1 |
文婷, 王海蓉, 黄唯, 等. 结晶过程晶体粒度分布控制研究进展[J]. 化学工业与工程, 2021, 38(4): 44-55.
|
|
WEN Ting, WANG Hairong, HUANG Wei, et al. Research progress on controlling of crystal size distribution (CSD) in crystallization process[J]. Chemical Industry and Engineering, 2021, 38(4): 44-55.
|
2 |
邢晓红, 欧阳金波, 周利民, 等. 限域空间内的结晶研究进展[J]. 化学工业与工程, 2022, 39(5): 39-48.
|
|
XING Xiaohong, OUYANG Jinbo, ZHOU Limin, et al. Research progress of crystallization in confined space[J]. Chemical Industry and Engineering, 2022, 39(5): 39-48.
|
3 |
LIU Fan, BAGI S D, SU Qinglin, et al. Targeting particle size specification in pharmaceutical crystallization: A review on recent process design and development strategies and particle size measurements[J]. Organic Process Research & Development, 2022, 26(12): 3190-3203.
|
4 |
ILA M, LOUHI-KULTANEN M. Purification of monoethylene glycol by melt crystallization[J]. Chemical Engineering Science, 2023, 272: 118601.
|
5 |
LI Junjie, DEEPAK F L. In situ kinetic observations on crystal nucleation and growth[J]. Chemical Reviews, 2022, 122(23): 16911-16982.
|
6 |
LI Xin, WANG Jingkang, WANG Ting, et al. Molecular mechanism of crystal nucleation from solution[J]. Science China Chemistry, 2021, 64(9): 1460-1481.
|
7 |
XIAO Yan, WANG Jingkang, HUANG Xin, et al. Determination methods for crystal nucleation kinetics in solutions[J]. Crystal Growth & Design, 2018, 18(1): 540-551.
|
8 |
LYNCH A, JIA Lijun, SVÄRD M, et al. Crystal growth of salicylamide in organic solvents[J]. Crystal Growth & Design, 2018, 18(12): 7305-7315.
|
9 |
MING Hui, ZHU Mingfu, LI Lu, et al. A review of solvent freeze-out technology for protein crystallization[J]. CrystEngComm, 2021, 23(14): 2723-2732.
|
10 |
ZHANG Chenyan, LIU Jie, WANG Mengying, et al. Protein crystallization irradiated by audible sound: The effect of varying sound frequency[J]. Crystal Growth & Design, 2019, 19(1): 258-267.
|
11 |
WANG Qianjin, ZHAO Gang, ZHANG Chenyan. Cyclodextrin and its derivatives enhance protein crystallization by grafted on crystallization plates[J]. Journal of Crystal Growth, 2020, 536: 125591.
|
12 |
YAN Erkai, ZHAO Fengzhu, ZHANG Chenyan, et al. Seeding protein crystallization with cross-linked protein crystals[J]. Crystal Growth & Design, 2018, 18(2): 1090-1100.
|
13 |
CHENG Xiaowei, HUANG Xin, TIAN Beiqian, et al. Behaviors and physical mechanism of ceftezole sodium de-agglomeration driven by ultrasound[J]. Ultrasonics Sonochemistry, 2021, 74: 105570.
|
14 |
SHANG Zeren, LI Mingchen, HOU Baohong, et al. Ultrasound assisted crystallization of cephalexin monohydrate: Nucleation mechanism and crystal habit control[J]. Chinese Journal of Chemical Engineering, 2022, 41: 430-440.
|
15 |
HU Xueyan, ZHAO Yiting, XIAO Wu, et al. Improved spherical particle preparation of ceftriaxone sodium via membrane-assisted spherical crystallization[J]. Industrial & Engineering Chemistry Research, 2023, 62(10): 4444-4454.
|
16 |
YIN Yongheng, GAO Zhenguo, BAO Ying, et al. Gelation phenomenon during antisolvent crystallization of cefotaxime sodium[J]. Industrial & Engineering Chemistry Research, 2014, 53(3): 1286-1292.
|
17 |
CHENG Xiaowei, LI Fei, LUO Liang, et al. On the selection of wetting liquid for spherical agglomeration of cefotaxime sodium[J]. Powder Technology, 2020, 363: 593-601.
|
18 |
盛磊, 李培钰, 牛宇超, 等. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157.
|
|
SHENG Lei, LI Peiyu, NIU Yuchao, et al. Progresses in the preparation of micro-scale process-enhanced crystalline particles[J]. CIESC Journal, 2021, 72(1): 143-157.
|
19 |
WU Mengyuan, YUAN Zhijie, NIU Yuchao, et al. Interfacial induction and regulation for microscale crystallization process: A critical review[J]. Frontiers of Chemical Science and Engineering, 2022, 16(6): 838-853.
|
20 |
MELDRUM F C, O'SHAUGHNESSY C. Crystallization in confinement[J]. Advanced Materials, 2020, 32(31): 2001068.
|
21 |
SANDER J R G, ZEIGER B W, SUSLICK K S. Sonocrystallization and sonofragmentation[J]. Ultrasonics Sonochemistry, 2014, 21(6): 1908-1915.
|
22 |
FENG Yaoguang, HAO Hongxun, CHEN Yiqing, et al. Enhancement of crystallization process of the organic pharmaceutical molecules through high pressure[J]. Crystals, 2022, 12(3): 432.
|
23 |
WANG Lingyu, TANG Weiwei, DU Shichao, et al. Additive-induced selective crystallization of the elusive form- Ⅱ of γ-aminobutyric acid[J]. Chemical Engineering & Technology, 2020, 43(6): 1137-1143.
|
24 |
NAHI O, KULAK A N, BROAD A, et al. Solvent-mediated enhancement of additive-controlled crystallization[J]. Crystal Growth & Design, 2021, 21(12): 7104-7115.
|
25 |
SAVCHENKO M, SEBASTIAN V, LOPEZ-LOPEZ M T, et al. Magnetite mineralization inside cross-linked protein crystals[J]. Crystal Growth & Design, 2023, 23(6): 4032-4040.
|
26 |
KATSMAN A, POLISHCHUK I, POKROY B. On the mechanism of calcium carbonate polymorph selection via confinement[J]. Faraday Discussions, 2022, 235: 433-445.
|
27 |
BRASCHINSKY A, STEED J W. Molecular clusters in confined spaces[J]. Coordination Chemistry Reviews, 2022, 473: 214840.
|
28 |
PRILESZKY T A, FURST E M. Crystallization kinetics of partially crystalline emulsion droplets in a microfluidic device[J]. Langmuir, 2016, 32(20): 5141-5146.
|
29 |
CHEN Cen, COOK Oliver, NICHOLSON C E, et al. Leapfrogging Ostwald’s rule of stages: Crystallization of stable γ-glycine directly from microemulsions[J]. Crystal Growth & Design, 2011, 11(6): 2228-2237.
|
30 |
NICHOLSON C E, CHEN Cen, MENDIS B, et al. Stable polymorphs crystallized directly under thermodynamic control in three-dimensional nanoconfinement: A generic methodology[J]. Crystal Growth & Design, 2011, 11(2): 363-366.
|
31 |
LIU Qi, WANG Jingkang, WU Hao, et al. Manipulating of crystal morphology and polymorph by crystallization in microemulsions[J]. Industrial & Engineering Chemistry Research, 2020, 59(29): 13024-13032.
|
32 |
LEE Sooheyong, Haeng Sub WI, Wonhyuk JO, et al. Multiple pathways of crystal nucleation in an extremely supersaturated aqueous potassium dihydrogen phosphate (KDP) solution droplet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13618-13623.
|
33 |
TOLDY A I, BADRUDDOZA A Z M, ZHENG Lu, et al. Spherical crystallization of glycine from monodisperse microfluidic emulsions[J]. Crystal Growth & Design, 2012, 12(8): 3977-3982.
|
34 |
MENG Xianze, WANG Yongli, LI Xin, et al. Confined crystallization of pigment red 146 in emulsion droplets and its mechanism[J]. Nanomaterials, 2019, 9(3): 379.
|
35 |
YANG Mei, GAO Yuan, LIU Yun, et al. Integration of microfluidic systems with external fields for multiphase process intensification[J]. Chemical Engineering Science, 2021, 234: 116450.
|
36 |
SHI Huanhuan, XIAO Yan, FERGUSON S, et al. Progress of crystallization in microfluidic devices[J]. Lab on a Chip, 2017, 17(13): 2167-2185.
|
37 |
NISHIGAKI A, MARUYAMA M, NUMATA M, et al. Microflow system promotes acetaminophen crystal nucleation[J]. Engineering in Life Sciences, 2020, 20(9/10): 395-401.
|
38 |
FERNANDEZ RIVAS D, KUHN S. Synergy of microfluidics and ultrasound[J]. Topics in Current Chemistry, 2016, 374(5): 1-30.
|
39 |
LIU Fen, LUO Wei, QIU Junjie, et al. Continuous antisolvent crystallization of dolutegravir sodium using microfluidics[J]. Industrial & Engineering Chemistry Research, 2022, 61(19): 6693-6702.
|
40 |
FERREIRA J, OPSTEYN J, ROCHA F, et al. Ultrasonic protein crystallization: Promoting nucleation in microdroplets through pulsed sonication[J]. Chemical Engineering Research and Design, 2020, 162: 249-257.
|
41 |
GERARD C J J, FERRY G, VUILLARD L M, et al. A chemical library to screen protein and protein-ligand crystallization using a versatile microfluidic platform[J]. Crystal Growth & Design, 2018, 18(9): 5130-5137.
|
42 |
ZHU Deyong, ZHOU Xiaohu, ZHENG Bo. A double emulsion-based, plastic-glass hybrid microfluidic platform for protein crystallization[J]. Micromachines, 2015, 6(11): 1629-1644.
|
43 |
BHATTACHARYA S, KUNDU P, LIU J S, et al. Feedback-system-control integrated microfluidic system for fast screening of protein crystallization conditions[J]. Crystal Growth & Design, 2020, 20(7): 4325-4334.
|
44 |
COLIAIE P, KELKAR M S, LANGSTON M, et al. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation[J]. Lab on a Chip, 2021, 21(12): 2333-2342.
|
45 |
KHURSHID S, SARIDAKIS E, GOVADA L, et al. Porous nucleating agents for protein crystallization[J]. Nature Protocols, 2014, 9(7): 1621-1633.
|
46 |
SARIDAKIS E, CHAYEN N E. Imprinted polymers assisting protein crystallization[J]. Trends in Biotechnology, 2013, 31(9): 515-520.
|
47 |
KERTIS F, KHURSHID S, OKMAN O, et al. Heterogeneous nucleation of protein crystals using nanoporous gold nucleants[J]. Journal of Materials Chemistry, 2012, 22(41): 21928.
|
48 |
JIANG Qi, WARD M D. Crystallization under nanoscale confinement[J]. Chemical Society Reviews, 2014, 43(7): 2066-2079.
|
49 |
BRADY A B, WEBER J, YUAN Ke, et al. In situ observations of barium sulfate nucleation in nanopores[J]. Crystal Growth & Design, 2022, 22(12): 6941-6951.
|
50 |
KHODAPARAST S, MARCOS J, SHARRATT W N, et al. Surface-induced crystallization of sodium dodecyl sulfate (SDS) micellar solutions in confinement[J]. Langmuir, 2021, 37(1): 230-239.
|
51 |
DIAO Ying, HARADA T, MYERSON A S, et al. The role of nanopore shape in surface-induced crystallization[J]. Nature Materials, 2011, 10(11): 867-871.
|
52 |
PAGE A J, SEAR R P. Heterogeneous nucleation in and out of pores[J]. Physical Review Letters, 2006, 97(6): 065701.
|
53 |
NANEV C N, SARIDAKIS E, CHAYEN N E. Protein crystal nucleation in pores[J]. Scientific Reports, 2017, 7: 35821.
|
54 |
ANDUIX-CANTO C, LEVENSTEIN M A, KIM Yi-Yeoun, et al. Exploiting confinement to study the crystallization pathway of calcium sulfate[J]. Advanced Functional Materials, 2021, 31(50): 2107312.
|
55 |
BEINER M, RENGARAJAN, PANKAJ S, et al. Manipulating the crystalline state of pharmaceuticals by nanoconfinement[J]. Nano Letters, 2007, 7(5): 1381-1385.
|
56 |
ANDUIX-CANTO C, KIM Yi-Yeoun, WANG Yunwei, et al. Effect of nanoscale confinement on the crystallization of potassium ferrocyanide[J]. Crystal Growth & Design, 2016, 16(9): 5403-5411.
|
57 |
DWYER L M, MICHAELIS V K, O’MAHONY M, et al. Confined crystallization of fenofibrate in nanoporous silica[J]. CrystEngComm, 2015, 17(41): 7922-7929.
|
58 |
PRASAD R, DALVI S V. Sonocrystallization: Monitoring and controlling crystallization using ultrasound[J]. Chemical Engineering Science, 2020, 226: 115911.
|
59 |
JORDENS J, GIELEN B, XIOURAS C, et al. Sonocrystallisation: Observations, theories and guidelines[J]. Chemical Engineering and Processing: Process Intensification, 2019, 139: 130-154.
|
60 |
NALESSO S, BUSSEMAKER M J, SEAR R P, et al. A review on possible mechanisms of sonocrystallisation in solution[J]. Ultrasonics Sonochemistry, 2019, 57: 125-138.
|
61 |
SABNIS S S, SINGH S D, GOGATE P R. Improvements in azithromycin recrystallization using ultrasound for size reduction[J]. Ultrasonics Sonochemistry, 2022, 83: 105922.
|
62 |
MAO Yafei, LI Fei, WANG Ting, et al. Enhancement of lysozyme crystallization under ultrasound field[J]. Ultrasonics Sonochemistry, 2020, 63: 104975.
|
63 |
YU Fei, MAO Yafei, ZHAO Hongtu, et al. Enhancement of continuous crystallization of lysozyme through ultrasound[J]. Organic Process Research & Development, 2021, 25(11): 2508-2515.
|
64 |
WANG Jiayuan, LI Fei, LAKERVELD R. Process intensification for pharmaceutical crystallization[J]. Chemical Engineering and Processing: Process Intensification, 2018, 127: 111-126.
|
65 |
AWARI H D, SABNIS S S, GOGATE P R. Improved crystallization of ampicillin trihydrate based on the use of ultrasound[J]. Industrial & Engineering Chemistry Research, 2022, 61(6): 2538-2547.
|
66 |
HUSSAIN M N, JORDENS J, JOHN J J, et al. Enhancing pharmaceutical crystallization in a flow crystallizer with ultrasound: Anti-solvent crystallization[J]. Ultrasonics Sonochemistry, 2019, 59: 104743.
|
67 |
ALEXANDER L F, RADACSI N. Application of electric fields for controlling crystallization[J]. CrystEngComm, 2019, 21(34): 5014-5031.
|
68 |
YUAN Zhijie, WU Mengyuan, MENG Yingshuang, et al. Protein crystal regulation and harvest via electric field-based method[J]. Current Opinion in Chemical Engineering, 2022, 36: 100744.
|
69 |
KOIZUMI H, UDA S. Theoretical and practical studies on effects of external electrostatic electric field on nucleation and growth kinetics of protein crystals[J]. Progress in Crystal Growth and Characterization of Materials, 2022, 68(3): 100568.
|
70 |
PAREJA-RIVERA C, CUÉLLAR-CRUZ M, ESTURAU-ESCOFET N, et al. Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth[J]. Crystal Growth & Design, 2017, 17(1): 135-145.
|
71 |
RUBIN E, OWEN C, STOJANOFF V. Crystallization under an external electric field: A case study of glucose isomerase[J]. Crystals, 2017, 7(7): 206.
|
72 |
LI Fei, LAKERVELD R. Electric-field-assisted protein crystallization in continuous flow[J]. Crystal Growth & Design, 2018, 18(5): 2964-2971.
|
73 |
LI W W, RADACSI N, KRAMER H J M, et al. Solid separation from a mixed suspension through electric-field-enhanced crystallization[J]. Angewandte Chemie International Edition, 2016, 55(52): 16088-16091.
|
74 |
AZMI N S M, ANUAR N, OTHMAN M F, et al. Electric-potential-assisted crystallisation of L-isoleucine: A study of nucleation kinetics and its associated parameters[J]. Crystals, 2021, 11(6): 620.
|
75 |
YIN Dachuan. Protein crystallization in a magnetic field[J]. Progress in Crystal Growth and Characterization of Materials, 2015, 61(1): 1-26.
|
76 |
SURADE S, OCHI T, NIETLISPACH D, et al. Investigations into protein crystallization in the presence of a strong magnetic field[J]. Crystal Growth & Design, 2010, 10(2): 691-699.
|
77 |
Sun RYU, In OH, CHO Sang, et al. Enhancing protein crystallization under a magnetic field[J]. Crystals, 2020, 10(9): 821.
|
78 |
张翔飞, 周数, 谢灿, 等. 中等强度稳态磁场影响小分子结晶的初步探索[J]. 激光生物学报, 2022, 31(3): 243-249.
|
|
ZHANG Xiangfei, ZHOU Shu, XIE Can, et al. A preliminary study of the effects of moderate intensity static magnetic fields on small molecule crystallization[J]. Acta Laser Biology Sinica, 2022, 31(3): 243-249.
|
79 |
ZHAO Yihan, HOU Baohong, LIU Chunhao, et al. Mechanistic study on the effect of magnetic field on the crystallization of organic small molecules[J]. Industrial & Engineering Chemistry Research, 2021, 60(43): 15741-15751.
|
80 |
TAI C Y, WU Chikao, CHANG Mengchun. Effects of magnetic field on the crystallization of CaCO3 using permanent magnets[J]. Chemical Engineering Science, 2008, 63(23): 5606-5612.
|
81 |
ASAKUMA Y, MIURA M. Effect of microwave radiation on diffusion behavior of anti-solvent during crystallization[J]. Journal of Crystal Growth, 2014, 402: 32-36.
|
82 |
OGUNNIRAN O, BINNER E R, SKLAVOUNOS A H, et al. Enhancing evaporative mass transfer and steam stripping using microwave heating[J]. Chemical Engineering Science, 2017, 165: 147-153.
|
83 |
RADACSI N, HORST J H TER, STEFANIDIS G D. Microwave-assisted evaporative crystallization of niflumic acid for particle size reduction[J]. Crystal Growth & Design, 2013, 13(10): 4186-4189.
|
84 |
LI Liye, GUO Zhichao, HAN Wenxiang, et al. The effect of microwave on the primary nucleation of CaSO4 from aqueous solutions[J]. Powder Technology, 2017, 317: 189-196.
|
85 |
CONSTANCE E N, ZAAKAN A, ALSHARARI F, et al. Effect of microwave heating on the crystallization of glutathione tripeptide on silver nanoparticle films[J]. The Journal of Physical Chemistry C, 2017, 121(10): 5585-5593.
|
86 |
YUYAMA K, CHANG Kaidi, TU Jingru, et al. Rapid localized crystallization of lysozyme by laser trapping[J]. Physical Chemistry Chemical Physics, 2018, 20(9): 6034-6039.
|
87 |
LIAO Zhiyu, WYNNE K. A metastable amorphous intermediate is responsible for laser-induced nucleation of glycine[J]. Journal of the American Chemical Society, 2022, 144(15): 6727-6733.
|
88 |
KOREDE V, NAGALINGAM N, PENHA F M, et al. A review of laser-induced crystallization from solution[J]. Crystal Growth & Design, 2023, 23(5): 3873-3916.
|
89 |
YU Jiachen, YAN Jianfeng, JIANG Lan. Crystallization of polymorphic sulfathiazole controlled by femtosecond laser-induced cavitation bubbles[J]. Crystal Growth & Design, 2021, 21(6): 3202-3210.
|
90 |
XU Shijie, CAO Di, LIU Yixuan, et al. Role of additives in crystal nucleation from solutions: A review[J]. Crystal Growth & Design, 2022, 22(3): 2001-2022.
|
91 |
王子豪, 马源昌, 李梓铭, 等. 添加剂在药物结晶中的应用研究进展[J]. 山东化工, 2022, 51(22): 78-80.
|
|
WANG Zihao, MA Yuanchang, LI Ziming, et al. Research progress on the application of additives in drug crystallization[J]. Shandong Chemical Industry, 2022, 51(22): 78-80.
|
92 |
尚泽仁, 胡卫国, 汤伟伟, 等. 离子液体在药物晶体工程中的应用[J]. 化工进展, 2019, 38(5): 2389-2401.
|
|
SHANG Zeren, HU Weiguo, TANG Weiwei, et al. Application of ionic liquids in pharmaceutical crystal engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2389-2401.
|
93 |
KASKIEWICZ P L, ROSBOTTOM I, HAMMOND R B, et al. Understanding and designing tailor-made additives for controlling nucleation: Case study of p-aminobenzoic acid crystallizing from ethanolic solutions[J]. Crystal Growth & Design, 2021, 21(4): 1946-1958.
|
94 |
WU Hao, WANG Jingkang, LIU Qi, et al. Influences and the mechanism of additives on intensifying nucleation and growth of p-methylacetanilide[J]. Crystal Growth & Design, 2020, 20(2): 973-983.
|
95 |
BODNÁR K, HUDSON S P, RASMUSON Å C. Promotion of mefenamic acid nucleation by a surfactant additive, docusate sodium[J]. Crystal Growth & Design, 2019, 19(2): 591-603.
|
96 |
LINK F J, HENG J Y Y. Enhancing the crystallisation of insulin using amino acids as soft-templates to control nucleation[J]. CrystEngComm, 2021, 23(22): 3951-3960.
|
97 |
YU Xiaoxi, TIAN Ningning, HUANG Fang, et al. Evaluating the role of ionic liquids (ILs) in the crystallization of lysozyme[J]. Journal of Molecular Liquids, 2019, 296: 112018.
|
98 |
ZHANG Bo, WANG Yao, Shiki THI, et al. Enhancement of lysozyme crystallization using DNA as a polymeric additive[J]. Crystals, 2019, 9(4): 186.
|
99 |
HAN Dandan, WANG Yan, YANG Yang, et al. Revealing the role of a surfactant in the nucleation and crystal growth of thiamine nitrate: Experiments and simulation studies[J]. CrystEngComm, 2019, 21(23): 3576-3585.
|
100 |
SU Nannan, WANG Yongli, XIAO Yan, et al. Mechanism of influence of organic impurity on crystallization of sodium sulfate[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1705-1713.
|
101 |
POORNACHARY S K, HAN Guangjun, KWEK Jin Wang, et al. Crystallizing micronized particles of a poorly water-soluble active pharmaceutical ingredient: Nucleation enhancement by polymeric additives[J]. Crystal Growth & Design, 2016, 16(2): 749-758.
|
102 |
WU Hao, WANG Jingkang, HUANG Xin, et al. Enlarging crystal size of zoxamide by polymeric additives that modulate burst nucleation[J]. Journal of Molecular Liquids, 2022, 357: 119088.
|
103 |
CHENG Xiaowei, HUANG Xin, HAO Yunhui, et al. Unveiling the role of additives in modifying crystallization behaviors of 4-(hydroxymethyl) benzoic acid[J]. Industrial & Engineering Chemistry Research, 2022, 61(20): 7193-7203.
|
104 |
PARAMBIL J V, POORNACHARY S K, HINDER S J, et al. Establishing template-induced polymorphic domains for API crystallisation: The case of carbamazepine[J]. CrystEngComm, 2015, 17(33): 6384-6392.
|
105 |
FRANK D S, MATZGER A J. Influence of chemical functionality on the rate of polymer-induced heteronucleation[J]. Crystal Growth & Design, 2017, 17(8): 4056-4059.
|
106 |
PARAMBIL J V, POORNACHARY S K, HENG J Y Y, et al. Template-induced nucleation for controlling crystal polymorphism: From molecular mechanisms to applications in pharmaceutical processing[J]. CrystEngComm, 2019, 21(28): 4122-4135.
|
107 |
CARIDI A, KULKARNI S A, DI PROFIO G, et al. Template-induced nucleation of isonicotinamide polymorphs[J]. Crystal Growth & Design, 2014, 14(3): 1135-1141.
|
108 |
CHADWICK K, CHEN Jie, MYERSON A S, et al. Toward the rational design of crystalline surfaces for heteroepitaxy: Role of molecular functionality[J]. Crystal Growth & Design, 2012, 12(3): 1159-1166.
|
109 |
ARRIBAS BUENO R, CROWLEY C M, DAVERN P, et al. Heterogeneous crystallization of fenofibrate onto pharmaceutical excipients[J]. Crystal Growth & Design, 2018, 18(4): 2151-2164.
|
110 |
VERMA V, ZEGLINSKI J, HUDSON S, et al. Dependence of heterogeneous nucleation on hydrogen bonding lifetime and complementarity[J]. Crystal Growth & Design, 2018, 18(11): 7158-7172.
|
111 |
OUYANG Jinbo, XING Xiaohong, CHEN Jian, et al. Effects of solvent, supersaturation ratio and silica template on morphology and polymorph evolution of vanillin during swift cooling crystallization[J]. Particuology, 2022, 65: 93-104.
|
112 |
YAZDANPANAH N, TESTA C J, PERALA S R K, et al. Continuous heterogeneous crystallization on excipient surfaces[J]. Crystal Growth & Design, 2017, 17(6): 3321-3330.
|
113 |
LING Jing, CHADWICK K. Heterogeneous crystallization inside microporous polymer particles as a process intensification technology for the manufacture of drug formulations[J]. Organic Process Research & Development, 2017, 21(6): 827-834.
|
114 |
ERAL H B, LÓPEZ-MEJÍAS V, O’MAHONY M, et al. Biocompatible alginate microgel particles as heteronucleants and encapsulating vehicles for hydrophilic and hydrophobic drugs[J]. Crystal Growth & Design, 2014, 14(4): 2073-2082.
|