119(4): 1690-1699. |
98 | HE Zhongjin, LINGA Praveen, JIANG Jianwen. CH4 hydrate formation between silica and graphite surfaces: Insights from microsecond molecular dynamics simulations[J]. Langmuir, 2017, 33(43): 11956-11967. |
99 | FAN Shuanshi, YANG Liang, WANG Yanhong, et al. Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution[J]. Chemical Engineering Science, 2014, 106: 53-59. |
100 | MIN Juwon, BAEK Seungjun, SOMASUNDARAN P, et al. Anti-adhesive behaviors between solid hydrate and liquid aqueous phase induced by hydrophobic silica nanoparticles[J]. Langmuir, 2016, 32(37): 9513-9522. |
101 | SAHA Dipendu, DENG Shuguang. Accelerated formation of THF-H2 clathrate hydrate in porous media[J]. Langmuir, 2010, 26(11): 8414-8418. |
102 | LIU Zhiming, PAN Zhen, ZHANG Zhien, et al. Effect of porous media and sodium dodecyl sulphate complex system on methane hydrate formation[J]. Energy & Fuels, 2018, 32(5): 5736-5749. |
103 | CASCO Mirian E, Fernando REY, JORDÁ José Let al. Paving the way for methane hydrate formation on metal-organic frameworks (MOFs)[J]. Chemical Science, 2016, 7(6): 3658-3666. |
104 | KIM Daeok, KIM Dae Woo, Hyung-Kyu LIM, et al. Inhibited phase behavior of gas hydrates in graphene oxide: Influences of surface and geometric constraints[J]. Physical Chemistry Chemical Physics, 2014, 16(41): 22717-22722. |
105 | HALL Jeffrey R, BAURES Paul W. Inhibition of tetrahydrofuran hydrate formation in the presence of polyol-modified glass surfaces[J]. Energy & Fuels, 2017, 31(8): 7816-7823. |
106 | ZHANG Yonglai, WEI Shu, LIU Fujian, et al. Superhydrophobic nanoporous polymers as efficient adsorbents for organic compounds[J]. Nano Today, 2009, 4(2): 135-142. |
107 | CHEN Xiao, WU Yuchen, SU Bin, et al. Terminating marine methane bubbles by superhydrophobic sponges[J]. Advanced Materials, 2012, 24(43): 5884-5889. |
108 | XIE Linhua, LIU Xiaomin, HE Tao, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem, 2018, 4(8): 1911-1927. |
109 | GONG Yunnan, XIONG Peng, HE Chunting, et al. A lanthanum carboxylate framework with exceptional stability and highly selective adsorption of gas and liquid[J]. Inorganic Chemistry, 2018, 57(9): 5013-5018. |
110 | MASON Jarad A, MIKE Veenstra, LONG Jeffrey R. Evaluating metal-organic frameworks for natural gas storage[J]. Chemical Science, 2014, 5(1): 32-51. |
111 | MILEO Paulo G M, ROGGE Sven M J, HOULLEBERGHS Maarten, et al. Interfacial study of clathrates confined in reversed silica pores[J]. Journal of Materials Chemistry A, 2021, 9(38): 21835-21844. |
112 | FENG Xinjian, ZHAI Jin, JIANG Lei. The fabrication and switchable superhydrophobicity of TiO2 nanorod films[J]. Angewandte Chemie, 2005, 117(32): 5245-5248. |
113 | WANG Shutao, LIU Huajie, LIU Dongsheng, et al. Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface[J]. Angewandte Chemie International Edition, 2007, 46(21): 3915-3917. |
114 | MAHADIK Satish A, KAVALE Mahendra S, MUKHERJEE S K, et al. Transparent Superhydrophobic silica coatings on glass by sol-gel method[J]. Applied Surface Science, 2010, 257(2): 333-339. |
115 | ZHAO Xin, FANG Qingchao, QIU Zhengsong, et al. Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates[J]. Energy, 2022, 242: 122973. |
116 | ASADI Fariba, METAXAS Peter J, Vincent W S LIM, et al. Cyclodextrins as eco-friendly nucleation promoters for methane hydrate[J]. Chemical Engineering Journal, 2021, 417: 127932. |
117 | TIAN Linqing, WU Guozhong. Cyclodextrins as promoter or inhibitor for methane hydrate formation?[J]. Fuel, 2020, 264: 116828. |
118 | TANG Cuiping, ZHANG Yanan, LIANG Deqing. Investigation into the inhibition of methane hydrate formation in the presence of hydroxy- and esteryl-terminated poly(N-vinylcaprolactam)[J]. Energy & Fuels, 2022, 36(7): 3848-3856. |
119 | MAO Xiaohui, GONG Lu, XIE Lei, et al. Novel Fe3O4 based superhydrophilic core-shell microspheres for breaking asphaltenes-stabilized water-in-oil emulsion[J]. Chemical Engineering Journal, 2019, 358: 869-877. |
120 | BAEK Seungjun, MIN Juwon, LEE Jae W. Inhibition effects of activated carbon particles on gas hydrate formation at oil-water interfaces[J]. RSC Advances, 2015, 5(72): 58813-58820. |
121 | KAMAL Muhammad Shahzad, HUSSEIN Ibnelwaleed A, SULTAN Abdullah S, et al. Application of various water soluble polymers in gas hydrate inhibition[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 206-225. |
122 | Wilson Adam. Low-adhesion coatings provide novel gas-hydrate-mitigation strategy[J]. Journal of Petroleum Technology, 2017, 69: 72-73. |
123 | SOJOUDI Hossein, WALSH Matthew R, GLEASON Karen K, et al. Designing durable vapor-deposited surfaces for reduced hydrate adhesion[J]. Advanced Materials Interfaces, 2015, 2(6): 1500003. |
124 | HOSSEIN Sojoudi, MCKINLEY Gareth H, GLEASON Karen K. Linker-free grafting of fluorinated polymeric cross-linked network bilayers for durable reduction of ice adhesion[J]. Materials Horizons, 2015, 2(1): 91-99. |
125 | DONG Sanbao, LI Mingzhong, LIU Chenwei, et al. Bio-inspired superhydrophobic coating with low hydrate adhesion for hydrate mitigation[J]. Journal of Bionic Engineering, 2020, 17(5): 1019-1028. |
126 | Arindam DAS, FARNHAM Taylor A, BENGALURU SUBRAMANYAM Srinivas, et al. Designing ultra-low hydrate adhesion surfaces by interfacial spreading of water-immiscible barrier films[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21496-21502. |
127 | LIU Chenwei, ZENG Xu, YAN Ci, et al. Effects of solid precipitation and surface corrosion on the adhesion strengths of sintered hydrate deposits on pipe walls[J]. Langmuir, 2020, 36(50): 15343-15351. |
128 | HOSSEIN Sojoudi, HADI Arabnejad, ASIF Raiyan, et al. Scalable and durable polymeric icephobic and hydrate-phobic coatings[J]. Soft Matter, 2018, 14(18): 3443-3454. |
129 | ZHANG Wenjuan, FAN Shuanshi, WANG Yanhong, et al. Preparation and performance of biomimetic superhydrophobic coating on X80 pipeline steel for inhibition of hydrate adhesion[J]. Chemical Engineering Journal, 2021, 419: 129651. |
130 | ZHANG Wenjuan, FAN Shuanshi, WANG Yanhong, et al. Development of a composite structured surface for durable anti-hydrate and enhancing thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122909. |
131 | MA Shang, SUN Li, KELLAND Malcolm A, et al. Hydrophobic hydration affects growth of clathrate hydrate: Insight from an NMR relaxometric and calorimetric study[J]. Chemical Communications, 2019, 55(20): 2936-2939. |
132 | BREDT Aria J, Dor BEN-AMOTZ. Influence of crowding on hydrophobic hydration-shell structure[J]. Physical Chemistry Chemical Physics, 2020, 22(20): 11724-11730. |
133 | Felipe JIMÉNEZ-ÁNGELES, FIROOZABADI Abbas. Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates[J]. ACS Central Science, 2018, 4(7): 820-831. |
134 | YIN Xinyu, YAN Yuanyang, ZHANG Xiangning, et al. Designing robust superhydrophobic materials for inhibiting nucleation of clathrate hydrates by imitating glass sponges[J]. ACS Central Science, 2023, 9(2): 318-327. |
135 | ZI Mucong, CHEN Daoyi, WU Guozhong. Molecular dynamics simulation of methane hydrate formation on metal surface with oil[J]. Chemical Engineering Science, 2018, 191: 253-261. |
136 | HU Haibao, WEN Jun, BAO Luyao, et al. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips[J]. Science Advances, 2017, 3(9): e1603288. |
137 | DENG Zhixia, WANG Yanhong, LANG Xuemei, et al. Fast formation kinetics of methane hydrate promoted by fluorinated graphite[J]. Chemical Engineering Journal, 2022, 431: 133869. |
138 | TANG Yu, YANG Xiaolong, LI Yimin, et al. Robust micro-nanostructured superhydrophobic surfaces for long-term dropwise condensation[J]. Nano Letters, 2021, 21(22): 9824-9833. |
139 | SHARMA Chander Shekhar, COMBE Juliette, GIGER Markus, et al. Growth rates and spontaneous navigation of condensate droplets through randomly structured textures[J]. ACS Nano, 2017, 11(2): 1673-1682. |
140 | LIU Yuyang, CHEN Xianqiong, XIN J H. Can superhydrophobic surfaces repel hot water?[J]. Journal of Materials Chemistry, 2009, 19(31): 5602-5611. |
141 | ZHANG Junping, YU Bo, GAO Ziqian, et al. Durable, transparent, and hot liquid repelling superamphiphobic coatings from polysiloxane-modified multiwalled carbon nanotubes[J]. Langmuir, 2017, 33(2): 510-518. |
142 | LI Bucheng, ZHANG Junping, GAO Ziqian, et al. Semitransparent superoleophobic coatings with low sliding angles for hot liquids based on silica nanotubes[J]. Journal of Materials Chemistry A, 2016, 4(3): 953-960. |
143 | NENAD Miljkovic, RYAN Enright, YOUNGSUK Nam, et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces[J]. Nano Letters, 2013, 13(1): 179-187. |
144 | YU Ting, ZHAO Yiping, ZHENG Pin, et al. Ultra-durable superhydrophobic surfaces from 3D self-similar network via co-spraying of polymer microspheres and nanoparticles[J]. Chemical Engineering Journal, 2021, 410: 128314. |
145 | WAN Fang, YANG Dequan, EDWARD Sacher. Repelling hot water from superhydrophobic surfaces based on carbon nanotubes[J]. Journal of Materials Chemistry A, 2015, 3(33): 16953-16960. |
146 | LIU Yahua, WANG Zuankai. Superhydrophobic porous networks for enhanced droplet shedding[J]. Scientific Reports, 2016, 6: 33817. |
147 | WEN Rongfu, XU Shanshan, MA Xuehu, et al. Three-dimensional superhydrophobic nanowire networks for enhancing condensation heat transfer[J]. Joule, 2018, 2(2): 269-279. |
148 | LIU Zhanjian, WANG Huaiyuan, ZHANG Xiguang, et al. Durable and self-healing superhydrophobic surface with bistratal gas layers prepared by electrospinning and hydrothermal processes[J]. Chemical Engineering Journal, 2017, 326: 578-586. |
149 | MULROE Megan D, SRIJANTO Bernadeta R, Farzad AHMADI S, et al. Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation[J]. ACS Nano, 2017, 11(8): 8499-8510. |
150 | LUO Hu, YIN Shaohui, HUANG Shuai, et al. Fabrication of slippery Zn surface with improved water-impellent, condensation and anti-icing properties[J]. Applied Surface Science, 2019, 470: 1139-1147. |
151 | SHIRI Samira, MURRIZI Armela, BIRD James. Trapping a hot drop on a superhydrophobic surface with rapid condensation or microtexture melting[J]. Micromachines, 2018, 9(11): 566. |
152 | WILKE Kyle L, PRESTON Daniel J, LU Zhengmao, et al. Toward condensation-resistant omniphobic surfaces[J]. ACS Nano, 2018, 12(11): 11013-11021. |
153 | MOUTERDE Timothée, LECOINTRE Pierre, LEHOUCQ Gaëlle, et al. Two recipes for repelling hot water[J]. Nature Communications, 2019, 10: 1410. |
154 | ZHANG Shenxiang, JIANG Gaoshuo, GAO Shoujian, et al. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation[J]. ACS Nano, 2018, 12(1): 795-803. |
155 | YANG Haocheng, XIE Yunsong, CHAN Henry, et al. Crude-oil-repellent membranes by atomic layer deposition: Oxide interface engineering[J]. ACS Nano, 2018, 12(8): 8678-8685. |
156 | WANG Xiaoping, SCHULTZ Arthur J, HALPERN Yuval. Kinetics of methane hydrate formation from polycrystalline deuterated ice[J]. The Journal of Physical Chemistry A, 2002, 106(32): 7304-7309. |
[1] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[2] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[3] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[4] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[5] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[6] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[7] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[8] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[9] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[10] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[11] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[12] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[13] | LIU Jia, LIANG Deqing, LI Junhui, LIN Decai, WU Siting, LU Fuqin. A review of flow assurance studies on hydrate slurry in oil-water system [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1739-1759. |
[14] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[15] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |