Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 1-18.DOI: 10.16085/j.issn.1000-6613.2023-1274
• Column: Chemical process intensification •
WANG Darui(), SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin()
Received:
2023-07-24
Revised:
2023-10-30
Online:
2024-02-05
Published:
2024-01-20
Contact:
YANG Weimin
王达锐(), 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民()
通讯作者:
杨为民
作者简介:
王达锐(1990—),男,博士,高级工程师,研究方向为工业催化。E-mail:wangdr.sshy@sinopec.com。
基金资助:
CLC Number:
WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18.
王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1274
技术方案 | 分类 |
---|---|
活性中心修饰 | 硅铝分子筛酸性活性中心调变 |
钛硅分子筛Ti活性中心构建 | |
孔道结构调变 | 微孔分子筛内部造介孔 |
介孔SiO2包覆分子筛 | |
晶体形貌控制 | 制备纳米级颗粒 |
控制择向性生长 | |
拓扑结构创新 | 新结构分子筛创制策略 |
技术方案 | 分类 |
---|---|
活性中心修饰 | 硅铝分子筛酸性活性中心调变 |
钛硅分子筛Ti活性中心构建 | |
孔道结构调变 | 微孔分子筛内部造介孔 |
介孔SiO2包覆分子筛 | |
晶体形貌控制 | 制备纳米级颗粒 |
控制择向性生长 | |
拓扑结构创新 | 新结构分子筛创制策略 |
1 | CHAI Yuchao, DAI Weili, WU Guangjun, et al. Confinement in a zeolite and zeolite catalysis[J]. Accounts of Chemical Research, 2021, 54(13): 2894-2904. |
2 | HARDING R H, PETERS A W, NEE J R D. New developments in FCC catalyst technology[J]. Applied Catalysis A: General, 2001, 221(1/2): 389-396. |
3 | ZHANG Li, HU Qingxun, QIN Yucai, et al. Optimizing the accessibility of zeolite Y on FCC catalyst to improve heavy oil conversion capacity[J]. Microporous and Mesoporous Materials, 2023, 359: 112627. |
4 | LOK B M, MESSINA C A, PATTON R L, et al. Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1984, 106(20): 6092-6093. |
5 | BAERLOCHER C, MCCUSKER L B. Database of zeolite structures[Z]. International Zeolite Association, 2023. http://www.iza-structure.org/databases/. |
6 | NEWLAND S H, SINKLER W, MEZZA T, et al. Expanding beyond the micropore: Active-site engineering in hierarchical architectures for beckmann rearrangement[J]. ACS Catalysis, 2015, 5(11): 6587-6593. |
7 | CHEN N Y, KAEDING W W, DWYER F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts[J]. Journal of the American Chemical Society, 1979, 101(22): 6783-6784. |
8 | KUMAR Lalit, ASTHANA Sonal, LAXMAN NEWALKAR Bharat, et al. Selective toluene methylation to p-xylene: Current status & future perspective[J]. Catalysis Reviews, 2022: 1-43. |
9 | WANG Baohe, GUO Yanke, ZHU Jing, et al. A review on titanosilicate-1(TS-1) catalysts: Research progress of regulating titanium species[J]. Coordination Chemistry Reviews, 2023, 476: 214931. |
10 | SCHERZER Julius. The preparation and characterization of aluminum-deficient zeolites[M]//ACS Symposium Series. Washington, D.C.: American Chemical Society, 1984: 157-200. |
11 | AGOSTINI Giovanni, LAMBERTI Carlo, PALIN Luca, et al. In situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst[J]. Journal of the American Chemical Society, 2010, 132(2): 667-678. |
12 | ALMUTAIRI S M T, MEZARI B, PIDKO E A, et al. Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite[J]. Journal of Catalysis, 2013, 307: 194-203. |
13 | NIELSEN Malte, HAFREAGER Anders, BROGAARD Rasmus Yding, et al. Collective action of water molecules in zeolite dealumination[J]. Catalysis Science & Technology, 2019, 9(14): 3721-3725. |
14 | SHAO Qi, WEI Shuangshuang, HU Xueyu, et al. Tuning the micro-coordination environment of Al in dealumination Y zeolite to enhance electron transfer at the Cu-Mn oxides interface for highly efficient catalytic ozonation of toluene at low temperatures[J]. Environmental Science & Technology, 2022, 56(22): 15449-15459. |
15 | CHIZALLET Céline, BOUCHY Christophe, LARMIER Kim, et al. Molecular views on mechanisms of Brønsted acid-catalyzed reactions in zeolites[J]. Chemical Reviews, 2023, 123(9): 6107-6196. |
16 | ALMUTAIRI S M T, MEZARI B, FILONENKO G A, et al. Influence of extraframework aluminum on the Brønsted acidity and catalytic reactivity of faujasite zeolite[J]. ChemCatChem, 2013, 5(2): 452-466. |
17 | SHENG Qingtao, LING Kaicheng, LI Zhenrong, et al. Effect of steam treatment on catalytic performance of HZSM-5 catalyst for ethanol dehydration to ethylene[J]. Fuel Processing Technology, 2013, 110: 73-78. |
18 | ESCHENBACHER Andreas, VARGHESE Robin John, DELIKONSTANTIS Evangelos, et al. Highly selective conversion of mixed polyolefins to valuable base chemicals using phosphorus-modified and steam-treated mesoporous HZSM-5 zeolite with minimal carbon footprint[J]. Applied Catalysis B: Environmental, 2022, 309: 121251. |
19 | LIN Longfei, QIU Caifeng, ZHUO Zuoxi, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5[J]. Journal of Catalysis, 2014, 309: 136-145. |
20 | ANGGORO Didi Dwi, OKTAVIANTY Herawati, SASONGKO Setia Budi, et al. Effect of dealumination on the acidity of zeolite Y and the yield of glycerol mono stearate (GMS)[J]. Chemosphere, 2020, 257: 127012. |
21 | KALVACHEV Yuri, TODOROVA Totka, NIHTIANOVA Diana, et al. Fluoride etching of mordenite and its influence on catalytic activity[J]. Journal of Materials Science, 2017, 52(9): 5297-5308. |
22 | WANG Kaiwei, WANG Fumin, ZHAI Yi, et al. Application of zeolite in Beckmann rearrangement of cyclohexanone oxime[J]. Molecular Catalysis, 2023, 535: 112881. |
23 | PLIEKHOV Oleksii, PLIEKHOVA Olena, Iztok ARČON, et al. Study of water adsorption on EDTA dealuminated zeolite Y[J]. Microporous and Mesoporous Materials, 2020, 302: 110208. |
24 | INAGAKI Satoshi, SHINODA Shoma, KANEKO Yoshihiro, et al. Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins[J]. ACS Catalysis, 2013, 3(1): 74-78. |
25 | ZHU Zhiguo, MA Haikuo, LIAO Weiping, et al. Insight into tri-coordinated aluminum dependent catalytic properties of dealuminated Y zeolites in oxidative desulfurization[J]. Applied Catalysis B: Environmental, 2021, 288: 120022. |
26 | GUO Xiaoyu, GUO Lisheng, ZENG Yan, et al. Catalytic oligomerization of isobutyl alcohol to jet fuels over dealuminated zeolite Beta[J]. Catalysis Today, 2021, 368: 196-203. |
27 | CHUNG Kyong-Hwan. Dealumination of mordenites with acetic acid and their catalytic activity in the alkylation of cumene[J]. Microporous and Mesoporous Materials, 2008, 111(1/2/3): 544-550. |
28 | LIN Xiuying, FAN Yu, LIU Zhihong, et al. A novel method for enhancing on-stream stability of fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst: Post-treatment of HZSM-5 zeolite by combined steaming and citric acid leaching[J]. Catalysis Today, 2007, 125(3/4): 185-191. |
29 | HE Yigong, LI Caiying, MIN Enze. A mechanism study of framework Si-Al substitution in Y zeolite during aqueous fluorosilicate treatment[J]. Studies in Surface Science and Catalysis, 1989, 49: 189-197. |
30 | XUE Nianhua, CHEN Xiangke, NIE Lei, et al. Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5[J]. Journal of Catalysis, 2007, 248(1): 20-28. |
31 | YARIPOUR Fereydoon, SHARIATINIA Zahra, SAHEBDELFAR Saeed, et al. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous and Mesoporous Materials, 2015, 203: 41-53. |
32 | CHEN Kang, WU Xueqiu, ZHAO Jiyu, et al. Organic-free modulation of the framework Al distribution in ZSM-5 zeolite by magnesium participated synthesis and its impact on the catalytic cracking reaction of alkanes[J]. Journal of Catalysis, 2022, 413: 735-750. |
33 | ALMUTAIRI S M T, MEZARI B, MAGUSIN P C M M, et al. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes[J]. ACS Catalysis, 2012, 2(1): 71-83. |
34 | FU Tingjun, SHAO Juan, LI Zhong. Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high-performance methanol conversion to aromatics[J]. Applied Catalysis B: Environmental, 2021, 291: 120098. |
35 | GENG Rui, LIU Yacong, GUO Yanxia, et al. Structure evolution of Zn species on fresh, deactivated, and regenerated Zn/ZSM-5 catalysts in ethylene aromatization[J]. ACS Catalysis, 2022, 12(23): 14735-14747. |
36 | QI Guodong, WANG Qiang, XU Jun, et al. Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy[J]. Angewandte Chemie International Edition, 2016, 55(51): 15826-15830. |
37 | WANG Jie, SHAN Junwei, TIAN Yajie, et al. Catalytic cracking of n-heptane over Fe modified HZSM-5 nanosheet to produce light olefins[J]. Fuel, 2021, 306: 121725. |
38 | FAN Weibin, DUAN Renguan, YOKOI Toshiyuki, et al. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species[J]. Journal of the American Chemical Society, 2008, 130(31): 10150-10164. |
39 | BALDUCCI Luigi, BIANCHI Daniele, BORTOLO Rossella, et al. Direct oxidation of benzene to phenol with hydrogen peroxide over a modified titanium silicalite[J]. Angewandte Chemie International Edition, 2003, 42(40): 4937-4940. |
40 | GUO Qiang, SUN Keju, FENG Zhaochi, et al. A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance Raman spectroscopy[J]. Chemistry, 2012, 18(43): 13854-13860. |
41 | XU Le, HUANG Dading, LI Chengeng, et al. Construction of unique six-coordinated titanium species with an organic amine ligand in titanosilicate and their unprecedented high efficiency for alkene epoxidation[J]. Chemical Communications, 2015, 51(43): 9010-9013. |
42 | WU Lizhi, DENG Xiujuan, ZHAO Shufang, et al. Synthesis of a highly active oxidation catalyst with improved distribution of titanium coordination states[J]. Chemical Communications, 2016, 52(56): 8679-8682. |
43 | FAN Xueyan, HU Wende, JIN Shaoqing, et al. Effect of P modification on the structure and catalytic performance of Ti-MWW zeolite[J]. Microporous and Mesoporous Materials, 2022, 336: 111887. |
44 | TORRES C, POTTS D S, FLAHERTY D W. Solvent mediated interactions on alkene epoxidations in Ti-MFI: Effects of solvent identity and silanol density[J]. ACS Catalysis, 2023, 13(13): 8925-8942. |
45 | BREGANTE D T, JOHNSON A M, PATEL A Y, et al. Cooperative effects between hydrophilic pores and solvents: Catalytic consequences of hydrogen bonding on alkene epoxidation in zeolites[J]. Journal of the American Chemical Society, 2019, 141(18): 7302-7319. |
46 | POTTS D S, JEYARAJ V S, KWON O, et al. Effect of interactions between alkyl chains and solvent structures on lewis acid catalyzed epoxidations[J]. ACS Catalysis, 2022, 12(21): 13372-13393. |
47 | GROSSO-GIORDANO N A, SCHROEDER C, OKRUT A, et al. Outer-sphere control of catalysis on surfaces: A comparative study of Ti(Ⅳ) single-sites grafted on amorphous versus crystalline silicates for alkene epoxidation[J]. Journal of the American Chemical Society, 2018, 140(15): 4956-4960. |
48 | FAN Wei, SNYDER M A, KUMAR S, et al. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity[J]. Nature Materials, 2008, 7(12): 984-991. |
49 | YOO W C, KUMAR S, PENN R L, et al. Growth patterns and shape development of zeolite nanocrystals in confined syntheses[J]. Journal of the American Chemical Society, 2009, 131(34): 12377-12383. |
50 | CHEN Huiyong, WYDRA James, ZHANG Xueyi, et al. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure[J]. Journal of the American Chemical Society, 2011, 133(32): 12390-12393. |
51 | SUN Minghui, CHEN Lihua, YU Shen, et al. Micron-sized zeolite beta single crystals featuring intracrystal interconnected ordered macro-meso-microporosity displaying superior catalytic performance[J]. Angewandte Chemie, 2020, 132(44): 19750-19759. |
52 | MACHOKE A G, BELTRÁN A M, INAYAT A, et al. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores[J]. Advanced Materials, 2015, 27(6): 1066-1070. |
53 | KRISHNAMURTHY Manikandan, SWAMINATHAN M. Synthesis of hierarchical micro-mesoporous ZSM-5 zeolite and its catalytic activity in benzylation of mesitylene[J]. Silicon, 2023, 15(8): 3399-3405. |
54 | 胡雨, 杨雪, 田辉平. 软模板法制备多级孔ZSM-5分子筛的研究进展[J]. 工业催化, 2020, 28(1): 1-10. |
HU Yu, YANG Xue, TIAN Huiping. Research advance in synthesis hierarchical ZSM-5 zeolites with soft templates[J]. Industrial Catalysis, 2020, 28(1): 1-10. | |
55 | NA Kyungsu, Changbum JO, KIM Jeongnam, et al. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science, 2011, 333(6040): 328-332. |
56 | SEO Yongbeom, LEE Sungjune, Changbum JO, et al. Microporous aluminophosphate nanosheets and their nanomorphic zeolite analogues tailored by hierarchical structure-directing amines[J]. Journal of the American Chemical Society, 2013, 135(24): 8806-8809. |
57 | HAN Seung Won, PARK Hongjun, HAN Jongho, et al. PtZn intermetallic compound nanoparticles in mesoporous zeolite exhibiting high catalyst durability for propane dehydrogenation[J]. ACS Catalysis, 2021, 11(15): 9233-9241. |
58 | ZHANG Yunjuan, CHE Shunai. π-π interactions between aromatic groups in amphiphilic molecules: Directing hierarchical growth of porous zeolites[J]. Angewandte Chemie International Edition, 2020, 59(1): 50-60. |
59 | XU Le, JI Xinyi, LI Shenhui, et al. Self-assembly of cetyltrimethylammonium bromide and lamellar zeolite precursor for the preparation of hierarchical MWW zeolite[J]. Chemistry of Materials, 2016, 28(12): 4512-4521. |
60 | ZHANG Xueyi, LIU Dongxia, XU Dandan, et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching[J]. Science, 2012, 336(6089): 1684-1687. |
61 | ZHANG Qiang, MAYORAL Alvaro, TERASAKI Osamu, et al. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening[J]. Journal of the American Chemical Society, 2019, 141(9): 3772-3776. |
62 | WEI Ying, PARMENTIER Tanja E, DE JONG Krijn P, et al. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chemical Society Reviews, 2015, 44(20): 7234-7261. |
63 | CHEN Lihua, SUN Minghui, WANG Zhao, et al. Hierarchically structured zeolites: From design to application[J]. Chemical Reviews, 2020, 120(20): 11194-11294. |
64 | REN Shu, LIU Guojuan, WU Xian, et al. Enhanced MTO performance over acid treated hierarchical SAPO-34[J]. Chinese Journal of Catalysis, 2017, 38(1): 123-130. |
65 | 刘昶, 蹇瑞红, 王凤来, 等. 利于加氢裂化过程多环芳烃高效转化的Y型分子筛开发[J]. 当代化工, 2017, 46(6): 1040-1043, 1047. |
LIU Chang, JIAN Ruihong, WANG Fenglai, et al. Preparation and characterization of zeolite Y favoring PAHs conversion[J]. Contemporary Chemical Industry, 2017, 46(6): 1040-1043, 1047. | |
66 | 张泽, 程军, 仇亿, 等. 碱处理脱硅介孔分子筛催化脱氧断键制生物航油研究[J]. 化工学报, 2019, 70(8): 2919-2927. |
ZHANG Ze, CHENG Jun, QIU Yi, et al. Hydrodeoxygenation and hydrocracking to produce jet biofuel catalyzed by mesoporous zeolite desilicated with NaOH treatment[J]. CIESC Journal, 2019, 70(8): 2919-2927. | |
67 | ZHANG Xinxin, WANG Zhiheng, CHEN Zhipeng, et al. Molecular trapdoor mechanism of In-SSZ-13(MP) holds promise for selective electrochemical reduction of CO2 at low concentrations[J]. Applied Catalysis B: Environmental, 2022, 317: 121771. |
68 | WANG Darui, ZHANG Lin, CHEN Li, et al. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking[J]. Journal of Materials Chemistry A, 2015, 3(7): 3511-3521. |
69 | YANG Shitu, YU Chenxi, YU Lili, et al. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites[J]. Angewandte Chemie International Edition, 2017, 56(41): 12553-12556. |
70 | JAVIER García-Martínez, MARVIN Johnson, JULIA Valla, et al. Mesostructured zeolite Y—High hydrothermal stability and superior FCC catalytic performance[J]. Catalysis Science & Technology, 2012, 2(5): 987-994. |
71 | LIN Junzhong, YANG Taimin, LIN Cong, et al. Hierarchical MFI zeolite synthesized via regulating the kinetic of dissolution-recrystallization and their catalytic properties[J]. Catalysis Communications, 2018, 115: 82-86. |
72 | 史延强, 夏玥穜, 温朗友, 等. 过氧化氢及其基本有机化学品绿色合成技术[J]. 化工进展, 2021, 40(4): 2048-2059. |
SHI Yanqiang, XIA Yuetong, WEN Langyou, et al. Hydrogen peroxide and its green synthesis of basic organic chemicals[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2048-2059. | |
73 | QIAN Xufang F, LI Bin, HU Yuanyuan Y, et al. Exploring meso-/ microporous composite molecular sieves with core-shell structures[J]. Chemistry-A European Journal, 2012, 18(3): 931-939. |
74 | Hung Chin-Te, DUAN Linlin, ZHAO Tiancong, et al. Gradient hierarchically porous structure for rapid capillary-assisted catalysis[J]. Journal of the American Chemical Society, 2022, 144(13): 6091-6099. |
75 | GONG Hanzhang, ZHUANG Yuan, ZHANG Xiao, et al. Ni2P/Beta@SBA-16 core-shell catalyst with tunable shell thickness for the hydrodenitrogenation of quinoline[J]. Applied Catalysis B: Environmental, 2023, 330: 122574. |
76 | WEI Yingzhen, WANG Shuang, CHEN Mengyang, et al. Coaxial 3D printing of zeolite-based core-shell monolithic Cu-SSZ-13@SiO2 catalysts for diesel exhaust treatment[J]. Advanced Materials, 2023: e2302912. |
77 | MINTOVA Svetlana, OLSON Norman H, VALTCHEV Valentin, et al. Mechanism of zeolite A nanocrystal growth from colloids at room temperature[J]. Science, 1999, 283(5404): 958-960. |
78 | MINTOVA S, OLSON N H, BEIN T. Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids[J]. Angewandte Chemie International Edition, 1999, 38(21): 3201-3204. |
79 | QIN Zhengxing, MELINTE Georgian, GILSON Jean-Pierre, et al. The mosaic structure of zeolite crystals[J]. Angewandte Chemie, 2016, 128(48): 15273-15276. |
80 | MINTOVA Svetlana, GILSON Jean-Pierre, VALTCHEV Valentin. Advances in nanosized zeolites[J]. Nanoscale, 2013, 5(15): 6693-6703. |
81 | 滕加伟, 赵国良, 谢在库, 等. ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响[J]. 催化学报, 2004, 25(8): 602-606. |
TENG Jiawei, ZHAO Guoliang, XIE Zaiku, et al. Effect of ZSM-5 zeolite crystal size on propylene production from catalytic cracking of C4 olefins[J]. Chinese Journal of Catalysis, 2004, 25(8): 602-606. | |
82 | 齐国祯, 谢在库, 杨为民, 等. 甲醇制烯烃反应过程中SAPO-34催化剂积炭动力学研究[J]. 燃料化学学报, 2006, 34(2): 205-208. |
QI Guozhen, XIE Zaiku, YANG Weimin, et al. Kinetic modeling of coke formation on SAPO-34 catalyst in the transformation of methanol to olefins[J]. Journal of Fuel Chemistry and Technology, 2006, 34(2): 205-208. | |
83 | NISHIYAMA Norikazu, KAWAGUCHI Masumi, HIROTA Yuichiro, et al. Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction[J]. Applied Catalysis A: General, 2009, 362(1/2): 193-199. |
84 | SUN Qiming, WANG Ning, GUO Guanqi, et al. Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance[J]. Chemical Communications, 2015, 51(91): 16397-16400. |
85 | 胡林彦, 谢素娟, 王清遐, 等. 无导向剂直接水热合成小粒径的NaY分子筛[J]. 催化学报, 2007, 28(9): 761-765. |
HU Linyan, XIE Sujuan, WANG Qingxia, et al. Direct synthesis of NaY zeolite with small crystal size via hydrothermal method without seed gel[J]. Chinese Journal of Catalysis, 2007, 28(9): 761-765. | |
86 | Eng-Poh NG, CHATEIGNER Daniel, BEIN Thomas, et al. Capturing ultrasmall EMT zeolite from template-free systems[J]. Science, 2012, 335(6064): 70-73. |
87 | AWALA Hussein, GILSON Jean-Pierre, RETOUX Richard, et al. Template-free nanosized faujasite-type zeolites[J]. Nature Materials, 2015, 14(4): 447-451. |
88 | CHOI Minkee, NA Kyungsu, KIM Jeongnam, et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461(7261): 246-249. |
89 | FENG Rui, YAN Xinlong, HU Xiaoyan, et al. Direct synthesis of b-axis oriented H-form ZSM-5 zeolites with an enhanced performance in the methanol to propylene reaction[J]. Microporous and Mesoporous Materials, 2020, 302: 110246. |
90 | ZHANG Jiaxing, REN Limin, ZHOU Ajuan, et al. Tailored synthesis of ZSM-5 nanosheets with controllable b-axis thickness and aspect ratio: Strategy and growth mechanism[J]. Chemistry of Materials, 2022, 34(7): 3217-3226. |
91 | LU Kun, HUANG Ju, REN Li, et al. High ethylene selectivity in methanol-to-olefin (MTO) reaction over MOR-zeolite nanosheets[J]. Angewandte Chemie International Edition, 2020, 59(15): 6258-6262. |
92 | DAI Weijiong, KOUVATAS Cassandre, TAI Wenshu, et al. Platelike MFI crystals with controlled crystal faces aspect ratio[J]. Journal of the American Chemical Society, 2021, 143(4): 1993-2004. |
93 | SHAN Zhichao, WANG Hong, MENG Xiangju, et al. Designed synthesis of TS-1 crystals with controllable b-oriented length[J]. Chemical Communications, 2011, 47(3): 1048-1050. |
94 | LI Shiying, SHI Hu, WANG Sen, et al. Assembly of silicalite-1 crystals like toy lego bricks into one-, two-, and three-dimensional architectures for enhancing its adsorptive separation and catalytic performances[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 58085-58095. |
95 | LI Wenhui, ZHANG Jiaxing, JIANG Xiao, et al. Co-promoted In2O3/ZrO2 integrated with ultrathin nanosheet HZSM-5 as efficient catalysts for CO2 hydrogenation to gasoline[J]. Industrial & Engineering Chemistry Research, 2022, 61(19): 6322-6332. |
96 | MENG Lingqian, ZHU Xiaochun, HENSEN Emiel J M. Stable Fe/ZSM-5 nanosheet zeolite catalysts for the oxidation of benzene to phenol[J]. ACS Catalysis, 2017, 7(4): 2709-2719. |
97 | ZHANG Lei, FU Wenqian, YU Quanyong, et al. Ni2P clusters on zeolite nanosheet assemblies with high activity and good stability in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2016, 338: 210-221. |
98 | WANG Chengtao, FANG Wei, LIU Zhiqiang, et al. Fischer-Tropsch synthesis to olefins boosted by MFI zeolite nanosheets[J]. Nature Nanotechnology, 2022, 17(7): 714-720. |
99 | MA Ye, TANG Xiaomin, HU Junyi, et al. Design of a small organic template for the synthesis of self-pillared pentasil zeolite nanosheets[J]. Journal of the American Chemical Society, 2022, 144(14): 6270-6277. |
100 | 陈毅, 张嘉兴, 党飞雄, 等. 自柱撑型纳米分子筛的制备及其在正庚烷裂解反应中的应用[J]. 现代化工, 2023, 43(5): 166-171. |
CHEN Yi, ZHANG Jiaxing, DANG Feixiong, et al. Synthesis of self-pillared nano molecular sieve and its application in n-heptane cracking reaction[J]. Modern Chemical Industry, 2023, 43(5): 166-171. | |
101 | JAIN Rishabh, CHAWLA Aseem, LINARES Noemi, et al. Spontaneous pillaring of pentasil zeolites[J]. Advanced Materials, 2021, 33(22): 2100897. |
102 | WEISZ P B, FRILETTE V J, MAATMAN R W, et al. Catalysis by crystalline aluminosilicates Ⅱ. Molecular-shape selective reactions[J]. Journal of Catalysis, 1962, 1(4): 307-312. |
103 | DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821. |
104 | 谢在库. 新结构高性能多孔催化材料[M]. 北京: 中国石化出版社, 2010: 1-25. |
XIE Zaiku. Porous catalytic materials with new structure and improved performance[M]. Beijing: China Petrochemical Press, 2010: 1-25. | |
105 | WILSON S T, BROACH R W, BLACKWELL C S, et al. Synthesis, characterization and structure of SAPO-56, a member of the ABC double-six-ring family of materials with stacking sequence AABBCCBB[J]. Microporous and Mesoporous Materials, 1999, 28(1): 125-137. |
106 | ELOMARI S, BURTON A W, ONG K, et al. Synthesis and structure solution of zeolite SSZ-65[J]. Chemistry of Materials, 2007, 19(23): 5485-5492. |
107 | KAPACA Elina, JIANG Jiuxing, CHO Jung, et al. Synthesis and structure of a 22×12×12 extra-large pore zeolite ITQ-56 determined by 3D electron diffraction[J]. Journal of the American Chemical Society, 2021, 143(23): 8713-8719. |
108 | KEMP Kingsley Christian, CHOI Wanuk, Donghui JO, et al. Synthesis and structure of the medium-pore zeolite PST-35 with two interconnected cages of unusual orthorhombic shape[J]. Chemical Science, 2022, 13(35): 10455-10460. |
109 | LIU Zhuo, SONG Xiaowei, LI Jiyang, et al. |(C4NH12)4|[M4Al12P16O64](M=Co, Zn): New heteroatom-containing aluminophosphate molecular sieves with two intersecting 8-ring channels[J]. Inorganic Chemistry, 2012, 51(3): 1969-1974. |
110 | XU Yan, LI Yi, HAN Yide, et al. A gallogermanate zeolite with eleven-membered-ring channels[J]. Angewandte Chemie International Edition, 2013, 52(21): 5501-5503. |
111 | HAN Yide, LI Yi, YU Jihong, et al. A gallogermanate zeolite constructed exclusively by three-ring building units[J]. Angewandte Chemie International Edition, 2011, 50(13): 3003-3005. |
112 | SHAO Lang, LI Yi, YU Jihong, et al. Divalent-metal-stabilized aluminophosphates exhibiting a new zeolite framework topology[J]. Inorganic Chemistry, 2012, 51(1): 225-229. |
113 | LIN Qingfang, Rei Gao Zihao, LIN Cong, et al. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores[J]. Science, 2021, 374(6575): 1605-1608. |
114 | LI Jian, Rei Gao Zihao, LIN Qingfang, et al. A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate[J]. Science, 2023, 379(6629): 283-287. |
115 | SU Jie, WANG Yingxia, WANG Zheming, et al. PKU-9: An aluminogermanate with a new three-dimensional zeolite framework constructed from CGS layers and Spiro-5 units[J]. Journal of the American Chemical Society, 2009, 131(17): 6080-6081. |
116 | HUA Wei, CHEN Hong, YU Zhengbao, et al. A germanosilicate structure with 11×11×12-ring channels solved by electron crystallography[J]. Angewandte Chemie International Edition, 2014, 53(23): 5868-5871. |
117 | ZHANG Chuanqi, KAPACA Elina, LI Jiyang, et al. An extra-large-pore zeolite with 24×8×8-ring channels using a structure-directing agent derived from traditional Chinese medicine[J]. Angewandte Chemie International Edition, 2018, 57(22): 6486-6490. |
118 | LIU Xue, MAO Wenting, JIANG Jingang, et al. Topotactic conversion of alkali-treated intergrown germanosilicate CIT-13 into single-crystalline ECNU-21 zeolite as shape-selective catalyst for ethylene oxide hydration[J]. Chemistry-A European Journal, 2019, 25(17): 4520-4529. |
119 | LUO Yi, Smeets Stef, PENG Fei, et al. Synthesis and structure determination of large-pore zeolite SCM-14[J]. Chemistry, 2017, 23(66): 16829-16834. |
120 | LUO Yi, SMEETS Stef, WANG Zhendong, et al. Synthesis and structure determination of SCM-15: A 3D large pore zeolite with interconnected straight 12×12×10-ring channels[J]. Chemistry-A European Journal, 2019, 25(9): 2184-2188. |
121 | CUNDY Colin S, Paul A COX. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time[J]. Chemical Reviews, 2003, 103(3): 663-702. |
122 | FLANIGEN Edith M, PATTON Robert L. Silica polymorph and process for preparing same: US4073865[P]. 1978-02-14. |
123 | QIU Shilun, PANG Wenqin, KESSLER Henri, et al. Synthesis and structure of the [AlPO4]12 Pr4NF molecular sieve with AFI structure[J]. Zeolites, 1989, 9(5): 440-444. |
124 | GUTH J L, KESSLER H, WEY R. New route to pentasil-type zeolites using a non alkaline medium in the presence of fluoride ions[J]. Studies in Surface Science and Catalysis, 1986, 28: 121-128. |
125 | LEWIS G J, MILLER M A, MOSCOSO J G, et al. Experimental charge density matching approach to zeolite synthesis[J]. Studies in Surface Science and Catalysis, 2004, 154: 364-372. |
126 | BLACKWELL C S, BROACH R W, GATTER M G, et al. Open-framework materials synthesized in the TMA+/TEA+ mixed-template system: The new low Si/Al ratio zeolites UZM-4 and UZM-5[J]. Angewandte Chemie International Edition, 2003, 42(15): 1737-1740. |
127 | PARK Min Bum, Donghui JO, JEON Him Chan, et al. Zeolite synthesis from a charge density perspective: The charge density mismatch synthesis of UZM-5 and UZM-9[J]. Chemistry of Materials, 2014, 26(23): 6684-6694. |
128 | LEE Hwajun, SHIN Jiho, LEE Kyounghwan, et al. Synthesis of thermally stable SBT and SBS/SBT intergrowth zeolites[J]. Science, 2021, 373(6550): 104-107. |
129 | KANG J H, MCCUSKER L B, DEEM M W, et al. Further investigations of racemic and chiral molecular sieves of the STW topology[J]. Chemistry of Materials, 2021, 33(5): 1752-1759. |
130 | SCHMITT K D, KENNEDY G J. Toward the rational design of zeolite synthesis: The synthesis of zeolite ZSM-18[J]. Zeolites, 1994, 14(8): 635-642. |
131 | WAGNER P, NAKAGAWA Y, LEE G S, et al. Guest/host relationships in the synthesis of the novel cage-based zeolites SSZ-35, SSZ-36, and SSZ-39[J]. Journal of the American Chemical Society, 2000, 122(2): 263-273. |
132 | ROTH W J, NACHTIGALL P, MORRIS R E, et al. A family of zeolites with controlled pore size prepared using a top-down method[J]. Nature Chemistry, 2013, 5(7): 628-633. |
133 | Pavla ELIÁŠOVÁ, OPANASENKO Maksym, WHEATLEY Paul S, et al. The ADOR mechanism for the synthesis of new zeolites[J]. Chemical Society Reviews, 2015, 44(20): 7177-7206. |
134 | VERHEYEN Elke, JOOS Lennart, VAN HAVENBERGH Kristof, et al. Design of zeolite by inverse sigma transformation[J]. Nature Materials, 2012, 11(12): 1059-1064. |
135 | HENKELIS Susan E, MAZUR Michal, RICE Cameron M, et al. A procedure for identifying possible products in the assembly-disassembly-organization-reassembly (ADOR) synthesis of zeolites[J]. Nature Protocols, 2019, 14(3): 781-794. |
136 | BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist[J]. Nature, 2020, 583(7815): 237-241. |
137 | Daniel SCHWALBE-KODA, KWON Soonhyoung, PARIS Cecilia, et al. A priori control of zeolite phase competition and intergrowth with high-throughput simulations[J]. Science, 2021, 374(6565): 308-315.. |
138 | LUO Yi, FU Wenhua, WANG Bin, et al. SCM-25: A zeolite with ordered meso-cavities interconnected by 12×12×10-ring channels determined by 3D electron diffraction[J]. Inorganic Chemistry, 2022, 61(10): 4371-4377. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[6] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[7] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[8] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[9] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[10] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[11] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[12] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[13] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[14] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[15] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |