Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6461-6468.DOI: 10.16085/j.issn.1000-6613.2023-0171
• Materials science and technology • Previous Articles
CHEN Fei1,2(), DING Yudong1,2(), MA Lijiao2, ZHU Xun1,2, CHENG Min1,2, LIAO Qiang1,2
Received:
2023-02-10
Revised:
2023-05-04
Online:
2024-01-08
Published:
2023-12-25
Contact:
DING Yudong
陈飞1,2(), 丁玉栋1,2(), 马丽娇2, 朱恂1,2, 程旻1,2, 廖强1,2
通讯作者:
丁玉栋
作者简介:
陈飞(1996—),男,硕士研究生,研究方向为金属有机骨架材料的制备。E-mail:zunyixiaohuo@163.com。
基金资助:
CLC Number:
CHEN Fei, DING Yudong, MA Lijiao, ZHU Xun, CHENG Min, LIAO Qiang. Microwave synthesis of MOF-808 and its water vapor uptake characteristics[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6461-6468.
陈飞, 丁玉栋, 马丽娇, 朱恂, 程旻, 廖强. 微波合成MOF-808及其水蒸气捕集特性[J]. 化工进展, 2023, 42(12): 6461-6468.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0171
样品 | 再生温度/℃ | 比表面积 /m2·g-1 | 水蒸气吸附量 /g·g-1 |
---|---|---|---|
MOF-808(本研究) | 70 | 1100~1600 | 0.776 |
硅胶[ | 90~150 | 650 | 0.03~0.1[ |
沸石3A/4A[ | 200 | 800~1000 | 0.227[ |
F-200活性氧化铝[ | 290 | 360 | 1.71[ |
CaCl2/MCM-41[ | 80 | — | 1.75[ |
LiNO3/硅胶[ | 65~75 | — | 0.06[ |
样品 | 再生温度/℃ | 比表面积 /m2·g-1 | 水蒸气吸附量 /g·g-1 |
---|---|---|---|
MOF-808(本研究) | 70 | 1100~1600 | 0.776 |
硅胶[ | 90~150 | 650 | 0.03~0.1[ |
沸石3A/4A[ | 200 | 800~1000 | 0.227[ |
F-200活性氧化铝[ | 290 | 360 | 1.71[ |
CaCl2/MCM-41[ | 80 | — | 1.75[ |
LiNO3/硅胶[ | 65~75 | — | 0.06[ |
1 | JAYARAMAN K S, GUPTA D K DAS. Dehydration of fruits and vegetables-recent developments in principles and techniques[J]. Drying Technology, 1992, 10(1): 1-50. |
2 | HAGE Hicham EL, HEREZ Amal, RAMADAN Mohamad, et al. An investigation on solar drying: A review with economic and environmental assessment[J]. Energy, 2018, 157: 815-829. |
3 | 王教领. 特色果蔬转轮热泵联合干燥节能试验与优化[D]. 北京: 中国农业科学院, 2021. |
WANG Jiaoling. Energy saving test and optimization of combine drying of special fruits and vegetables by dehumidification wheel and heat pump[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
4 | 段续. 新型食品干燥技术及应用[M]. 北京: 化学工业出版社, 2018: 7. |
DUAN Xu. New food drying technology and its application[M]. Beijing: Chemical Industry Press, 2018: 7. | |
5 | AMANKWAH Emmanuel, KYERE Gloria, KYEREMATENG Herbert, et al. Experimental verification of yam (dioscorea rotundata) drying with solar adsorption drying[J]. Applied Sciences, 2019, 9(18): 3927. |
6 | LIU Yunhong, MIAO Shuai, WU Jianye, et al. Drying and quality characteristics of flos lonicerae in modified atmosphere with heat pump system[J]. Journal of Food Process Engineering, 2014, 37(1): 37-45. |
7 | HAWLADER M N, PERERA C O, TIAN M, et al. Drying of guava and papaya: Impact of different drying methods[J]. Drying Technology, 2006, 24(1): 77-87. |
8 | XU Jiaxing, LI Tingxian, CHAO Jingwei, et al. Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt[J]. Angewandte Chemie International Edition, 2020, 59(13): 5202-5210. |
9 | 张晋维, 李平, 张馨凝, 等. 水稳定性金属有机框架材料的水吸附性质与应用[J]. 化学学报, 2020, 78(7): 597-612. |
ZHANG Jinwei, LI Ping, ZHANG Xinning, et al. Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta Chimica Sinica, 2020, 78(7): 597-612. | |
10 | 周健, 谢林华, 豆义波, 等. MOFs基材料在超级电容器中的应用[J]. 化工进展, 2016, 35(9): 2830-2838. |
ZHOU Jian, XIE Linhua, DOU Yibo, et al. MOFs-based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2830-2838. | |
11 | HE Tao, KONG Xiangjing, LI Jianrong. Chemically stable metal-organic frameworks: Rational construction and application expansion[J]. Accounts of Chemical Research, 2021, 54(15): 3083-3094. |
12 | CLIFFE M J, WAN W, ZOU X D, et al. Correlated defect nanoregions in a metal-organic framework[J]. Nature Communications, 2014, 5(1): 4176. |
13 | LOGAN M W, LANGEVIN S, XIA Z Y. Reversible atmospheric water harvesting using metal-organic frameworks[J]. Scientific Reports, 2020, 10(1): 1492. |
14 | KONG X J, LI J R. An overview of metal-organic frameworks for green chemical engineering[J]. Engineering, 2021, 7(8): 1115-1139. |
15 | FURUKAWA Hiroyasu, Felipe GÁNDARA, ZHANG Yuebiao, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
16 | JIANG Juncong, Felipe GÁNDARA, ZHANG Yuebiao, et al. Superacidity in sulfated metal-organic framework-808[J]. Journal of the American Chemical Society, 2014, 136(37): 12844-12847. |
17 | LI Zongqun, YANG Jichao, SUI Kewen, et al. Facile synthesis of metal-organic framework MOF-808 for arsenic removal[J]. Materials Letters, 2015, 160: 412-414. |
18 | KHAN N A, HAQUE M M, JHUNG S H. Accelerated syntheses of porous isostructural lanthanide-benzenetricarboxylates (ln-BTC) under ultrasound at room temperature[J]. European Journal of Inorganic Chemistry, 2010(31): 4975-4981. |
19 | HU Zhigang, ZHAO Dan. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials[J]. Dalton Transactions, 2015, 44(44): 19018-19040. |
20 | TADDEI Marco. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks[J]. Coordination Chemistry Reviews, 2017, 343: 1-24. |
21 | ARDILA-SUÁREZ C, DÍAZ-LASPRILLA A M, DÍAZ-VACA L A, et al. Synthesis, characterization, and post-synthetic modification of a micro/mesoporous zirconium-tricarboxylate metal-organic framework: Towards the addition of acid active sites[J]. CrystEngComm, 2019, 21(19): 3014-3030. |
22 | ARDILA-SUÁREZ C, MOLINA V D, ALEM H, et al. Synthesis of ordered microporous/macroporous MOF-808 through modulator-induced defect-formation, and surfactant self-assembly strategies[J]. Physical Chemistry Chemical Physics, 2020, 22(22): 12591-12604. |
23 | H-H MAUTSCHKE, DRACHE F, SENKOVSKA I, et al. Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks[J]. Catalysis Science & Technology, 2018, 8(14): 3610-3616. |
24 | MU Wanjun, DU Shenzhen, LI Xingliang, et al. Efficient and irreversible capture of strontium ions from aqueous solution using metal-organic frameworks with ion trapping groups[J]. Dalton Transactions, 2019, 48(10): 3284-3290. |
25 | BAEK Jayeon, RUNGTAWEEVORANIT Bunyarat, PEI Xiaokun, et al. Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol[J]. Journal of the American Chemical Society, 2018, 140(51): 18208-18216. |
26 | THOMMES M, CYCHOSZ K A. Physical adsorption characterization of nanoporous materials: Progress and challenges[J]. Adsorption, 2014, 20(2): 233-250. |
27 | CYCHOSZ K A, GUILLET-NICOLAS R, GARCÍA-MARTÍNEZ J, et al. Recent advances in the textural characterization of hierarchically structured nanoporous materials[J]. Chemical Society Reviews, 2017, 46(2): 389-414. |
28 | HODGSON A, HAQ S. Water adsorption and the wetting of metal surfaces[J]. Surface Science Reports, 2009, 64(9): 381-451. |
29 | XIAO Chen, SHI Pengfei, YAN Wenmeng, et al. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact[J]. Colloids and Interfaces, 2019, 3(3): 55. |
30 | YANG Kaijie, PAN Tingting, LEI Qiong, et al. A roadmap to sorption-based atmospheric water harvesting: From molecular sorption mechanism to sorbent design and system optimization[J]. Environmental Science & Technology, 2021, 55(10): 6542-6560. |
31 | ERENTURK S, GULABOGLU M S, GULTEKIN S. The effects of cutting and drying medium on the vitamin C content of rosehip during drying[J]. Journal of Food Engineering, 2005, 68(4): 513-518. |
32 | JUN H J, YOO D K, JHUNG S H. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure[J]. Journal of CO2 Utilization, 2022, 58: 101932. |
33 | YU N, WANG R Z, LU Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical Engineering Science, 2014, 111: 73-84. |
34 | PRAMUANG S, EXELL R H B. The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator[J]. Renewable Energy, 2007, 32(1): 173-182. |
35 | SAHA B B, CHAKRABORTY A, KOYAMA S, et al. A new generation cooling device employing CaCl2-in-silica gel-water system[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 516-524. |
36 | KIM K M, OH H T, LIM S J, et al. Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite[J]. Journal of Chemical & Engineering Data, 2016, 61(4): 1547-1554. |
37 | SERBEZOV Atanas. Adsorption equilibrium of water vapor on F-200 activated alumina[J]. Journal of Chemical & Engineering Data, 2003, 48(2): 421-425. |
38 | RIBEIRO A M, SAUER T P, GRANDE C A, et al. Adsorption equilibrium and kinetics of water vapor on different adsorbents[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7019-7026. |
39 | JI J G, WANG R Z, LI L X. New composite adsorbent for solar-driven fresh water production from the atmosphere[J]. Desalination, 2007, 212(1/2/3): 176-182. |
40 | ARISTOV Yu I, SAPIENZA A, OVOSHCHNIKOV D S, et al. Reallocation of adsorption and desorption times for optimisation of cooling cycles[J]. International Journal of Refrigeration, 2012, 35(3): 525-531. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[4] | HUI Bo, HOU Hongyi, ZHANG Tao, CHE Shengwen. Drying characteristics of cylindrical annular pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 33-40. |
[5] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[8] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[9] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[10] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[11] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[12] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[13] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[14] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |