Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1321-1331.DOI: 10.16085/j.issn.1000-6613.2022-1006
• Industrial catalysis • Previous Articles Next Articles
ZHANG Chenguang1(), FENG Shuo1, XING Yuye2, SHEN Boxiong1,2(), SU Lichao3
Received:
2022-05-30
Revised:
2022-10-24
Online:
2023-04-10
Published:
2023-03-15
Contact:
SHEN Boxiong
张晨光1(), 封硕1, 邢玉烨2, 沈伯雄1,2(), 苏立超3
通讯作者:
沈伯雄
作者简介:
张晨光(1999—),男,硕士研究生,研究方向为烟气中污染物控制。E-mail:2287588410@qq.com。
基金资助:
CLC Number:
ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331.
张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1006
Si/Al | 制备方式 | 测试条件 | 脱硝效率 | 参考文献 |
---|---|---|---|---|
6 | 液相离子交换 | [NO]=[NH3]=500mg/kg,[O2]=5%,体积空速=25000h-1 | >90%(175~550℃) | [ |
6.5 | 液相离子交换 | [NO]=[NH3]=200mg/kg,[O2]=5%,体积空速=60000h-1 | >90%(250~500℃) | [ |
11 | 液相离子交换 | [NO]=[NH3]=500mg/kg,[O2]=5%,体积空速=120000h-1 | >90%(200~500℃) | [ |
24 | 液相离子交换 | [NO]=[NH3]=350mg/kg,[O2]=14%,体积空速=30000h-1 | >90%(200~450℃) | [ |
Si/Al | 制备方式 | 测试条件 | 脱硝效率 | 参考文献 |
---|---|---|---|---|
6 | 液相离子交换 | [NO]=[NH3]=500mg/kg,[O2]=5%,体积空速=25000h-1 | >90%(175~550℃) | [ |
6.5 | 液相离子交换 | [NO]=[NH3]=200mg/kg,[O2]=5%,体积空速=60000h-1 | >90%(250~500℃) | [ |
11 | 液相离子交换 | [NO]=[NH3]=500mg/kg,[O2]=5%,体积空速=120000h-1 | >90%(200~500℃) | [ |
24 | 液相离子交换 | [NO]=[NH3]=350mg/kg,[O2]=14%,体积空速=30000h-1 | >90%(200~450℃) | [ |
催化剂 | 拓扑结构 | 水热老化条件 | 测试条件 | 脱硝效率 | 参考文献 |
---|---|---|---|---|---|
Cu-LTA | LTA | [温度]=900℃,[H2O]=10%,[时间]=12h | [NH3]=[NO]=0.05%,体积空速=100000h-1,[O2]=5%,[H2O]=10% | >90%(250~600℃)-新鲜,>80%(250~550℃)-老化 | [ |
Cu-SSZ-39 | AFI | [温度]=850℃,[H2O]=10%,[时间]=16h | [NH3]=[NO]=0.05%,体积空速=25000h-1,[O2]=5%,[H2O]=5% | 约100%(225~450℃)-新鲜,>80%(250~500℃)-老化 | [ |
Cu-AFX | AFX | [温度]=800℃,[H2O]=5%,[时间]=16h | [NH3]=[NO]=0.03%,体积空速=144000h-1,[O2]=5%,[H2O]=3% | 约100%(250~400℃)-新鲜,约100%(250~350℃)-老化 | [ |
Cu-ERI | ERI | [温度]=850℃,[H2O]=10%,[时间]=5h | [NH3]=[NO]=0.03%,体积空速=50000h-1,[O2]=5%,[H2O]=3% | >90%(250~600℃)-新鲜,>70%(250~500℃)-老化 | [ |
Cu-ZJM-7 | KFI | [温度]=850℃,[H2O]=10%,[时间]=12h | [NH3]=[NO]=0.05%,体积空速=80000h-1,[O2]=5%,[H2O]=5% | 约100%(200~400℃)-新鲜,>80%(250~400℃)-老化 | [ |
Cu-UZM-35 | MSE | [温度]=800℃,[H2O]=10%,[时间]=24h | [NH3]=[NO]=0.05%,体积空速=100000h-1,[O2]=5%,[H2O]=10% | 约100%(200~450℃)-新鲜,>80%(250~500℃)-老化 | [ |
催化剂 | 拓扑结构 | 水热老化条件 | 测试条件 | 脱硝效率 | 参考文献 |
---|---|---|---|---|---|
Cu-LTA | LTA | [温度]=900℃,[H2O]=10%,[时间]=12h | [NH3]=[NO]=0.05%,体积空速=100000h-1,[O2]=5%,[H2O]=10% | >90%(250~600℃)-新鲜,>80%(250~550℃)-老化 | [ |
Cu-SSZ-39 | AFI | [温度]=850℃,[H2O]=10%,[时间]=16h | [NH3]=[NO]=0.05%,体积空速=25000h-1,[O2]=5%,[H2O]=5% | 约100%(225~450℃)-新鲜,>80%(250~500℃)-老化 | [ |
Cu-AFX | AFX | [温度]=800℃,[H2O]=5%,[时间]=16h | [NH3]=[NO]=0.03%,体积空速=144000h-1,[O2]=5%,[H2O]=3% | 约100%(250~400℃)-新鲜,约100%(250~350℃)-老化 | [ |
Cu-ERI | ERI | [温度]=850℃,[H2O]=10%,[时间]=5h | [NH3]=[NO]=0.03%,体积空速=50000h-1,[O2]=5%,[H2O]=3% | >90%(250~600℃)-新鲜,>70%(250~500℃)-老化 | [ |
Cu-ZJM-7 | KFI | [温度]=850℃,[H2O]=10%,[时间]=12h | [NH3]=[NO]=0.05%,体积空速=80000h-1,[O2]=5%,[H2O]=5% | 约100%(200~400℃)-新鲜,>80%(250~400℃)-老化 | [ |
Cu-UZM-35 | MSE | [温度]=800℃,[H2O]=10%,[时间]=24h | [NH3]=[NO]=0.05%,体积空速=100000h-1,[O2]=5%,[H2O]=10% | 约100%(200~450℃)-新鲜,>80%(250~500℃)-老化 | [ |
1 | ZHANG Wenbo, CHEN Jialing, GUO Li, et al. Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1294-1315. |
2 | 陶汉国, 徐富强, 汪利峰, 等. 柴油机超低排放后处理系统及催化剂的研发探讨[J]. 中国环保产业, 2021(11): 52-57, 62. |
TAO Hanguo, XU Fuqiang, WANG Lifeng, et al. Research and development of after-treatment system and catalyst for ultra-low emission of diesel engine[J]. China Environmental Protection Industry, 2021(11): 52-57, 62. | |
3 | Beñat PEREDA-AYO, DE LA TORRE Unai, ILLÁN-GÓMEZ María José, et al. Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NO x with NH3 [J]. Applied Catalysis B: Environmental, 2014, 147: 420-428. |
4 | 钟秋月, 高延新, 胡帅. 柴油机Cu基分子筛催化剂的特性研究[J]. 汽车实用技术, 2018(23): 257-258. |
ZHONG Qiuyue, GAO Yanxin, HU Shuai. The research on the characteristics of Cu-based zeolite for diesel engine[J]. Automobile Applied Technology, 2018(23): 257-258. | |
5 | YASHNIK Svetlana, ISMAGILOV Zinfer. Cu-substituted ZSM-5 catalyst: Controlling of DeNO x reactivity via ion-exchange mode with copper-ammonia solution[J]. Applied Catalysis B: Environmental, 2015, 170: 241-254. |
6 | 张冉冉, 李永红. Cu基分子筛NH3-SCR脱硝催化剂的研究进展[J]. 现代化工, 2015, 35(8): 67-71. |
ZHANG Ranran, LI Yonghong. Progress of Cu-zeolites catalysts for removal of NO with NH3 selective catalytic reduction technology[J]. Modern Chemical Industry, 2015, 35(8): 67-71. | |
7 | SHAN Yulong, DU Jinpeng, ZHANG Yan, et al. Selective catalytic reduction of NO x with NH3: Opportunities and challenges of Cu-based small-pore zeolites[J]. National Science Review, 2021, 8(10): nwab010. |
8 | SHAN Wenpo, YU Yunbo, ZHANG Yan, et al. Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO x with NH3 [J]. Catalysis Today, 2021, 376: 292-301. |
9 | YAO Dongwei, LIU Biao, WU Feng, et al. N2O formation mechanism during low-temperature NH3-SCR over Cu-SSZ-13 catalysts with different Cu loadings[J]. Industrial & Engineering Chemistry Research, 2021, 60(28): 10083-10093. |
10 | JOHNSON Timothy, JOSHI Ameya. Review of vehicle engine efficiency and emissions[J]. SAE International Journal of Engines, 2018, 11(6): 1307-1330. |
11 | CHEN Zhiqiang, YE Tianle, QU Hongxia, et al. Progressive regulation of Al sites and Cu distribution to increase hydrothermal stability of hierarchical SSZ-13 for the selective catalytic reduction reaction[J]. Applied Catalysis B: Environmental, 2022, 303: 120867. |
12 | SONG James, WANG Yilin, WALTER Eric D, et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability[J]. ACS Catalysis, 2017, 7(12): 8214-8227. |
13 | MA Yue, CHENG Songqi, WU Xiaodong, et al. Improved hydrothermal durability of Cu-SSZ-13 NH3-SCR catalyst by surface Al modification: Affinity and passivation[J]. Journal of Catalysis, 2022, 405: 199-211. |
14 | ZHAO Huawang, WU Xiaomin, HUANG Zhiwei, et al. A comparative study of the thermal and hydrothermal aging effect on Cu-SSZ-13 for the selective catalytic reduction of NO x with NH3 [J]. Chinese Journal of Chemical Engineering, 2022, 45: 68-77. |
15 | ZHANG Li, WANG Di, LIU Yong, et al. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B: Environmental, 2014, 156/157: 371-377. |
16 | LIANG Jian, TAO Jinxiong, MI Yangyang, et al. Unraveling the boosting low-temperature performance of ordered mesoporous Cu-SSZ-13 catalyst for NO x reduction[J]. Chemical Engineering Journal, 2021, 409: 128238. |
17 | JANGJOU Yasser, Quan DO, GU Yuntao, et al. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catalysis, 2018, 8(2): 1325-1337. |
18 | MESILOV Vitaly V, BERGMAN Susanna L, DAHLIN Sandra, et al. Differences in oxidation-reduction kinetics and mobility of Cu species in fresh and SO 2 - poisoned Cu-SSZ-13 catalysts[J]. Applied Catalysis B: Environmental, 2021, 284: 119756. |
19 | ZHANG Yani, ZHU Hongchang, ZHANG Tao, et al. Revealing the synergistic deactivation mechanism of hydrothermal aging and SO2 poisoning on Cu/SSZ-13 under SCR condition[J]. Environmental Science & Technology, 2022, 56(3): 1917-1926. |
20 | YONG Xin, ZHANG Cuijuan, WEI Miao, et al. Promotion of the performance of Cu-SSZ-13 for selective catalytic reduction of NO x by ammonia in the presence of SO2 during high temperature hydrothermal aging[J]. Journal of Catalysis, 2021, 394: 228-235. |
21 | KWAK Ja Hun, TRAN Diana, BURTON Sarah D, et al. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. Journal of Catalysis, 2012, 287: 203-209. |
22 | GAO Feng, János SZANYI. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Applied Catalysis A: General, 2018, 560: 185-194. |
23 | FICKEL Dustin W, LOBO Raul F. Copper coordination in Cu-SSZ-13 and Cu-SSZ-16 investigated by variable-temperature XRD[J]. The Journal of Physical Chemistry C, 2010, 114(3): 1633-1640. |
24 | KWAK Ja Hun, ZHU Haiyang, LEE Jong H, et al. Two different cationic positions in Cu-SSZ-13?[J]. Chemical Communications, 2012, 48(39): 4758-4760. |
25 | ANDERSEN Casper Welzel, BREMHOLM Martin, VENNESTRØM Peter Nicolai Ravnborg, et al. Location of Cu2+ in CHA zeolite investigated by X-ray diffraction using the Rietveld/maximum entropy method[J]. International Union of Crystallography, 2014, 1(6): 382-386. |
26 | SHAN Yulong, SHAN Wenpo, SHI Xiaoyan, et al. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13[J]. Applied Catalysis B: Environmental, 2020, 264: 118511. |
27 | USUI Toyohiro, LIU Zhendong, Sayoko IBE, et al. Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce[J]. ACS Catalysis, 2018, 8(10): 9165-9173. |
28 | BEALE A M, LEZCANO-GONZALEZ I, SLAWINSKI W A, et al. Correlation between Cu ion migration behaviour and deNO x activity in Cu-SSZ-13 for the standard NH3-SCR reaction[J]. Chemical Communications, 2016, 52(36): 6170-6173. |
29 | HU Wenshuo, Selleri Tommaso, Gramigni Federica, et al. On the redox mechanism of low-temperature NH3-SCR over Cu-CHA: A combined experimental and theoretical study of the reduction half cycle[J]. Angewandte Chemie International Edition, 2021, 60(13): 7197-7204. |
30 | HU Wenshuo, GRAMIGNI Federica, NASELLO Nicole Daniela, et al. Dynamic binuclear CuII sites in the reduction half-cycle of low-temperature NH3–SCR over Cu-CHA catalysts[J]. ACS Catalysis, 2022, 12(9): 5263-5274. |
31 | ZHANG Dong, YANG Ralph T. N2O formation pathways over zeolite-supported Cu and Fe catalysts in NH3-SCR[J]. Energy & Fuels, 2018, 32(2): 2170-2182. |
32 | SHIH Arthur J, GONZÁLEZ Juan M, KHURANA Ishant, et al. Influence of ZCuOH, Z2Cu, and extraframework Cu x O y species in Cu-SSZ-13 on N2O formation during the selective catalytic reduction of NO x with NH3 [J]. ACS Catalysis, 2021, 11(16): 10362-10376. |
33 | Magdalena JABŁOŃSKA, Kinga GÓRA-MAREK, GRILC Miha, et al. Effect of textural properties and presence of Co-cation on NH3-SCR activity of Cu-exchanged ZSM-5[J]. Catalysts, 2021, 11(7): 843. |
34 | WANG Hao, XU Ruinian, JIN Yi, et al. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts[J]. Catalysis Today, 2019, 327: 295-307. |
35 | ZHANG Yani, ZHANG Jun, WANG Houlin, et al. Selective catalytic reduction of NO x with NH3 over Cu/SSZ-13: Elucidating dynamics of Cu active sites with in situ UV-Vis spectroscopy and DFT calculations[J]. The Journal of Physical Chemistry C, 2022, 126(20): 8720-8733. |
36 | DAYA Rohil, TRANDAL Dylan, MENON Unmesh, et al. Kinetic model for the reduction of CuII sites by NO + NH3 and reoxidation of NH3-solvated CuI sites by O2 and NO in Cu-SSZ-13[J]. ACS Catalysis, 2022, 12(11): 6418-6433. |
37 | LEE Hwangho, SONG Inhak, JEON Se Won, et al. Mobility of Cu ions in Cu-SSZ-13 determines the reactivity of selective catalytic reduction of NO x with NH3 [J]. The Journal of Physical Chemistry Letters, 2021, 12(12): 3210-3216. |
38 | WANG Xiaofeng, XU Yang, QIN Mengyue, et al. Insight into the effects of Cu2+ ions and CuO species in Cu-SSZ-13 catalysts for selective catalytic reduction of NO by NH3 [J]. Journal of Colloid and Interface Science, 2022, 622: 1-10. |
39 | WIJAYANTI Kurnia, LEISTNER Kirsten, CHAND Shilpa, et al. Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions[J]. Catalysis Science & Technology, 2016, 6(8): 2565-2579. |
40 | WEI Lingang, GUO Ruitang, ZHOU Jue, et al. Chemical deactivation and resistance of Mn-based SCR catalysts for NOx removal from stationary sources[J]. Fuel, 2022, 316: 123438. |
41 | ZHAO Ling, ZHANG Yu, KANG Mengdi. Recent advances in heighten sulfur resistance of SCR catalysts: A review[J]. Environmental Engineering Research, 2022, 27(1): 200642. |
42 | SHIH Arthur J, KHURANA Ishant, LI Hui, et al. Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NO x selective catalytic reduction[J]. Applied Catalysis A: General, 2019, 574: 122-131. |
43 | ZHANG Juan, SHAN Yulong, ZHANG Ling, et al. Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2020, 277: 119193. |
44 | Wenting LYU, WANG Sen, WANG Pengfei, et al. Regulation of Al distributions and Cu2+ locations in SSZ-13 zeolites for NH3-SCR of NO by different alkali metal cations[J]. Journal of Catalysis, 2021, 393: 190-201. |
45 | JIANG Han, GUAN Bin, PENG Xuesong, et al. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction[J]. Chemical Engineering Journal, 2020, 379: 122358. |
46 | ZHAO Huawang, YANG Guangpeng, HILL Alexander J, et al. One-step ion-exchange from Na-SSZ-13 to Cu-SSZ-13 for NH3-SCR by adjusting the pH value of Cu-exchange solution: The effect of H+ ions on activity and hydrothermal stability[J]. Microporous and Mesoporous Materials, 2021, 324: 111271. |
47 | Taekyung RYU, Nak Ho AHN, SEO Seungwan, et al. Fully copper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH3-SCR catalysts[J]. Angewandte Chemie International Edition, 2017, 56(12): 3256-3260. |
48 | WANG Aiyong, ARORA Prakhar, BERNIN Diana, et al. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2019, 246: 242-253. |
49 | OGURA Masaru, SHIMADA Yumiko, OHNISHI Takeshi, et al. AFX zeolite for use as a support of NH3-SCR catalyst mining through AICE joint research project of industries-academia-academia[J]. Catalysts, 2021, 11(2): 163. |
50 | ZHU Jie, LIU Zhendong, XU Le, et al. Understanding the high hydrothermal stability and NH3-SCR activity of the fast-synthesized ERI zeolite[J]. Journal of Catalysis, 2020, 391: 346-356. |
51 | HAN Shichao, TANG Xiaomin, WANG Lijin, et al. Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2021, 281: 119480. |
52 | LEE Jeong Hwan, KIM Young Jin, Taekyung RYU, et al. Synthesis of zeolite UZM-35 and catalytic properties of copper-exchanged UZM-35 for ammonia selective catalytic reduction[J]. Applied Catalysis B: Environmental, 2017, 200: 428-438. |
53 | Taekyung RYU, KIM Hyojun, HONG Suk Bong. Nature of active sites in Cu-LTA NH3-SCR catalysts: A comparative study with Cu-SSZ-13[J]. Applied Catalysis B: Environmental, 2019, 245: 513-521. |
54 | WANG Aiyong, OLSSON Louise. Insight into the SO2 poisoning mechanism for NO x removal by NH3-SCR over Cu/LTA and Cu/SSZ-13[J]. Chemical Engineering Journal, 2020, 395: 125048. |
55 | 谭丕强, 段立爽, 楼狄明, 等. 柴油机选择性催化还原捕集技术(SDPF)的研究现状与发展趋势[J]. 中国环境科学, 2021, 41(12): 5495-5511. |
TAN Piqiang, DUAN Lishuang, LOU Diming, et al. Research status and development trend of selective catalytic reduction filter(SDPF) technology of diesel engines[J]. China Environmental Science, 2021, 41(12): 5495-5511. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |