Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 64-72.DOI: 10.16085/j.issn.1000-6613.2023-0431
• Chemical processes and equipment • Previous Articles Next Articles
GUO Qiang1,2(), ZHAO Wenkai1, XIAO Yonghou2,3(
)
Received:
2023-03-22
Revised:
2023-07-09
Online:
2023-11-30
Published:
2023-10-25
Contact:
XIAO Yonghou
通讯作者:
肖永厚
作者简介:
郭强(1998—),男,硕士研究生,研究方向为气体吸附分离。E-mail:guoqiang202103@163.com。
基金资助:
CLC Number:
GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72.
郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72.
等温线参数 | 甲硫醚 | 氮气 |
---|---|---|
IP1/kmol·kg-1 bar-1 | 0.0049 | 0.000239 |
IP2/bar-1 | 0.03149 | 0.76283 |
DH/kJ·mol-1 | -26.04 | -14.3 |
等温线参数 | 甲硫醚 | 氮气 |
---|---|---|
IP1/kmol·kg-1 bar-1 | 0.0049 | 0.000239 |
IP2/bar-1 | 0.03149 | 0.76283 |
DH/kJ·mol-1 | -26.04 | -14.3 |
物性参数 | 值 |
---|---|
吸附床高度/m | 1.5 |
吸附床壁厚/m | 0.001 |
吸附剂堆密度/kg·m-3 | 670 |
粒径/mm | 1.5~3 |
吸附床罐壁密度/kg·m-3 | 7800 |
气相与固相换热系数/W·m-2·K-1 | 10 |
吸附床罐壁比热容/kJ·kg-1·K-1 | 0.502 |
环境温度/K | 298.15 |
物性参数 | 值 |
---|---|
吸附床高度/m | 1.5 |
吸附床壁厚/m | 0.001 |
吸附剂堆密度/kg·m-3 | 670 |
粒径/mm | 1.5~3 |
吸附床罐壁密度/kg·m-3 | 7800 |
气相与固相换热系数/W·m-2·K-1 | 10 |
吸附床罐壁比热容/kJ·kg-1·K-1 | 0.502 |
环境温度/K | 298.15 |
时间/s | 150 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 100 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
吸附床1 | AD | ED1 | ID | ED2 | BD | PU | ER2 | ER1 | PR | |||
吸附床2 | ER1 | PR | AD | ED1 | ID | ED2 | BD | PU | ER2 | |||
吸附床3 | BD | PU | ER2 | ER1 | PR | AD | ED1 | ID | ED2 | |||
吸附床4 | ED1 | ID | ED2 | BD | PU | ER2 | ER1 | PR | AD |
时间/s | 150 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 100 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
吸附床1 | AD | ED1 | ID | ED2 | BD | PU | ER2 | ER1 | PR | |||
吸附床2 | ER1 | PR | AD | ED1 | ID | ED2 | BD | PU | ER2 | |||
吸附床3 | BD | PU | ER2 | ER1 | PR | AD | ED1 | ID | ED2 | |||
吸附床4 | ED1 | ID | ED2 | BD | PU | ER2 | ER1 | PR | AD |
模拟 | 压力 | 粒径 | 吹扫比 | 雷诺数 | 甲硫醚/μL·L-1 | 收率/% |
---|---|---|---|---|---|---|
1 | 4 | 3.5 | 0.23 | 1030 | <50 | 90.1 |
2 | 5 | 2.8 | 0.23 | 830 | <30 | 84.9 |
3 | 5 | 3.5 | 0.16 | 950 | <20 | 91.1 |
4 | 6 | 3.5 | 0.23 | 1070 | <8 | 86.9 |
5 | 5 | 3.5 | 0.06 | 840 | <50 | 95.4 |
6 | 4 | 3.5 | 0.01 | 805 | <400 | 97.1 |
7 | 5 | 3.5 | 0.07 | 865 | <30 | 94.6 |
8 | 5 | 3.5 | 0.11 | 895 | <20 | 93.3 |
9 | 5 | 3.5 | 0.23 | 1037 | <15 | 88.3 |
10 | 6 | 3.4 | 0.11 | 845 | <15 | 92.4 |
11 | 6 | 3.4 | 0.07 | 813 | <15 | 93.6 |
12 | 4 | 3.5 | 0.16 | 912 | <50 | 92.1 |
13 | 6 | 1.5 | 0.23 | 453 | <15 | 87.3 |
14 | 4 | 3.5 | 0.06 | 844 | <100 | 95.4 |
15 | 6 | 2 | 0.16 | 608 | <30 | 90.1 |
16 | 6 | 3 | 0.07 | 751 | <15 | 93.6 |
17 | 6 | 3 | 0.23 | 914 | <10 | 87.0 |
18 | 4 | 3.5 | 0.07 | 855 | <100 | 95.2 |
19 | 6 | 2.8 | 0.23 | 852 | <15 | 87.1 |
20 | 6 | 3.2 | 0.23 | 1017 | <10 | 86.9 |
21 | 6 | 3.5 | 0.16 | 965 | <10 | 90.4 |
模拟 | 压力 | 粒径 | 吹扫比 | 雷诺数 | 甲硫醚/μL·L-1 | 收率/% |
---|---|---|---|---|---|---|
1 | 4 | 3.5 | 0.23 | 1030 | <50 | 90.1 |
2 | 5 | 2.8 | 0.23 | 830 | <30 | 84.9 |
3 | 5 | 3.5 | 0.16 | 950 | <20 | 91.1 |
4 | 6 | 3.5 | 0.23 | 1070 | <8 | 86.9 |
5 | 5 | 3.5 | 0.06 | 840 | <50 | 95.4 |
6 | 4 | 3.5 | 0.01 | 805 | <400 | 97.1 |
7 | 5 | 3.5 | 0.07 | 865 | <30 | 94.6 |
8 | 5 | 3.5 | 0.11 | 895 | <20 | 93.3 |
9 | 5 | 3.5 | 0.23 | 1037 | <15 | 88.3 |
10 | 6 | 3.4 | 0.11 | 845 | <15 | 92.4 |
11 | 6 | 3.4 | 0.07 | 813 | <15 | 93.6 |
12 | 4 | 3.5 | 0.16 | 912 | <50 | 92.1 |
13 | 6 | 1.5 | 0.23 | 453 | <15 | 87.3 |
14 | 4 | 3.5 | 0.06 | 844 | <100 | 95.4 |
15 | 6 | 2 | 0.16 | 608 | <30 | 90.1 |
16 | 6 | 3 | 0.07 | 751 | <15 | 93.6 |
17 | 6 | 3 | 0.23 | 914 | <10 | 87.0 |
18 | 4 | 3.5 | 0.07 | 855 | <100 | 95.2 |
19 | 6 | 2.8 | 0.23 | 852 | <15 | 87.1 |
20 | 6 | 3.2 | 0.23 | 1017 | <10 | 86.9 |
21 | 6 | 3.5 | 0.16 | 965 | <10 | 90.4 |
1 | HUANG H, YI D, LU Y, et al. Study on the adsorption behavior and mechanism of dimethyl sulfide on silver modified bentonite by in situ FTIR and temperature-programmed desorption[J]. Chemical Engineering Journal, 2013, 225: 447-455. |
2 | ZHENG H, TANG Z. Two-stage adsorption mechanism revealed for dimethyl sulfide (DMS) in HY zeolite[J]. Microporous and Mesoporous Materials, 2021, 321: 111-125. |
3 | CHAICHANAWONG J, YAMAMOTO T, OHMORI T, et al. Adsorptive desulfurization of bioethanol using activated carbon loaded with zinc oxide[J]. Chemical Engineering Journal, 2010, 165(1): 218-224. |
4 | KIM S, GUPTA N K, BAE J, et al. UV-activated adsorbents as novel materials for enhanced removal of malodorous gases[J]. Chemosphere, 2021, 266: 128943. |
5 | SIRCAR S. Pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2002, 41: 1389-1392. |
6 | RALLAPALLI P B, CHO K, KIM S H, et al. Upgrading pipeline-quality natural gas to liquefied-quality via pressure swing adsorption using MIL-101(Cr) as adsorbent to remove CO2 and H2S from the gas[J]. Fuel, 2020, 281: 118985. |
7 | 杨诗, 蔡阳, 李长平, 等. 磷钨酸负载锆基金属有机骨架PTA@MOF-808的制备及其吸附脱硫性能[J]. 化工学报, 2021, 72(3): 1722-1731. |
YANG Shi, CAI Yang, LI Changping, et al. Preparation of phosphotungstic acid loaded Zr-based metal-organic framework PTA@MOF-808 and its adsorption desulfurization performance[J]. Journal of Chemical Industry and Engineering, 2021, 72(3): 1722-1731. | |
8 | SCHOLES C A, GOSH U K, HO M T. The economics of helium separation and purification by gas separation membranes[J]. Industrial & Engineering Chemistry Research, 2017, 56: 5014-5020. |
9 | 刘冰, 孙伟娜, 张东辉, 等. 带循环的二阶变压吸附碳捕集工艺模拟、实验及分析[J]. 化工学报, 2018, 69(11): 4788-4797. |
LIU Bing, SUN Weina, ZHANG Donghui, et al. Simulation, experimentation and analyzation of two stage pressure swing adsorption process for CO2 capture [J]. Journal of Chemical Industry and Engineering, 2018, 69(11): 4788-4797. | |
10 | 陈健, 姬存民, 令兵, 等. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486. |
CHEN Jian, JI Cunmin, BU Lingbing, et al. Research and application of hydrogen production technology from industrial by-product gas under the background of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1479-1486. | |
11 | 陈敏玲, 王兴杰, 肖静, 等. 淀粉基多孔碳材料的制备及其吸附 CO2/CH4 性能[J]. 化工学报, 2018, 69(1): 455-463. |
CHEN M L, WANG X J, XIAO J, et al. Preparation of porous carbon material from starch and it's performance for separation of CO2/CH4 [J]. Journal of Chemical Industry and Engineering, 2018,69(1): 455-463. | |
12 | 尚华, 白洪灏, 刘佳琪, 等. CH4-N2在自支撑颗粒型Silicalite-1上的吸附分离及PSA模拟[J]. 化工学报, 2020, 71(5): 2088-2098. |
SHANG Hua, BAI Honghao, LIU Jiaqi, et al. PSA simulation and adsorption separation of CH4-N2 by self-supporting pellets Silicalite-1[J]. Journal of Chemical Industry and Engineering, 2020,71(5): 2088-2098. | |
13 | 王俊成, 胡明振, 孙林兵, 等. 碳分子筛变压吸附提纯沼气的性能[J]. 化工进展, 2015, 34(9): 3452-3486. |
WANG Juncheng, HU Mingzhen, SUN Linbing, et al. Biogas purification using carbon molecular sieves by pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3452-3486. | |
14 | ZHANG Nannan, XIAO Jinsheng, BENARD Pierre, et al. Single-and double-bed pressure swing adsorption processes for H2/CO syngas separation[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26405-26418. |
15 | QADIR S, LI D, GU Y, et al. Experimental and numerical analysis on the enhanced separation performance of a medical oxygen concentrator through two-bed rapid pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2021, 60(16): 5903-5913. |
16 | 张晓丹, 胡智辉, 张东辉, 等. 金属离子负载介孔二氧化硅材料吸附脱除甲硫醚[J]. 化学工业与工程, 2013, 30(3): 50-55. |
ZHANG Xiaodan, HU Zhihui, ZHANG Donghui, et al. Metal ion modified anionic surfactant templated mesoporous silica adsorption materials for the removal of dimethyl sulfide[J]. Chemical Industry and Engineering, 2013, 30(3): 50-55. | |
17 | WANG J, DENG S, ZHAO R, et al. Performance comparison of three adsorption cycles for CF4 recovery from waste gas using 13X zeolite[J]. Journal of Cleaner Production, 2022, 337: 130546. |
18 | DE WITTE N, DENAYER J F, VAN ASSCHE T R. Effect of adsorption duration and purge flowrate on pressure swing adsorption performance[J]. Industrial & Engineering Chemistry Research, 2021, 60(37): 13684-13691. |
19 | SANTOS M P, GRANDE C A, RODRIGUES A E. Dynamic study of the pressure swing adsorption process for biogas upgrading and its responses to feed disturbances[J]. Industrial & Engineering Chemistry Research, 2013, 52(15): 5445-5454. |
20 | XIAO Y, QIU S, ZHAO Q, et al. Numerical simulation of low-concentration CO2 adsorption on fixed bed using finite element analysis[J]. Chinese Journal of Chemical Engineering, 2021, 36: 47-56. |
21 | DE WITTE N, DENAYER J F, VAN ASSCHE T R. Effect of adsorption duration and purge flowrate on pressure swing adsorption performance[J]. Industrial & Engineering Chemistry Research, 2021, 60(37): 13684-13691. |
22 | WANG Y, SHEN Y, ZHANG R, et al. Investigation of mass transfer characteristics under turbulent condition in adsorption separation process for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107106. |
23 | SUI H, AN P, LI X, et al. Removal and recovery of O-xylene by silica gel using vacuum swing adsorption[J]. Chemical Engineering Journal, 2017, 316: 232-242. |
24 | HU G, XIAO G, GUO Y, et al. Separation of methane and nitrogen using ionic liquidic zeolites by pressure vacuum swing adsorption[J]. AIChE Journal, 2022, 68(7): e17668. |
25 | XIAO J, FANG L, BÉNARD P, et al. Parametric study of pressure swing adsorption cycle for hydrogen purification using Cu-BTC[J]. International Journal of Hydrogen Energy, 2018, 43(30): 13962-13974. |
26 | WILKES M D, BROWN S. Flexible CO2 capture for open-cycle gas turbines via vacuum-pressureSwing adsorption: A model-based assessment[J]. Energy, 2022, 250: 123805. |
27 | YÁÑEZ M, RELVAS F, ORTIZ A, et al. PSA purification of waste hydrogen from ammonia plants to fuel cell grade[J]. Separation and Purification Technology, 2020, 240: 116334. |
28 | 肖永厚, 肖红岩, 李本源 等. 基于Aspen Adsorption的氦气/甲烷吸附分离过程模拟优化[J]. 化工学报, 2019, 70(7): 2556-2563. |
XIAO Yonghou, XIAO Hongyan, LI Benyuan, et al. Optimization of helium/methane adsorption separation process based on Aspen Adsorption simulation[J]. Journal of Chemical Industry and Engineering, 2019, 70(7): 2556-2563. | |
29 | CHAHBANI M H, TONDEUR D. Pressure drop in fixed-bed adsorbers[J]. Chemical Engineering Journal, 2001, 81: 23-34. |
[1] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[2] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[3] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[4] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[5] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[6] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[7] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[8] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[9] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[10] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[11] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[12] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[13] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
[14] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[15] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 173
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |