Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 135-144.DOI: 10.16085/j.issn.1000-6613.2023-1175
• Column: Chemical process intensification • Previous Articles
TIAN Shihong1,2(), GUO Lei1,2, LI Na1,2, YUWEN Chao1,2, XU Lei1,2, GUO Shenghui1,2, JU Shaohua1,2()
Received:
2023-07-11
Revised:
2023-11-15
Online:
2024-02-05
Published:
2024-01-20
Contact:
JU Shaohua
田时泓1,2(), 郭磊1,2, 李娜1,2, 宇文超1,2, 许磊1,2, 郭胜惠1,2, 巨少华1,2()
通讯作者:
巨少华
作者简介:
田时泓(1994—),男,博士,研究方向为微波化工技术。E-mail:tsh_kmust@126.com。
基金资助:
CLC Number:
TIAN Shihong, GUO Lei, LI Na, YUWEN Chao, XU Lei, GUO Shenghui, JU Shaohua. Scientific basis and development trend of microwave heating enhanced flash evaporation process[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 135-144.
田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1175
1 | MANSOUR Ahmad, Norbert MÜLLER. A review of flash evaporation phenomena and resulting shock waves[J]. Experimental Thermal and Fluid Science, 2019, 107: 146-168. |
2 | POLANCO Geanette, HOLDØ Arne Erik, MUNDAY George. General review of flashing jet studies[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 2-18. |
3 | RAHIMI Bijan, Klaus REGENAUER-LIEB, CHUA Hui Tong, et al. A novel flash boosted evaporation process for alumina refineries[J]. Applied Thermal Engineering, 2016, 94: 375-384. |
4 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
SUN Hongwei, CHEN Jianfeng. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
5 | 彭金辉, 刘秉国, 张利波, 等. 高温微波冶金反应器的研究现状及发展趋势[J]. 中国有色金属学报, 2011, 21(10): 2607-2615. |
PENG Jinhui, LIU Bingguo, ZHANG Libo, et al. Research status and trend of high-temperature microwave metallurgy reactor[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2607-2615. | |
6 | YAN Junjie, ZHANG Dan, CHONG Daotong, et al. Experimental study on static/circulatory flash evaporation[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5528-5535. |
7 | CHENG Wen-Long, ZHANG Wei-Wei, CHEN Hua, et al. Spray cooling and flash evaporation cooling: The Current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628. |
8 | MIYATAKE Osamu, MURAKAMI Kentaro, KAWATA Yoichi, et al. Fundamental experiments of flash evaporation[J]. Bulletin of the Society of Sea Water Science, Japan, 1972, 26: 189-198. |
9 | GAO W Z, SHI Y Z, ZHANG X L, et al. Experimental investigation on a new method of regenerating dehumidification solution-release solution droplet into vacuum[J]. Applied Thermal Engineering, 2013, 59(1/2): 14-20. |
10 | MUTHUNAYAGAM A E, RAMAMURTHI K, ROBERT PADEN J. Modelling and experiments on vaporization of saline water at low temperatures and reduced pressures[J]. Applied Thermal Engineering, 2005, 25(5/6): 941-952. |
11 | 章学来, 王为, 李志伟, 等. 静止水滴真空闪蒸模型及实验研究[J]. 工程热物理学报, 2012, 33(8): 1419-1422. |
ZHANG Xuelai, WANG Wei, LI Zhiwei, et al. Modeling and experimental research of crystallization process of static droplet[J]. Journal of Engineering Thermophysics, 2012, 33(8): 1419-1422. | |
12 | ZHANG Xuelai, HAN Zhong, LI Zhiwei. Analysis on IPF influencing factors for vacuum binary ice making method[J]. International Journal of Thermal Sciences, 2013, 67: 210-216. |
13 | FATHINIA Farshid, KHIADANI Mehdi, AL-ABDELI Yasir M, et al. Performance improvement of spray flash evaporation desalination systems using multiple nozzle arrangement[J]. Applied Thermal Engineering, 2019, 163: 114385. |
14 | D LOUREIRO D, REUTZSCH J, KRONENBURG A, et al. Primary breakup regimes for cryogenic flash atomization[J]. International Journal of Multiphase Flow, 2020, 132: 103405. |
15 | LOUREIRO D D, KRONENBURG A, REUTZSCH J, et al. Droplet size distributions in cryogenic flash atomization[J]. International Journal of Multiphase Flow, 2021, 142: 103705. |
16 | ALGHAMDI Tariq, THORODDSEN Sigurdur T, HERNÁNDEZ-SÁNCHEZ J F. Ultra-high speed visualization of a flash-boiling jet in a low-pressure environment[J]. International Journal of Multiphase Flow, 2019, 110: 238-255. |
17 | XIONG Pei, HE Shihao, QIU Facheng, et al. Experimental and mathematical study on jet atomization and flash evaporation characteristics of droplets in a depressurized environment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123: 185-198. |
18 | YANG Jie, DONG Xue, WU Qiang, et al. Influence of flash boiling spray on the combustion characteristics of a spark-ignition direct-injection optical engine under cold start[J]. Combustion and Flame, 2018, 188: 66-76. |
19 | YANG Shangze, MA Zhenwei, LI Xuesong, et al. A review on the experimental non-intrusive investigation of fuel injector phase changing flow[J]. Fuel, 2020, 259: 116188. |
20 | BRAM Martin, LAPTEV Alexander M, PRASAD MISHRA Tarini, et al. Application of electric current-assisted sintering techniques for the processing of advanced materials[J]. Advanced Engineering Materials, 2020, 22(6): 2000051. |
21 | MARIA ANTONY RAJ M, KALIDASA MURUGAVEL K, RAJASEENIVASAN T, et al. A review on flash evaporation desalination[J]. Desalination and Water Treatment, 2016, 57(29): 13462-13471. |
22 | DANIARTA Sindu, KOLASINSKI Piotr, IMRE Attila R. Thermodynamic efficiency of trilateral flash cycle, organic Rankine cycle and partially evaporated organic Rankine cycle[J]. Energy Conversion and Management, 2021, 249: 114731. |
23 | CHEN Qi, XU Guoying, XIA Peng. The performance of a solar-driven spray flash evaporation desalination system enhanced by microencapsulated phase change material[J]. Case Studies in Thermal Engineering, 2021, 27: 101267. |
24 | DARAWSHEH I, ISLAM M D, BANAT F. Experimental characterization of a solar powered MSF desalination process performance[J]. Thermal Science and Engineering Progress, 2019, 10: 154-162. |
25 | RADOIU Marilena, MELLO Ariel. Technical advances, barriers, and solutions in microwave—Assisted technology for industrial processing[J]. Chemical Engineering Research and Design, 2022, 181: 331-342. |
26 | YANG Huayu, YAN Bowen, CHEN Wei, et al. Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review[J]. Renewable and Sustainable Energy Reviews, 2023, 175: 113183. |
27 | NISHIOKA Masateru, MIYAKAWA Masato, DAINO Yohei, et al. Single-mode microwave reactor used for continuous flow reactions under elevated pressure[J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4683-4687. |
28 | GOYAL Himanshu, MEHDAD Ali, LOBO Raul F, et al. Scaleup of a single-mode microwave reactor[J]. Industrial & Engineering Chemistry Research, 2019, 59(6): 2516-2523. |
29 | CHEMAT F, ESVELD E. Microwave super-heated boiling of organic liquids: Origin, effect and application[J]. Chemical Engineering & Technology, 2001, 24: 735-744. |
30 | MOTOHIKO Tanaka, MOTOYASU Sato. Microwave heating of water, ice, and saline solution: Molecular dynamics study[J]. The Journal of Chemical Physics, 2007, 126(3): 034509. |
31 | DAMILOS Spyridon, RADHAKRISHNAN Anand N P, DIMITRAKIS Georgios, et al. Experimental and computational investigation of heat transfer in a microwave-assisted flow system[J]. Chemical Engineering and Processing: Process Intensification, 2019, 142: 107537. |
32 | YAMAKI Tatsunori, Yutaka ABE, KANEKO Akiko, et al. The criteria of flushing phenomena under microwave heating[J]. Journal of Nuclear Science and Technology, 2015, 52(2): 241-250. |
33 | FERRARI A, HUNT J, STIEGMAN A, et al. Microwave-assisted superheating and/or microwave-specific superboiling (nucleation-limited boiling) of liquids occurs under certain conditions but is mitigated by stirring[J]. Molecules, 2015, 20(12): 21672-21680. |
34 | LEE G L, LAW M C, LEE V C-C. Numerical modelling of liquid heating and boiling phenomena under microwave irradiation using OpenFOAM[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119096. |
35 | LEE G L, LAW M C, LEE V C-C. Numerical modelling and investigation of microwave heating and boiling phenomena in binary liquid mixtures using OpenFOAM[J]. International Journal of Thermal Sciences, 2021, 159:106538 |
36 | ASSAWARACHAN R, NOOMHORM A, SALOKHE V, et al. Kinetics of color change of pineapple juice concentration using microwave vacuum evaporation.[C]// International Agricultural Engineering Conference,2007. |
37 | YOUSEFI Shima, Zahra EMAM-DJOMEH, MOUSAVI Sayed Mohammad ALI, et al. Comparing the effects of microwave and conventional heating methods on the evaporation rate and quality attributes of pomegranate (Punica granatum L.) juice concentrate[J]. Food and Bioprocess Technology, 2012, 5(4): 1328-1339. |
38 | TAO Yuan, YAN Bowen, ZHANG Nana, et al. Microwave vacuum evaporation as a potential technology to concentrate sugar solutions: A study based on dielectric spectroscopy[J]. Journal of Food Engineering, 2021, 294: 110414. |
39 | OGUNNIRAN O, BINNER E R, SKLAVOUNOS A H, et al. Enhancing evaporative mass transfer and steam stripping using microwave heating[J]. Chemical Engineering Science, 2017, 165: 147-153. |
40 | LIU Kai, ZHAO Zhenyu, LI Hong, et al. Microwave-induced vapor-liquid mass transfer separation technology—Full of breakthrough opportunities in electrified chemical processes[J]. Current Opinion in Chemical Engineering, 2023, 39: 100890. |
41 | LIU Kai, ZHAO Zhenyu, LI Hong, et al. Development of a novel MW-VLE model for calculation of vapor-liquid equilibrium under microwave irradiation[J]. Chemical Engineering Science, 2022, 249:117354. |
42 | LIU Kai, LI Hong, ZHAO Zhenyu, et al. Microwave-induced spray evaporation process for separation intensification of azeotropic system[J]. Separation and Purification Technology, 2021, 279: 119702. |
43 | ZHAO Zhenyu, LI Hong, SUN Guanlun, et al. Predicting microwave-induced relative volatility changes in binary mixtures using a novel dimensionless number[J]. Chemical Engineering Science, 2021, 237:116576. |
44 | HONG Hyunsoo, SONG Seung A, KIM Seong Su. Phase transformation of poly(vinylidene fluoride)/TiO2 nanocomposite film prepared by microwave-assisted solvent evaporation: An experimental and molecular dynamics study[J]. Composites Science and Technology, 2020, 199: 108375. |
45 | TIAN Shihong, GUO Lei, GU Yongwan, et al. Energy transfer and efficiency analysis of microwave flash evaporation with tap water as medium[J]. Desalination, 2021, 511: 115095. |
46 | TIAN Shihong, GUO Lei, JU Shaohua, et al. Case study for enhancing concentration of waste dilute sulfuric acid by microwave flash evaporation: Modelling, heat transfer, energy consumption and process optimization[J]. Separation and Purification Technology, 2023, 318: 123930. |
47 | HE Binbin, TIAN Shihong, JU Shaohua, et al. Preparation of polyphosphoric acid and recovery of valuable fluorine resources though a microwave intensification flash evaporation process[J]. Chemical Engineering and Processing-Process Intensification, 2023, 189: 109397. |
[1] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[2] | ZHAI Linxiao, CUI Yizhou, LI Chengxiang, SHI Xiaogang, GAO Jinsen, LAN Xingying. Research and application process of microbubble generator [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 111-123. |
[3] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[4] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[5] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[6] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[7] | XIE Yingchun, MA Hongting, XU Chang, MA Shuo, CHEN Mo, LIU Jun, SUN Guoqiang. Analysis of heat transfer characteristics in vertical tube of seepage falling film evaporative condenser [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1187-1194. |
[8] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
[9] | CHEN Fei, DING Yudong, MA Lijiao, ZHU Xun, CHENG Min, LIAO Qiang. Microwave synthesis of MOF-808 and its water vapor uptake characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6461-6468. |
[10] | MAO Tingting, LI Shuangfu, HUANG Limingming, ZHOU Chuanling, HAN Kai. Solar interfacial evaporation system and materials for water treatment and organic solvent purification [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 178-193. |
[11] | LI Chao, MIAO Jiabing, WANG Liping, CUI Yongjie, LI Yifan. Extraction of lithium from evaporation mother liquor [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 637-642. |
[12] | XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong. Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107. |
[13] | MAO Jijin, ZHANG Donghui, SUN Lili, LEI Qinhui, QU Jian. Boiling heat transfer and resistance characteristics of two types of sintered structures [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3483-3492. |
[14] | YAN Peng, CHENG Yi. Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454. |
[15] | LI Yucan, HU Dinghua, LIU Jinhui. Evolution characteristics of transient evaporation rate of Al2O3 nanofluid droplet [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3493-3501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |