Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1332-1340.DOI: 10.16085/j.issn.1000-6613.2022-0818
• Industrial catalysis • Previous Articles Next Articles
CHEN Shaoyun1,2(), ZHOU Xiantai2, JI Hongbing2()
Received:
2022-05-05
Revised:
2022-09-16
Online:
2023-04-10
Published:
2023-03-15
Contact:
JI Hongbing
通讯作者:
纪红兵
作者简介:
陈韶云(1984—),女,博士,副教授,研究方向为光电磁功能材料的制备及其性能。E-mail:cescsy@jhun.edu.cn。
基金资助:
CLC Number:
CHEN Shaoyun, ZHOU Xiantai, JI Hongbing. Preparation of metalloporphyrin/carbon nanotube biomimetic catalysts and its catalytic mechanism in baeyer-villiger oxidation[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1332-1340.
陈韶云, 周贤太, 纪红兵. 金属卟啉/碳纳米管仿生催化剂的制备及其在Baeyer-Villiger氧化反应中的催化机理[J]. 化工进展, 2023, 42(3): 1332-1340.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0818
编号 | 催化剂 | 环己酮的 转化率/% | ε-己内酯的收率/% | ε-己内酯的选择性/% |
---|---|---|---|---|
1 | — | 22 | 22 | >99 |
2 | FeTPPCl-π-π-c-MWCNTs | 96 | 96 | >99 |
3 | FeTPPCl-π-π-MWCNTs | 80 | 80 | >99 |
4 | SnTPP-π-π-c-MWCNTs | 64 | 64 | >99 |
5 | SnTPP-π-π-MWCNTs | 60 | 60 | >99 |
6 | FeTPPCl-π-π-c-MWCNTs | 0 | 0 | — |
编号 | 催化剂 | 环己酮的 转化率/% | ε-己内酯的收率/% | ε-己内酯的选择性/% |
---|---|---|---|---|
1 | — | 22 | 22 | >99 |
2 | FeTPPCl-π-π-c-MWCNTs | 96 | 96 | >99 |
3 | FeTPPCl-π-π-MWCNTs | 80 | 80 | >99 |
4 | SnTPP-π-π-c-MWCNTs | 64 | 64 | >99 |
5 | SnTPP-π-π-MWCNTs | 60 | 60 | >99 |
6 | FeTPPCl-π-π-c-MWCNTs | 0 | 0 | — |
编号 | 溶剂 | 反应温度 /℃ | 环己酮的 转化率/% | ε-己内酯的收率/% | ε-己内酯的选择性/% |
---|---|---|---|---|---|
1 | 1,4-二氧六环 | 50 | 4 | 4 | >99 |
2 | 三氟甲苯 | 50 | 85 | 85 | >99 |
3 | 乙腈 | 50 | 66 | 66 | >99 |
4 | 乙酸乙酯 | 50 | 74 | 74 | >99 |
5 | 1,2-二氯乙烷 | 60 | 97 | 97 | >99 |
6 | 1,2-二氯乙烷 | 50 | 96 | 96 | >99 |
7 | 1,2-二氯乙烷 | 40 | 59 | 59 | >99 |
8 | 1,2-二氯乙烷 | 30 | 21 | 21 | >99 |
编号 | 溶剂 | 反应温度 /℃ | 环己酮的 转化率/% | ε-己内酯的收率/% | ε-己内酯的选择性/% |
---|---|---|---|---|---|
1 | 1,4-二氧六环 | 50 | 4 | 4 | >99 |
2 | 三氟甲苯 | 50 | 85 | 85 | >99 |
3 | 乙腈 | 50 | 66 | 66 | >99 |
4 | 乙酸乙酯 | 50 | 74 | 74 | >99 |
5 | 1,2-二氯乙烷 | 60 | 97 | 97 | >99 |
6 | 1,2-二氯乙烷 | 50 | 96 | 96 | >99 |
7 | 1,2-二氯乙烷 | 40 | 59 | 59 | >99 |
8 | 1,2-二氯乙烷 | 30 | 21 | 21 | >99 |
编号 | 催化剂用量 /mg | 环己酮的 转化率/% | ε-己内酯的 收率/% | ε-己内酯的 选择性/% |
---|---|---|---|---|
1 | 0 | 22 | 22 | >99 |
2 | 1.2 | 60 | 60 | >99 |
3 | 2.5 | 70 | 70 | >99 |
4 | 5.0 | 96 | 96 | >99 |
5 | 10.0 | 95 | 95 | >99 |
编号 | 催化剂用量 /mg | 环己酮的 转化率/% | ε-己内酯的 收率/% | ε-己内酯的 选择性/% |
---|---|---|---|---|
1 | 0 | 22 | 22 | >99 |
2 | 1.2 | 60 | 60 | >99 |
3 | 2.5 | 70 | 70 | >99 |
4 | 5.0 | 96 | 96 | >99 |
5 | 10.0 | 95 | 95 | >99 |
编号 | 苯甲醛的用量 /mmol | 环己酮的 转化率/% | ε-己内酯的 收率/% | ε-己内酯的 选择性/% |
---|---|---|---|---|
1 | 1 | 45 | 45 | >99 |
2 | 2 | 55 | 55 | >99 |
3 | 4 | 96 | 96 | >99 |
4 | 6 | 98 | 97 | >99 |
5 | 8 | 96 | 97 | >99 |
编号 | 苯甲醛的用量 /mmol | 环己酮的 转化率/% | ε-己内酯的 收率/% | ε-己内酯的 选择性/% |
---|---|---|---|---|
1 | 1 | 45 | 45 | >99 |
2 | 2 | 55 | 55 | >99 |
3 | 4 | 96 | 96 | >99 |
4 | 6 | 98 | 97 | >99 |
5 | 8 | 96 | 97 | >99 |
编号 | 酮类反应物 | 产物 | 时间 /h | 转化率 /% | 收率 /% |
---|---|---|---|---|---|
1 | 8 | 96 | >99 | ||
2 | 10 | 5 | >99 | ||
3 | 10 | 81 | >99 | ||
4 | 10 | 93 | >99 | ||
5 | 8 | 98 | >99 | ||
6 | 8 | 98 | >99 | ||
7 | 8 | 17 | >99 |
编号 | 酮类反应物 | 产物 | 时间 /h | 转化率 /% | 收率 /% |
---|---|---|---|---|---|
1 | 8 | 96 | >99 | ||
2 | 10 | 5 | >99 | ||
3 | 10 | 81 | >99 | ||
4 | 10 | 93 | >99 | ||
5 | 8 | 98 | >99 | ||
6 | 8 | 98 | >99 | ||
7 | 8 | 17 | >99 |
编号 | 苯甲醛 | 催化剂 | BHT | 环己酮的转化率/% |
---|---|---|---|---|
1 | × | × | × | 0 |
2 | × | ○ | × | 0 |
3 | × | ○ | ○ | 0 |
4 | ○ | × | × | 22 |
5 | ○ | × | ○ | 0 |
6 | ○ | ○ | × | 96 |
7 | ○ | ○ | ○ | 0 |
编号 | 苯甲醛 | 催化剂 | BHT | 环己酮的转化率/% |
---|---|---|---|---|
1 | × | × | × | 0 |
2 | × | ○ | × | 0 |
3 | × | ○ | ○ | 0 |
4 | ○ | × | × | 22 |
5 | ○ | × | ○ | 0 |
6 | ○ | ○ | × | 96 |
7 | ○ | ○ | ○ | 0 |
1 | RENZ M, MEUNIER B. 100 years of Baeyer-villiger oxidations[J]. European Journal of Organic Chemistry, 1999, (4): 737-750. |
2 | 李子辉, 蒋晶, 金章勇, 等. 生物可降解PCL/PLA开孔发泡材料制备及吸油性能[J]. 化工学报, 2020, 71(12): 5842-5853. |
LI Zihui, JIANG Jing, JIN Zhangyong, et al. Preparation and oil absorption performance of biodegradable PCL/PLA open-cell foam material[J]. CIESC Journal, 2020, 71(12): 5842-5853. | |
3 | BATISTE D C, MEYERSOHN M S, WATTS A, et al. Efficient polymerization of methyl-ε-caprolactone mixtures to access sustainable aliphatic polyesters[J]. Macromolecules, 2020, 53(5): 1795-1808. |
4 | ROSA R P, FERREIRA F V, SARAVIA A P K, et al. A combined computational and experimental study on the polymerization of ε-caprolactone[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13387-13395. |
5 | CHÁVEZ G, HATTI-KAUL R, SHELDON R A, et al. Baeyer-Villiger oxidation with peracid generated in situ by CaLB-CLEA catalyzed perhydrolysis[J]. Journal of Molecular Catalysis B: enzymatic, 2013, 89: 67-72. |
6 | XIAO Guansheng, GAO Xi, YAN Weiting, et al. Baeyer-Villiger oxidation of cyclohexanone by hydrogen peroxide with Fe3O4@GO as catalyst under solvent free conditions[J]. Catalysis Letters, 2019, 149(7): 1765-1771. |
7 | OLSZÓWKA J E, KARCZ R, NAPRUSZEWSKA B D, et al. Effect of MgAl hydrotalcite crystallinity on catalytic Baeyer-Villiger oxidation of cyclohexanone with H2O2/acetonitrile[J]. Catalysis Communications, 2018, 107: 48-52. |
8 | ILOVAISKY A I, MERKULOVA V M, VIL’ V, et al. Regioselective baeyer-villiger oxidation of steroidal ketones to lactones using BF3/H2O2 [J].European Journal of Organic Chemistry, 2020, 3: 402-405. |
9 | DE GONZALO G, ALCÁNTARA A. Multienzymatic processes involving baeyer-villiger monooxygenases[J]. Catalysts, 2021, 11: 605. |
10 | LI Peilin, MA Yunjian, LI Yongru, et al. Cascade synthesis from cyclohexane to ε-caprolactone by visible-light-driven photocatalysis combined with whole-cell biological oxidation[J]. ChemBioChem, 2020, 21(13): 1852-1855. |
11 | SOLÉ J, BRUMMUND J, CAMINAL G, et al. Enzymatic synthesis of trimethyl-ε-caprolactone: process intensification and demonstration on a 100 L scale[J]. Organic Process Research & Development, 2019, 23(11): 2336-2344. |
12 | LIU Chunhua, WANG Zhuo, XIAO Liyun, et al. Acid/base-co-catalyzed formal baeyer-villiger oxidation reaction of ketones: using molecular oxygen as the oxidant[J]. Organic Letters, 2018, 20(16): 4862-4866. |
13 | FILATOV M, RECKIEN W, PEYERIMHOFF S D, et al. What are the reasons for the kinetic stability of a mixture of H2 and O2? [J]. The Journal of Physical Chemistry A, 2000, 104(51): 12014-12020. |
14 | JIANG Qing, SHENG Wenbing, GUO Xiangdong, et al. Metalloporphyrin-catalyzed aerobic oxidation of 2-methoxy-4-methylphenol as a route to vanillin[J]. Journal of Molecular Catalysis A: Chemical, 2013, 373: 121-126. |
15 | ADAM F, OOI W T. Selective oxidation of benzyl alcohol to benzaldehyde over Co-metalloporphyrin supported on silica nanoparticles[J]. Applied Catalysis A: General, 2012, 445/446: 252-260. |
16 | ZHOU Xiantai, JI Hongbing. Manganese porphyrin immobilized on montmorillonite: a highly efficient and reusable catalyst for the aerobic epoxidation of olefins under ambient conditions[J]. Journal of Porphyrins and Phthalocyanines, 2012, 16(9): 1032-1039. |
17 | ZHOU Xiantai, REN Gangli, JI Hongbing. Kinetic and mechanism of the aqueous selective oxidation of sulfides to sulfoxides: insight into the cytochrome P450-like oxidative metabolic process[J]. Journal of Porphyrins and Phthalocyanines, 2013, 17: 1104-1112. |
18 | LIU W, GROVES J T. Manganese porphyrins catalyze selective C-H bond halogenations[J]. Journal of the American Chemical Society, 2010, 132(37): 12847-12849. |
19 | ZHOU Xiantai, JI Hongbing, YUAN Qiulan. Baeyer-Villiger oxidation of ketones catalyzed by iron(Ⅲ) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen[J]. Journal of Porphyrins and Phthalocyanines, 2008, 12(2): 94-100. |
20 | LAN Hongyun, ZHOU Xiantai, JI Hongbing. Remarkable differences between benzaldehyde and isobutyraldehyde as coreductant in the performance toward the iron(Ⅲ) porphyrins-catalyzed aerobic Baeyer-Villiger oxidation of cyclohexanone, kinetic and mechanistic features[J]. Tetrahedron, 2013, 69(21): 4241-4246. |
21 | CHEN Shaoyun, ZHOU Xiantai, LI Yang, et al. Biomimetic Baeyer-Villiger oxidation of ketones with SnO2 as cocatalyst, features in activating carbonyl group of substrates[J]. Chemical Engineering Journal, 2014, 241: 138-144. |
22 | NABAE Y, ROKUBUICHI H, MIKUNI M, et al. Catalysis by carbon materials for the aerobic baeyer–villiger oxidation in the presence of aldehydes[J]. ACS Catalysis, 2013, 3(2): 230-236. |
23 | MARKITON M, BONCEL S, JANAS D, et al. Highly active nanobiocatalyst from lipase noncovalently immobilized on multiwalled carbon nanotubes for baeyer-villiger synthesis of lactones[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1685-1691. |
24 | SZELWICKA A, ZAWADZKI P, SITKO M, et al. Continuous flow chemo-enzymatic baeyer-villiger oxidation with superactive and extra-stable enzyme/carbon nanotube catalyst: an efficient upgrade from batch to flow[J]. Organic Process Research & Development, 2019, 23(7): 1386-1395. |
25 | CAI Zhihui, LIU Duo, HUANG Jiangnan, et al. Solvent-free production of ε-caprolactone from oxidation of cyclohexanone catalyzed by nitrogen-doped carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2037-2044. |
26 | MAITY S, RAM F, DHAR B B. Phosphorous-doped graphitic material as a solid acid catalyst for microwave-assisted synthesis of β-ketoenamines and baeyer-villiger oxidation[J]. ACS Omega, 2020, 5(26): 15962-15972. |
27 | XING Chen, TAN Rong, HAO Pengbo, et al. Graphene oxide supported chlorostannate (Ⅳ) ionic liquid: Brønsted-Lewis acidic combined catalyst for highly efficient Baeyer-Villiger oxidation in water[J]. Molecular Catalysis, 2017, 433: 37-47. |
28 | CHEN Shaoyun, ZHOU Xiantai, WANG Jiexiang, et al. Promoting the aerobic Baeyer-Villiger oxidation of ketones over carboxylic multi-walled carbon nanotubes[J]. Molecular Catalysis, 2017, 438: 152-158. |
29 | PEREIRA M M, DIAS L D, CALVETE M J. Metalloporphyrins: bioinspired oxidation catalysts[J].ACS Catalysis, 2018, 8(11): 10784-10808. |
30 | DAS S K, SUBBAIYAN N K, D’SOUZA F, et al. Formation and photoinduced properties of zinc porphyrin-SWCNT and zinc phthalocyanine-SWCNT nanohybrids using diameter sorted nanotubes assembled via metal-ligand coordination and π-π stacking[J]. Journal of Porphyrins and Phthalocyanines, 2011, 15(9/10): 1033-1043. |
31 | WANG Cun, YUAN Ruo, CHAI Yaqin, et al. Non-covalent iron(Ⅲ)-porphyrin functionalized multi-walled carbon nanotubes for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite[J]. Electrochimica Acta, 2012, 62: 109-115. |
32 | CHITTA R, SANDANAYAKA A, SCHUMACHER A, et al. Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer[J]. Journal of Physical Chemistry C, 2007, 111: 6947-6955. |
33 | BANERJEE I, MONDAL D, MARTIN J, et al. Photoactivated antimicrobial activity of carbon nanotube-porphyrin conjugates[J]. Langmuir, 2010, 26(22): 17369-17374. |
34 | LI Yang, ZHOU Xiantai, JI Hongbing. Cocatalytic effect of cobalt acetate on aerobic cyclohexene oxidation catalyzed by manganese porphyrin[J]. Catalysis Communications, 2012, 27: 169-173. |
35 | LAN Hongyun, ZHOU Xiantai, JI Hongbing. Remarkable differences between benzaldehyde and isobutyraldehyde as coreductant in the performance toward the iron(Ⅲ) porphyrins-catalyzed aerobic Baeyer-Villiger oxidation of cyclohexanone, kinetic and mechanistic features[J]. Tetrahedron, 2013, 69(21): 4241-4246. |
36 | JANZEN E G, BLACKBURN B J. Detection and identification of short-lived free radicals by an electron spin resonance trapping technique[J]. Journal of the American Chemical Society, 1968, 90(21): 5909-5910. |
37 | BERLINER L J, KHRAMTSOV V, FUJII H, et al. Unique in vivo applications of spin traps[J]. Free Radical Biology and Medicine, 2001, 30(5): 489-499. |
38 | JANZEN E G, LIN C R, HINTON R D. Spontaneous free-radical formation in reactions of m-chloroperbenzoic acid with C-phenyl-N-tert-butylnitrone (PBN) and 3- or 4-substituted PBN’s[J]. The Journal of Organic Chemistry, 1992, 57(6): 1633-1635. |
39 | LEISCH H, MORLEY K, LAU P C K. Baeyer-Villiger monooxygenases: more than just green chemistry[J]. Chemical Reviews, 2011, 111(7): 4165-4222. |
40 | YACHNIN B J, SPRULES T, MCEVOY M B, et al. The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a Criegee-like conformation[J]. Journal of the American Chemical Society, 2012, 134(18): 7788-7795. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |