Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 100-110.DOI: 10.16085/j.issn.1000-6613.2023-1170
• Column: Chemical process intensification • Previous Articles
SU Mengjun(), LIU Jian, XIN Jing(), CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao
Received:
2023-07-11
Revised:
2023-08-30
Online:
2024-02-05
Published:
2024-01-20
Contact:
XIN Jing
苏梦军(), 刘剑, 辛靖(), 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝
通讯作者:
辛靖
作者简介:
苏梦军(1992—),男,博士,工程师,研究方向为炼油化工过程强化技术。E-mail: sumj2@cnooc.com.cn。
CLC Number:
SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110.
苏梦军, 刘剑, 辛靖, 陈禹霏, 张海洪, 韩龙年, 朱元宝, 李洪宝. 气液混合强化在固定床加氢过程中的应用进展[J]. 化工进展, 2024, 43(1): 100-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1170
1 | 彭冲, 黄新露, 牛世坤, 等. 中国炼油加氢催化过程强化技术进展[J]. 化工进展, 2020, 39(12): 4837-4844. |
PENG Chong, HUANG Xinlu, NIU Shikun, et al. Recent progress in process intensification of oil hydroprocessing in China[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4837-4844. | |
2 | 李大东, 聂红, 孙丽丽. 加氢处理工艺与工程[M]. 2版. 北京: 中国石化出版社, 2016. |
LI Dadong, NIE Hong, SUN Lili. Hydrogenation process and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2016. | |
3 | 初广文, 廖洪钢, 王丹, 等. 微纳介尺度气液反应过程强化[J]. 化工学报, 2021, 72(7): 3435-3444. |
CHU Guangwen, LIAO Honggang, WANG Dan, et al. Gas-liquid reaction process intensification at micro-/nano-mesoscale[J]. CIESC Journal, 2021, 72(7): 3435-3444. | |
4 | 叶正才. 固定床加氢反应器内件的结构及应用[J]. 化学工程与装备, 2018(7): 209-211. |
YE Zhengcai. Structure and application of fixed-bed hydrogenation reactor internals[J]. Chemical Engineering & Equipment, 2018(7): 209-211. | |
5 | 李立权, 陈崇刚. 大型加氢反应器内构件的研究及工业应用[J]. 炼油技术与工程, 2012(10): 27-32. |
LI Liquan, CHEN Chonggang. Research and development of internals for large trickle-bed hydrogenation reactor[J]. Petroleum Refinery Engineering, 2012(10): 27-32. | |
6 | 莫秋有. 固定床加氢反应器新型内构件优化及应用[J]. 石油化工设备, 2022, 51(1): 73-80. |
MO Qiuyou. Optimization and application of new internals in fixed bed hydrogenation reactor[J]. Petro-Chemical Equipment, 2022, 51(1): 73-80. | |
7 | 李立权, 陈崇刚, 赵颖. 柴油加氢精制微气泡反应器工程技术开发有关问题探析[J]. 炼油技术与工程, 2021(10): 6-11. |
LI Liquan, CHEN Chonggang, ZHAO Ying. Discussion on engineering technology development of micro-bubble reactor for diesel hydrorefining[J]. Petroleum Refinery Engineering, 2021(10): 6-11. | |
8 | 吴美玲. 柴油液相加氢过程中填料鼓泡塔的混合传质特性及反应器模型[D]. 杭州: 浙江大学, 2017. |
WU Meiling. Mixing and mass transfer characteristics and reactor model of packed bubble column in liquid phase hydrogenation process of gasoil[D]. Hangzhou: Zhejiang University, 2017. | |
9 | 颜攀. 固定床鼓泡反应器中微气泡的产生和演化[D]. 杭州: 浙江大学, 2017. |
YAN Pan. Generation and evolution of microbubbles in fixed bed bubble reactor[D]. Hangzhou: Zhejiang University, 2017. | |
10 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49 |
ZHANG Zhibing, TIAN Hongzhou, ZHANG Feng, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49 | |
11 | 刘奕, 杨占林, 姜虹, 等. 加氢催化剂多尺度设计研究进展[J]. 当代化工, 2021, 50(5): 1193-1199. |
LIU Yi, YANG Zhanlin, JIANG Hong, et al. Research progress in multi-scale design of hydrogenation catalyst[J]. Contemporary Chemical Industry, 2021, 50(5): 1193-1199. | |
12 | 张志炳, 田洪舟, 王丹亮, 等. 气液反应体系相界面传质强化研究[J]. 化学工程, 2016, 44(3): 1-8. |
ZHANG Zhibing, TIAN Hongzhou, WANG Danliang, et al. Intensification of interfacial mass transfer in gas-liquid reaction systems[J]. Chemical Engineering, 2016, 44(3): 1-8. | |
13 | 王世丽. 柴油液相加氢原料油中氢气及相关气体溶解度研究[D]. 郑州: 郑州大学, 2013. |
WANG Shili. Study on solubility of hydrogen and related gases in diesel liquid phase hydrogenation feed oil[D]. Zhengzhou: Zhengzhou University, 2013. | |
14 | 王永恒. 氢气在柴油中的平衡溶解度研究[D]. 上海: 华东理工大学. 2016. |
WANG Yongheng. Study on hydrogen equilibrium solubility in diesel oil[D]. Shanghai: East China University of Science and Technology, 2016. | |
15 | 王世丽, 翟康, 张瑞芹, 等. 氢气在柴油中溶解度的测定与模拟计算[J]. 化工进展, 2013, 32(9): 2049-2055. |
WANG Shili, ZHAI Kang, ZHANG Ruiqin, et al. Measurement and simulation of hydrogen solubility in diesels[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2049-2055. | |
16 | 阮宇红. 加氢装置节能途径探讨[J]. 石油炼制与化工, 2021, 52(4): 106-111. |
RUAN Yuhong. Study of energy-saving ways of hydrogenation units[J]. Petroleum Processing and Petrochemicals, 2021, 52(4): 106-111. | |
17 | MAITI R N, SEN P K, NIGAM K D P. Trickle-bed reactors: Liquid distribution and flow texture[J]. Reviews in Chemical Engineering, 2004, 20(1-2): 57-110. |
18 | KUNDU A, SAROHA A K, NIGAM K D P. Liquid distribution studies in trickle-bed reactors[J]. Chemical Engineering Science, 2001, 56(21-22): 5963-5967. |
19 | MAITI R N, NIGAM K D P. Gas-liquid distributors for trickle-bed reactors: A review[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6164-6182. |
20 | 李大东. 滴流床反应器中催化剂利用率的影响因素[J]. 石油炼制, 1991(11): 52-58. |
LI Dadong. Factors affecting catalyst utilization in trickle bed hydroprocessing reactors[J]. Petroleum Processing, 1991(11): 52-58. | |
21 | 郭守权, 代萌. 低能耗航煤液相加氢装置改造总结[J]. 炼油技术与工程, 2021, 51(6): 1-4 |
GUO Shouquan, DAI Meng. Summary of low energy consumption jet fuel liquid phase hydrogenation unit revamping[J]. Petroleum Refinery Engineering, 2021, 51(6): 1-4. | |
22 | 武钊, 蒙毅. 气相加氢与液相加氢工艺在柴油加氢中的对比分析[J]. 当代化工研究, 2016(11): 74-75. |
WU Zhao, MENG Yi. Contrastive analysis of liquid phase hydrogenation and gas phase hydrogenation in diesel fuels hydrogenation[J]. Modern Chemical Research, 2016(11): 74-75. | |
23 | 姜龙雨, 吴海波. 减压蜡油全液相加氢处理技术的工业应用[J]. 炼油技术与工程, 2019, 49(1): 11-16. |
JIANG Longyu, WU Haibo. Commercial application of liquid-phase hydrogenation processes for VGO hydrotreating[J]. Petroleum Refinery Engineering, 2019, 49(1): 11-16. | |
24 | 马守涛, 梁宇, 郭见芳, 等. 液相加氢技术进展[J]. 石化技术与应用, 2019, 37(6): 428-432. |
MA Shoutao, LIANG Yu, GUO Jianfang, et al. Progress of liquid phase hydrogenation technology[J]. Petrochemical Technology & Application, 2019, 37(6): 428-432. | |
25 | 徐秋鹏. 蜡油全液相加氢技术的工业应用[J]. 石油炼制与化工, 2021, 52(4): 77-81. |
XU Qiupeng. Commercial application of IsoTherming® technology for vacuum gas oil[J]. Petroleum Processing and Petrochemicals, 2021, 52(4): 77-81. | |
26 | 宋永一, 方向晨, 刘继华. SRH液相循环加氢技术的开发及工业应用[J]. 化工进展, 2012, 31(1): 240-245. |
SONG Yongyi, FANG Xiangchen, LIU Jihua. Development and commercial application of SRH liquid phase recycling hydrogenation technology[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 240-245. | |
27 | 李农, 李海峰, 赵新全, 等. 液相加氢技术的应用现状[J]. 化工管理, 2021(17): 66-67. |
LI Nong, LI Haifeng, ZHAO Xinquan, et al. Application status of liquid phase hydrogenation technology[J]. Chemical Enterprise Management, 2021(17): 66-67. | |
28 | 张海亮, 王万财, 罗庆锋, 等. 0.60Mt/a柴油液相加氢装置长周期运行分析[J]. 石油炼制与化工, 2020, 51(5): 14-20. |
ZHANG Hailiang, WANG Wancai, LUO Qingfeng, et al. Analysis of long period operation of liquid phase diesel hydrogenation unit[J]. Petroleum Processing and Petrochemicals, 2020, 51(5): 14-20. | |
29 | 刘凯祥, 李浩, 孙丽丽, 等. 连续液相加氢技术工艺计算验证[J]. 石油炼制与化工, 2012, 43(7): 67-70. |
LIU Kaixiang, LI Hao, SUN Lili, et al. The verification of continuous liquid-phase hydroprocessing technology by simulation calculation[J]. Petroleum Processing and Petrochemicals, 2012, 43(7): 67-70. | |
30 | 阮宇红, 刘凯祥. 连续液相加氢技术最新进展及其在柴油加氢精制装置中的应用[J]. 石油化工设计, 2019, 36(4): 1-5. |
RUAN Yuhong, LIU Kaixiang. Updated development of continuous liquid-phase hydroprocessing technology and its industrial application in DHT unit[J]. Petrochemical Design, 2019, 36(4): 1-5. | |
31 | 默云娟, 丁平, 马霄, 等. 上流式反应器的技术特点及工业应用[J]. 炼油与化工, 2019, 30(2): 21-22. |
MO Yunjuan, DING Ping, MA Xiao, et al. Technical feature of up-flow reactor and its industrial application[J]. Refining and Chemical Industry, 2019, 30(2): 21-22. | |
32 | 郝振岐, 梁文萍, 肖俊泉, 等. 柴油液相循环加氢技术的工业应用[J]. 石油炼制与化工, 2013, 44(12): 20-22. |
HAO Zhenqi, LIANG Wenping, XIAO Junquan, et al. Commercial application of diesel liquid phase recycling hydrogenation technology[J]. Petroleum Processing and Petrochemicals, 2013, 44(12): 20-22. | |
33 | 蔡建崇, 邓杨清, 李强, 等. SLHT连续液相加氢技术的工业应用[J]. 石油炼制与化工, 2018, 49(2): 40-44. |
CAI Jianchong, DENG Yangqing, LI Qiang, et al. Application of diesel continuous liquid phase hydrotreating technology[J]. Petroleum Processing and Petrochemicals, 2018, 49(2): 40-44. | |
34 | 董晓猛, 黄宝才, 范宜俊, 等. 连续液相柴油加氢装置的能耗优势分析[J]. 石油炼制与化工, 2015, 46(8): 81-85. |
DONG Xiaomeng, HUANG Baocai, FAN Yijun, et al. Advantage of continuous liquid phase diesel hydrogenation in energy consumption[J]. Petroleum Processing and Petrochemicals, 2015, 46(8): 81-85. | |
35 | 刘凯祥, 阮宇红, 李浩. 连续液相加氢技术在柴油加氢精制装置的应用[J]. 石油化工设计, 2012, 29(2): 26-29. |
LIU Kaixiang, RUAN Yuhong, LI Hao. Application of continuous liquid-phase hydroprocessing technology in gas oil hydrotreating unit[J]. Petrochemical Design, 2012, 29(2): 26-29. | |
36 | 李天明, 李俊奎, 高青松, 等. 无循环上流式液相航空煤油加氢技术工业应用[J]. 石化技术与应用, 2021, 39(5): 342-347. |
LI Tianming, LI Junkui, GAO Qingsong, et al. Industrial application of non-circulation up-flow liquid phase aviation kerosene hydrogenation technology[J]. Petrochemical Technology & Application, 2021, 39(5): 342-347. | |
37 | 沈文丽, 张旭, 范传宏, 等. 液相加氢技术在航煤装置中应用探讨[J]. 炼油技术与工程, 2020, 50(12): 18-20. |
SHEN Wenli, ZHANG Xu, FAN Chuanhong, et al. Application of liquid phase hydroprocessing technology for jet fuel[J]. Petroleum Refinery Engineering, 2020, 50(12): 18-20. | |
38 | 程杰, 相春娥, 刘宾, 等. 柴油液相加氢过程中化学氢耗的研究[J]. 石油学报(石油加工), 2017, 33(4): 626-632. |
CHENG Jie, XIANG Chun’e, LIU Bin, et al. Study on the chemical hydrogen consumption of diesel liquid-phase hydrogenation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(4): 626-632. | |
39 | 王威杰. 上流式反应器内构件设计及流动和返混特性[D]. 北京: 中国科学院大学, 2018. |
WANG Weijie. Design of internal components and flow and backmixing characteristics in an up-flow reactor[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
40 | 曹俊雅, 张绅, 张涛, 等. 上流式反应器气液相间传质特性的实验研究[J]. 化工学报, 2019, 70(10): 3914-3923. |
CAO Junya, ZHANG Shen, ZHANG Tao, et al. Experimental study of gas-liquid mass transfer characteristics in up-flow reactor[J]. CIESC Journal, 2019, 70(10): 3914-3923. | |
41 | 米晓斌, 项伟, 马俊, 等. 国内重整生成油脱烯烃工业应用现状[J]. 当代化工, 2022, 51(10): 2482-2486. |
MI Xiaobin, XIANG Wei, MA Jun, et al. Industrial application status of olefin removal from reforming oil in China[J]. Contemporary Chemical Industry, 2022, 51(10): 2482-2486. | |
42 | 李华. 催化柴油管式液相加氢过程研究[D]. 上海: 华东理工大学, 2016. |
LI Hua. Study on the tubular liquid-phase hydrogenation of diesel oil from catalytic cracking[D]. Shanghai: East China University of Science and Technology, 2016. | |
43 | 谢清峰, 夏登刚, 姚峰, 等. 重整生成油全馏分FITS加氢脱烯烃技术的应用[J]. 炼油技术与工程, 2016, 46(1): 7-12. |
XIE Qingfeng, XIA Denggang, YAO Feng, et al. Application of FITS hydrogenation process for olefin removal of full fraction of reformate[J]. Petroleum Refinery Engineering, 2016, 46(1): 7-12. | |
44 | 于子千. 重整生成油液相加氢技术应用研究[J]. 炼油与化工, 2022, 33(3): 13-16. |
YU Ziqian. Application of liquid phase hydrogenation technology of reforming oil[J]. Refining and Chemical Industry, 2022, 33(3): 13-16. | |
45 | 张晓国, 谢清峰, 李思, 等. 喷气燃料FITS加氢技术的工业应用[J]. 炼油技术与工程, 2017, 47(9): 21-24. |
ZHANG Xiaoguo, XIE Qingfeng, LI Si, et al. Commercial application of FITS hydrotreating technology for jet fuel[J]. Petroleum Refinery Engineering, 2017, 47(9): 21-24. | |
46 | 田洪舟, 杨高东, 杨国强, 等. 微界面强化重油浆态床低压加氢的传质基础[J]. 化工学报, 2020, 71(11): 4927-4935. |
TIAN Hongzhou, YANG Gaodong, YANG Guoqiang, et al. Mass transfer basis of low-pressure hydrogenation for heavy oil in microinterface-intensified slurry-bed reactor[J]. CIESC Journal, 2020, 71(11): 4927-4935. | |
47 | 宋军超, 李治, 李鹏程, 等. 微界面强化混合柴油加氢精制中试研究[J]. 化学工业与工程, 2023, 40(4): 1-8. |
SONG Junchao, LI Zhi, LI Pengcheng, et al. Pilot study of blended diesel hydrorefining based on micro-interfacial intensification technique[J]. Chemical Industry and Engineering, 2023, 40(4): 1-8. | |
48 | 赵颖. 柴油加氢精制装置应用微界面强化反应技术总结[J]. 炼油技术与工程, 2023, 53(3): 12-14. |
ZHAO Ying. Application of microinterface mass transfer intensification technology in diesel hydrorefining[J]. Petroleum Refinery Engineering, 2023, 53(3): 12-14. | |
49 | 颜攀, 黄正梁, 王靖岱, 等. 文丘里气泡发生器的气泡尺寸及分布[J]. 浙江大学学报(工学版), 2017, 51(10): 2070-2076. |
YAN Pan, HUANG Zhengliang, WANG Jingdai, et al. Bubble size and its distribution for Venturi bubble generator[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(10): 2070-2076. | |
50 | OKADA K, SHIMIZU M, ISOBE T, et al. Characteristics of microbubbles generated by porous mullite ceramics prepared by an extrusion method using organic fibers as the pore former[J]. Journal of the European Ceramic Society, 2010, 30(6): 1245-1251. |
51 | FUJIKAWA S, ZHANG Rongsheng, HAYAMA S, et al. The control of micro-air-bubble generation by a rotational porous plate[J]. International Journal of Multiphase Flow, 2003, 29(8): 1221-1236. |
52 | 崔永晋, 李严凯, 王凯, 等. 微分散设备数量放大方式研究进展[J]. 化工学报, 2020, 71(10): 4350-4364. |
CUI Yongjin, LI Yankai, WANG Kai, et al. Recent advances of numbering-up technology of micro-dispersion devices[J]. CIESC Journal, 2020, 71(10): 4350-4364. | |
53 | 高殿荣, 孙亚楠, 张宗熠. 气液双相微纳米气泡发生器的关键结构优化分析[J]. 华南理工大学学报(自然科学版), 2020, 48(2): 129-136. |
GAO Dianrong, SUN Yanan, ZHANG Zongyi. Optimization analysis of key structure of gas-liquid two-phase micro-nano bubble generator[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2): 129-136. | |
54 | 马守涛, 赵秀文, 相春娥, 等. 上流式反应器中分布器气泡发生性能研究[J]. 石油炼制与化工, 2020, 51(5): 42-47. |
MA Shoutao, ZHAO Xiuwen, XIANG Chun'e, et al. Research on bubble generation performance of gas-liquid distributor in up-flow reactor[J]. Petroleum Processing and Petrochemicals, 2020, 51(5): 42-47. | |
55 | 惠恒雷. 射流发泡制造微气泡技术试验研究[D]. 青岛: 中国石油大学(华东), 2011. |
HUI Henglei. Experimental study on technology of micro-bubble jet foam[D]. Qingdao: China University of Petroleum (East China), 2011. | |
56 | 丁国栋, 陈家庆, 王春升, 等. 轴向旋流式微气泡发生器的结构设计与数值模拟[J]. 过程工程学报, 2018, 18(5): 934-941. |
DING Guodong, CHEN Jiaqing, WANG Chunsheng, et al. Structural design and numerical simulation of axial-swirling type micro-bubble generator[J]. The Chinese Journal of Process Engineering, 2018, 18(5): 934-941. | |
57 | JIANG Lan, WANG Lihua, LIAO Hailong, et al. HiGee microbubble generator (Ⅱ): Controllable preparation of microbubbles[J]. Industrial & Engineering Chemistry Research, 2022, 61(45): 16832-16842. |
58 | 李光晓, 刘塞尔, 苏远海. 微尺度内液-液传质及反应过程强化的研究进展[J]. 化工学报, 2021, 72(1): 452-467. |
LI Guangxiao, LIU Sai'er, SU Yuanhai. Research progress on micro-scale internal liquid-liquid mass transfer and reaction process enhancement[J]. CIESC Journal, 2021, 72(1): 452-467. |
[1] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[4] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[5] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[8] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[9] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[10] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[11] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[12] | CHEN Weiliang, GAO Xin, LI Hong, LI Xingang. Influence mechanism of skeleton structure of foamed SiC corrugated structured packing on the mass transfer performance [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2289-2297. |
[13] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[14] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[15] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |