Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 73-83.DOI: 10.16085/j.issn.1000-6613.2023-0462
• Chemical processes and equipment • Previous Articles Next Articles
LI Ning1,2(), LI Jinke2(), DONG Jinshan1
Received:
2023-03-24
Revised:
2023-06-28
Online:
2023-11-30
Published:
2023-10-25
Contact:
LI Jinke
通讯作者:
李金科
作者简介:
李宁(1989—),男,硕士研究生,研究方向为乙烯裂解炉的燃烧系统与急冷系统。E-mail:292254364@qq.com。
CLC Number:
LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83.
李宁, 李金科, 董金善. 乙烯裂解炉多孔介质燃烧器的研究与开发[J]. 化工进展, 2023, 42(S1): 73-83.
参数 | 上游多孔介质 | 下游多孔介质 |
---|---|---|
孔隙密度 | 30PPI | 10PPI |
孔隙率 | 80% | 80% |
材质 | Al2O3 | SiC |
厚度 | 10mm | 40mm |
最高可用温度 | 1900℃ | 1800℃ |
热导率(20~1000℃) | 5~30W/(m·℃) | 40~150 W/(m·℃) |
参数 | 上游多孔介质 | 下游多孔介质 |
---|---|---|
孔隙密度 | 30PPI | 10PPI |
孔隙率 | 80% | 80% |
材质 | Al2O3 | SiC |
厚度 | 10mm | 40mm |
最高可用温度 | 1900℃ | 1800℃ |
热导率(20~1000℃) | 5~30W/(m·℃) | 40~150 W/(m·℃) |
1 | 王汉松,何细藕. 乙烯工业技术[M]. 北京:中国石化出版社, 2009: 134-140. |
WANG Songhan, HE Xi'ou. Ethylene industry technology[M]. Beijing: China Petrochemical Press, 2009: 134-140. | |
2 | 周善举, 王琪, 刘怡 . 等. 双碳背景下烧结烟气NO x 减排途径研究进展[C]//中国环境科学学会环境工程分会.中国环境科学学会2022年科学技术年会——环境工程技术创新与应用分会场论文集(一).《工业建筑》杂志社有限公司, 2022. |
ZHOU Shanju, WANG Qi, LIU Yi, et al. Research progress of NO x emission reduction in sintering flue gasunder the background of double carbon[C]//Environmental Engineering Branch, Chinese Society of Environmental Sciences. Proceedings of the 2022 Annual Science and Technology Conference of the Chinese Society for Environmental Sciences——Innovation and Application of Environmental Engineering Technology. Industrial Building Magazine Co., LTD., 2022. | |
3 | 徐青, 郑章靖, 凌长明, 等. 氮氧化物污染现状和控制措施[J]. 安徽农业科学, 2010, 38(29): 16388-16391. |
XU Qing, ZHENG Zhangjing, LING Changming, et al. Status and controlling measures of nitrogen oxides pollution[J]. Journal of Anhui Agricultural Sciences, 2010, 38(29): 16388-16391. | |
4 | 凌荣华, 文军, 齐春松. 燃料分级燃烧技术的研究现况和应用前景[J]. 热力发电, 2003, 32(8): 6-8, 69. |
LING Ronghua, WEN Jun, QI Chunsong. Present situation of studying the technique to burn fuel in steps and application prospects thereof[J]. Thermal Power Generation, 2003, 32(8): 6-8, 69. | |
5 | 吴雪晴. 新型低NO x 燃气燃烧器的数值模拟与实验研究[D]. 长沙: 长沙理工大学, 2015. |
WU Xueqing. Numerical simulation and experimental study on a new type of low NOx gas burner[D]. Changsha: Changsha University of Science & Technology, 2015. | |
6 | 苏毅, 揭涛, 沈玲玲, 等. 低氮燃气燃烧技术及燃烧器设计进展[J]. 工业锅炉, 2016(4): 17-25. |
SU Yi, Tao JIE, SHEN Lingling, et al. An overview of low NO x gas combustion technology and burner design[J]. Industrial Boiler, 2016(4): 17-25. | |
7 | 宋少鹏, 卓建坤, 李娜, 等. 燃料分级与烟气再循环对天然气低氮燃烧特性影响机理[J]. 中国电机工程学报, 2016, 36(24): 6849-6858, 6940. |
SONG Shaopeng, ZHUO Jiankun, LI Na, et al. Low NOx combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation[J]. Proceedings of the CSEE, 2016, 36(24): 6849-6858, 6940. | |
8 | Kook-Young AHN, KIM Han-Seok, CHO Eun-Seong, et al. An experimental study on combustion processes and NO x emission characteristics of the air-staged burner[J]. KSME International Journal, 1999, 13(6): 477-486. |
9 | VARGA Augustin, Ján KIZEK, Ladislav LAZIĆ. Influence of flue gas recirculation on NO x and CO formation[J]. Strojarstvo, 2004, 46(1/2/3): 51-55. |
10 | SHINOMORI Kenichi, KATOU Kousuke, SHIMOKURI Daisuke, et al. NO x emission characteristics and aerodynamic structure of a self-recirculation type burner for small boilers[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2735-2742. |
11 | 杨伟杰. 烟气再循环燃气燃烧器的试验分析[J]. 工业锅炉, 2008(5): 23-25. |
YANG Weijie. Analysis of testing for gas-burner with flue gas recycle[J]. Industrial Boiler, 2008(5): 23-25. | |
12 | BALTASAR João, CARVALHO Maria G, COELHO Pedro, et al. Flue gas recirculation in a gas-fired laboratory furnace: Measurements and modelling[J]. Fuel, 1997, 76(10): 919-929. |
13 | 王恩宇. 气体燃料在渐变型多孔介质中的预混燃烧机理研究[D]. 杭州: 浙江大学, 2004. |
WANG Enyu. Study on premixed combustion mechanism of gas fuel in gradually changing porous media[D]. Hangzhou: Zhejiang University, 2004. | |
14 | KENNEDY Lawrence A, BINGUE Jacques P, SAVELIEV Alexei V, et al. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions[J]. Proceedings of the Combustion Institute, 2000, 28(1): 1431-1438. |
15 | BANERJEE Abhisek, SAVELIEV Alexei V. High temperature heat extraction from counterflow porous burner[J]. International Journal of Heat and Mass Transfer, 2018, 127: 436-443. |
16 | BUBNOVICH Valeri, TOLEDO Mario, Luis HENRÍQUEZ, et al. Flame stabilization between two beds of alumina balls in a porous burner[J]. Applied Thermal Engineering, 2010, 30(2/3): 92-95. |
17 | BAKRY Ayman, Ahmed AL-SALAYMEH, AL-MUHTASEB Ala’a H, et al. Adiabatic premixed combustion in a gaseous fuel porous inert media under high pressure and temperature: Novel flame stabilization technique[J]. Fuel, 2011, 90(2): 647-658. |
18 | GAO Huaibin, QU Zhiguo, TAO Wenquan, et al. Experimental investigation of methane/(Ar, N2, CO2)-air mixture combustion in a two-layer packed bed burner[J]. Experimental Thermal and Fluid Science, 2013, 44: 599-606. |
19 | QU Zhiguo, GAO Huaibin, FENG Xiangbo, et al. Premixed combustion in a porous burner with different fuels[J]. Combustion Science and Technology, 2015, 187(3): 489-504. |
20 | GAO H B, FENG X B, QU Z G. Combustion in a hybrid porous burner packed with alumina pellets and silicon carbide foams with a gap[J]. Journal of Energy Engineering, 2017, 143(5): 04017032.1-04017032.9. |
21 | 凌忠钱. 多孔介质内超绝热燃烧及硫化氢高温裂解制氢的试验研究和数值模拟[D]. 杭州: 浙江大学, 2008. |
LING Zhongqian. Experimental study and numerical simulation of hydrogen production by super adiabatic combustion and pyrolysis of hydrogen sulfide in porous media[D]. Hangzhou: Zhejiang University, 2008. | |
22 | 姜海. 多孔介质内预混气体燃烧的实验和数值研究[D]. 合肥: 中国科学技术大学, 2008. |
JIANG Hai. Experimental and numerical study on premixed gas combustion in porous media[D]. Hefei: University of Science and Technology of China, 2008. | |
23 | HASHEMI Seyed Mohammad, HASHEMI Seyed Abdolmehdi. Flame stability analysis of the premixed methane-air combustion in a two-layer porous media burner by numerical simulation[J]. Fuel, 2017, 202: 56-65. |
24 | HODA Shabani Nejad, GANDJALIKHAN NASSAB Seyyed Abdolreza, EBRAHIM Jahanshahi Javaran. Three dimensional numerical simulation of combustion and heat transfer in porous radiant burners[J]. International Journal of Thermal Sciences, 2019, 145: 106024. |
25 | WANG Guanqing, TANG Pengbo, LI Yuan, et al. Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner[J]. Energy, 2019, 170: 1279-1288. |
26 | 吴雪松. 工业级多孔介质低氮燃烧器开发研究[D]. 杭州: 浙江大学, 2018. |
WU Xuesong. Development and research of industrial porous medium low nitrogen burner[D]. Hangzhou: Zhejiang University, 2018. | |
27 | WAKAO N, KAGUEI S. Heat and mass transfer in packed beds. Volume 1[J]. AIChE Journal, 1983, 1(2): 193-199. |
28 | LIU Yi, FAN Aiwu, YAO Hong, et al. Numerical investigation of filtration gas combustion in a mesoscale combustor filled with inert fibrous porous medium[J]. International Journal of Heat and Mass Transfer, 2015, 91: 18-26. |
29 | 杨世铭, 陶文铨. 传热学[M]. 3版. 北京: 高等教育出版社, 1998. |
YANG Shiming, TAO Wenquan. Heat transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998. | |
30 | GAO H B, QU Z G, FENG X B, et al. Methane/air premixed combustion in a two-layer porous burner with different foam materials[J]. Fuel, 2014, 115: 154-161. |
31 | DIETRICH Benjamin, SCHABEL Wilhelm, KIND Matthias, et al. Pressure drop measurements of ceramic sponges——Determining the hydraulic diameter[J]. Chemical Engineering Science, 2009, 64(16): 3633-3640. |
32 | WU Zhiyong, CALIOT Cyril, BAI Fengwu, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[3] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[4] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[5] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[6] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[7] | YANG Ziyu, ZHU Ling, WANG Wenlong, YU Chaofan, SANG Yimin. Research and application progress of smoldering combustion technology for oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3760-3769. |
[8] | ZHENG Xin, JIA Li, WANG Yanlin, ZHANG Jingchao, CHEN Shihu, QIAO Xiaolei, FAN Baoguo. Effect of sewage sludge mixed with coal slime on heavy metal retention characteristics [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3233-3241. |
[9] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[10] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[11] | WANG Baowen, LIU Tongqing, ZHANG Gang, LI Weiguang, LIN Deshun, WANG Mengjia, MA Jingjing. Reaction characteristics of CuFe2O4 modified desulfurization slag oxygen carrier with lignite [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2884-2894. |
[12] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[13] | WANG Guangyu, MENG Jinghui, ZHANG Kai. Simulation of intermittent microwave drying of coal slime and dielectric properties [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1779-1786. |
[14] | FAN Yunpei, JIN Jing, LIU Dunyu, WANG Jingjie, LIU Qiuqi, XU Kailong. Mercury removal by CaSO4 oxygen carrier during in-situ gasification and chemical-looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1638-1648. |
[15] | GUO Zhipeng, BU Xianbiao, LI Huashan, GONG Yulie, WANG Lingbao. Numerical simulation of heat extraction in single-well enhanced geothermal system based on thermal-hydraulic-chemical coupling model [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 711-721. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 350
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |