Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 376-389.DOI: 10.16085/j.issn.1000-6613.2023-0228
• Energy processes and technology • Previous Articles
ZENG Yue(), WANG Yue(), ZHANG Xuerui, SONG Xiwen, XIA Bowen, CHEN Ziqi
Received:
2023-02-21
Revised:
2023-10-04
Online:
2024-02-05
Published:
2024-01-20
Contact:
WANG Yue
曾悦(), 王月(), 张学瑞, 宋玺文, 夏博文, 陈梓颀
通讯作者:
王月
作者简介:
曾悦(1995—),女,博士,工程师,研究方向为氢提纯和绿氨合成技术。E-mail:zengyue@petrochina.com.cn。
基金资助:
CLC Number:
ZENG Yue, WANG Yue, ZHANG Xuerui, SONG Xiwen, XIA Bowen, CHEN Ziqi. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389.
曾悦, 王月, 张学瑞, 宋玺文, 夏博文, 陈梓颀. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0228
开发商 | 装置规模 | 建设地 | 总投资/亿元 | 催化剂 |
---|---|---|---|---|
Skovgaard Invest, Vestas, Haldor Topsoe | 10MW风电和光伏,5000吨/年绿氨 | 丹麦 | 0.77 | Fe基催化剂 |
阿布扎比国家能源公司 | 2GW光伏,4万吨/年绿氢,20万吨/年绿氨 | 沙特 | 70 | Fe基催化剂 |
林德,HiveHydrogen | 1GW光伏,1.4GW风电,156MW储能,80~90万吨/年绿氨 | 南非 | 322 | Fe基催化剂 |
洲际能源,CWP Global | 50GW风电和光伏,350万吨/年绿氢,2000万吨/年绿氨 | 澳大利亚 | 700 | Fe基催化剂 |
乌拉特后旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
达茂旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
国家能源集团国华投资 | 300MW光伏,800MW风电,30万吨/年绿氨 | 中国内蒙古 | 23 | Fe基催化剂 |
国家电投集团 | 100MW光伏,700MW风电,18万吨/年绿氨 | 中国吉林 | 63 | Fe基催化剂 |
开发商 | 装置规模 | 建设地 | 总投资/亿元 | 催化剂 |
---|---|---|---|---|
Skovgaard Invest, Vestas, Haldor Topsoe | 10MW风电和光伏,5000吨/年绿氨 | 丹麦 | 0.77 | Fe基催化剂 |
阿布扎比国家能源公司 | 2GW光伏,4万吨/年绿氢,20万吨/年绿氨 | 沙特 | 70 | Fe基催化剂 |
林德,HiveHydrogen | 1GW光伏,1.4GW风电,156MW储能,80~90万吨/年绿氨 | 南非 | 322 | Fe基催化剂 |
洲际能源,CWP Global | 50GW风电和光伏,350万吨/年绿氢,2000万吨/年绿氨 | 澳大利亚 | 700 | Fe基催化剂 |
乌拉特后旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
达茂旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
国家能源集团国华投资 | 300MW光伏,800MW风电,30万吨/年绿氨 | 中国内蒙古 | 23 | Fe基催化剂 |
国家电投集团 | 100MW光伏,700MW风电,18万吨/年绿氨 | 中国吉林 | 63 | Fe基催化剂 |
煤价/CNY·t-1 | 吨氨成本/CNY·t-1 |
---|---|
300 | 1150 |
400 | 1300 |
500 | 1450 |
600 | 1600 |
700 | 1750 |
800 | 1900 |
900 | 2050 |
1000 | 2200 |
1100 | 2350 |
1200 | 2500 |
1300 | 2650 |
1400 | 2800 |
1500 | 2950 |
煤价/CNY·t-1 | 吨氨成本/CNY·t-1 |
---|---|
300 | 1150 |
400 | 1300 |
500 | 1450 |
600 | 1600 |
700 | 1750 |
800 | 1900 |
900 | 2050 |
1000 | 2200 |
1100 | 2350 |
1200 | 2500 |
1300 | 2650 |
1400 | 2800 |
1500 | 2950 |
储存过程 | 氨/CNY·kg-1 | 液氢/CNY·kg-1 |
---|---|---|
合成氨 | 4.0 | — |
液化 | — | 10.5 |
储存(15天) | 0.4 | 13 |
储存(182天) | 3.6 | 97 |
脱氢/再气化 | 8.5 | 2.7 |
合计 | 12.9(储存15天) | 26.2(储存15天) |
16.1(储存182天) | 110.2(储存182天) |
储存过程 | 氨/CNY·kg-1 | 液氢/CNY·kg-1 |
---|---|---|
合成氨 | 4.0 | — |
液化 | — | 10.5 |
储存(15天) | 0.4 | 13 |
储存(182天) | 3.6 | 97 |
脱氢/再气化 | 8.5 | 2.7 |
合计 | 12.9(储存15天) | 26.2(储存15天) |
16.1(储存182天) | 110.2(储存182天) |
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.74~30.3 | 37.1~137.1 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 1.14~5.7 | 25~125 |
脱氢 | 8.5 | — |
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.74~30.3 | 37.1~137.1 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 1.14~5.7 | 25~125 |
脱氢 | 8.5 | — |
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.19~27.53 | 16~31.6 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 0.59~2.93 | 3.9~19.5 |
脱氢 | 8.5 | — |
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.19~27.53 | 16~31.6 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 0.59~2.93 | 3.9~19.5 |
脱氢 | 8.5 | — |
1 | 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. (2020-09-22) [2023-02-15]. . |
President Xi Jinping addresses the general debate of the 75th session of the United Nations General Assembly[EB/OL]. (2020-09-22) [2023-02-15]. . | |
2 | 国家发展改革委员会, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23) [2023-02-15]. . |
National Development and Reform Commission, National Energy Administration. Medium- and long-term plan for the development of hydrogen energy industry (2021—2035)[EB/OL]. (2022-03-23) [2023-02-15]. . | |
3 | 刘化章. 合成氨工业节能减排的分析[J]. 化工进展, 2011, 30(6): 1147-1157. |
LIU Huazhang. Analysis of energy saving in ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1147-1157. | |
4 | 夏鑫, 蔺建民, 李妍, 等. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339. |
XIA Xin, LIN Jianmin, LI Yan, et al. Research progress on performance and application of ammonia fuel on engines[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2332-2339. | |
5 | CHAI Wai Siong, BAO Yulei, JIN Pengfei, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111254. |
6 | WANG Lu, XIA Meikun, WANG Hong, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074. |
7 | SMIL V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production[M]. Cambridge, Mass: MIT Press, 2001. |
8 | ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. |
9 | 程明睿, 高宏. 绿氢已成为未来维护能源安全的重要方向[J]. 科技中国, 2022(10): 60-65. |
CHENG Mingrui, GAO Hong. Green hydrogen has become an important direction to maintain energy security in the future[J]. Scitech in China, 2022(10): 60-65. | |
10 | JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
11 | 刘化章. 合成氨催化剂研究的新进展[J]. 催化学报, 2001, 22(3): 304-316. |
LIU Huazhang. Recent advances in research of catalysts for ammonia synthesis[J]. Chinese Journal of Catalysis, 2001, 22(3): 304-316. | |
12 | 孙珍珍, 刘化章, 叶攀, 等. Fe1- x O基氨合成催化剂助催化剂的优选[J]. 化工进展, 2022, 41(4): 1886-1893. |
SUN Zhenzhen, LIU Huazhang, YE Pan, et al. Optimization of promoters for Fe1- x O-based ammonia synthesis catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1886-1893. | |
13 | 杨海深. 合成氨催化剂研究进展[J]. 化工设计通讯, 2019, 45(3): 6-7. |
YANG Haishen. Research progress of catalysts for ammonia synthesis[J]. Chemical Engineering Design Communications, 2019, 45(3): 6-7. | |
14 | 郑晓玲, 魏可镁. 第二代氨合成催化体系——钌系氨合成催化剂及其工业应用[J]. 化学进展, 2001, 13(6): 472-480. |
ZHENG Xiaoling, WEI Kemei. The second generation catalysis system for ammonia synthesis—Ruthenium-based ammonia synthesis catalyst and its industrial application[J]. Progress in Chemistry, 2001, 13(6): 472-480. | |
15 | 倪军, 刘本耀, 朱永龙, 等. 双结构助剂对Ru/AC氨合成催化剂稳定性的影响[J]. 分子催化, 2013, 27(4): 371-376. |
NI Jun, LIU Benyao, ZHU Yonglong, et al. Effects of dual structure promoters on Ru/AC catalyst for ammonia synthesis[J]. Journal of Molecular Catalysis, 2013, 27(4): 371-376. | |
16 | LIU Anmin, YANG Yanan, REN Xuefeng, et al. Current progress of electrocatalysts for ammonia synthesis through electrochemical nitrogen reduction under ambient conditions[J]. ChemSusChem, 2020, 13(15): 3766-3788. |
17 | JIA H P, QUADRELLI E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen[J]. Chemical Society Reviews, 2014, 43(2): 547-564. |
18 | ZOU Haiyuan, RONG Weifeng, WEI Shuting, et al. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462-29468. |
19 | ZHOU F L, AZOFRA L M, ALI M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
20 | DU H L, CHATTI M, HODGETTS R Y, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency[J]. Nature, 2022, 609(7928): 722-727. |
21 | LI K, ANDERSEN S Z, STATT M J, et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen[J]. Science, 2021, 374(6575): 1593-1597. |
22 | FU X B, PEDERSEN J B, ZHOU Y Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 379(6633): 707-712. |
23 | SHEN Huidong, CHOI Changhyeok, MASA Justus, et al. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design[J]. Chem, 2021, 7(7): 1708-1754. |
24 | LIANG Zhao, LIU Chao, CHEN Mingwei, et al. Theoretical screening of di-metal atom (M=Fe, Co, Ni, Cu, Zn) electrocatalysts for ammonia synthesis[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31881-31891. |
25 | QIU Weibin, YANG Na, LUO Dan, et al. Precise synthesis of Fe-N2 with N vacancies coordination for boosting electrochemical artificial N2 fixation[J]. Applied Catalysis B: Environmental, 2021, 293: 120216. |
26 | VAN DER HAM C J M, KOPER M T M, HETTERSCHEID D G H. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
27 | GOMEZ J R, GARZON F. Preliminary economics for green ammonia synthesis via lithium mediated pathway[J]. International Journal of Energy Research, 2021, 45(9): 13461-13470. |
28 | CHENG Ming, XIAO Chong, XIE Yi. Photocatalytic nitrogen fixation: The role of defects in photocatalysts[J]. Journal of Materials Chemistry A, 2019, 7(34): 19616-19633. |
29 | HU Shaozheng, CHEN Xin, LI Qiang, et al. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis[J]. Applied Catalysis B: Environmental, 2017, 201: 58-69. |
30 | LI Xiaohong, CHEN Weilin, TAN Huaqiao, et al. Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37927-37938. |
31 | ZHAO Yunxuan, ZHAO Yufei, SHI Run, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700nm[J]. Advanced Materials, 2019, 31(16): 1806482. |
32 | MOU Hongyu, WANG Jinfang, YU Dongkun, et al. Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-driven ambient ammonia synthesis[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44360-44365. |
33 | ZHANG Shuai, ZHAO Yunxuan, SHI Run, et al. Sub-3nm ultrafine Cu2O for visible light driven nitrogen fixation[J]. Angewandte Chemie International Edition, 2021, 60(5): 2554-2560. |
34 | XIAO Cailin, WANG Haipeng, ZHANG Ling, et al. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite[J]. ChemCatChem, 2019, 11(24): 6467-6472. |
35 | MAO Chengliang, LI Hao, GU Honggang, et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light[J]. Chem, 2019, 5(10): 2702-2717. |
36 | BIAN Xuan'ang, ZHAO Yunxuan, WATERHOUSE G I N, et al. Quantifying the contribution of hot electrons in photothermal catalysis: A case study of ammonia synthesis over carbon-supported Ru catalyst[J]. Angewandte Chemie, 2023, 135(25): e202304452. |
37 | ANASTASOPOULOU A, KEIJZER R, PATIL B, et al. Environmental impact assessment of plasma-assisted and conventional ammonia synthesis routes[J]. Journal of Industrial Ecology, 2020, 24(5): 1171-1185. |
38 | GORBANEV Y, VERVLOESSEM E, NIKIFOROV A, et al. Nitrogen fixation with water vapor by nonequilibrium plasma: Toward sustainable ammonia production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2996-3004. |
39 | GUO Cheng'an, TANG Fei, CHEN Jin, et al. Development of dielectric-barrier-discharge ionization[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 2345-2364. |
40 | GÓMEZ-RAMÍREZ A, COTRINO J, LAMBERT R, et al. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor[J]. Plasma Sources Science and Technology, 2015, 24(6): 065011. |
41 | BAI Mindong, ZHANG Zhitao, BAI Mindi, et al. Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly condition[J]. Plasma Chemistry and Plasma Processing, 2008, 28(4): 405-414. |
42 | XIE Deyuan, SUN Ye, ZHU Tianle, et al. Ammonia synthesis and by-product formation from H2O, H2 and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst[J]. RSC Advances, 2016, 6(107): 105338-105346. |
43 | WINTER L R, ASHFORD B, HONG Junmi, et al. Identifying surface reaction intermediates in plasma catalytic ammonia synthesis[J]. ACS Catalysis, 2020, 10(24): 14763-14774. |
44 | ZHAO Hao, SONG Guohui, CHEN Zhe, et al. In situ identification of NNH and N2H2 by using molecular-beam mass spectrometry in plasma-assisted catalysis for NH3 synthesis[J]. ACS Energy Letters, 2022, 7(1): 53-58. |
45 | LI Laiquan, TANG Cheng, CUI Xiaoyang, et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction[J]. Angewandte Chemie, 2021, 133(25): 14250-14256. |
46 | REN Yongwen, YU Chang, WANG Linshan, et al. Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system[J]. Journal of the American Chemical Society, 2022, 144(23): 10193-10200. |
47 | GÁLVEZ M E, HALMANN M, STEINFELD A. Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses[J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2042-2046. |
48 | MICHALSKY R, PFROMM P H. An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23243-23251. |
49 | MICHALSKY R, AVRAM A M, PETERSON B A, et al. Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage[J]. Chemical Science, 2015, 6(7): 3965-3974. |
50 | YE Tian-Nan, PARK Sang-Won, LU Yangfan, et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst[J]. Nature, 2020, 583(7816): 391-395. |
51 | GAO Wenbo, GUO Jianping, WANG Peikun, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers[J]. Nature Energy, 2018, 3(12): 1067-1075. |
52 | GAO Wenbo, WANG Peikun, GUO Jianping, et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt[J]. ACS Catalysis, 2017, 7(5): 3654-3661. |
53 | FENG Sheng, GAO Wenbo, WANG Qianru, et al. A multi-functional composite nitrogen carrier for ammonia production via a chemical looping route[J]. Journal of Materials Chemistry A, 2021, 9(2): 1039-1047. |
54 | 国家发展改革委员会, 国家能源局. “十四五”新型储能发展实施方案[EB/OL]. (2022-01-29) [2023-02-15]. . |
National Development and Reform Commission, National Energy Administration. Implementation Plan for the Development of New Energy Storage in the 14th Five-Year Plan[EB/OL]. (2022-01-29) [2023-02-15]. . | |
55 | 国家发展改革委员会, 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-01-29) [2023-02-15]. . |
National Development and Reform Commission, National Energy Administration. The 14th Five-Year Plan for Modern Energy System[EB/OL]. (2022-01-29) [2023-02-15]. . | |
56 | 徐玉华. 对型煤制作中两个观念的看法[J]. 化工设计通讯, 2013, 39(1): 30-32. |
XU Yuhua. View of two briquette production concepts[J]. Chemical Engineering Design Communications, 2013, 39(1): 30-32. | |
57 | 陕煤集团. 渭化公司: 虎年新春各项工作齐头并进[EB/OL]. (2022-02-21) [2023-09-11]. . |
Shaanxi Coal and Chemical Industry Group Co., Ltd.. Shaanxi Weihe Coal Chemical Corporation Group Ltd.: All the work goes together in the year of Tiger Spring Festival[EB/OL]. (2022-02-21) [2023-09-11]. . | |
58 | 潞安阳煤化工集团.储粮备衣战寒冬③平原化工: 多措并举精准发力 画好“战寒冬”同心圆[EB/OL]. (2022-10-20) [2023-09-11]. . |
Lu'an Chemical Group. Grain storage and clothing against cold winter @ Pingyuan Chemical Industry: Take multiple measures to fight the cold winter precisely[EB/OL]. (2022-10-20) [2023-09-11]. . | |
59 | 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82, 87. |
YANG Yang, ZHANG Shengzhong, WANG Hongtao. Research progress on key materials for alkaline water electrolysis to hydrogen[J]. Modern Chemical Industry, 2021, 41(5): 78-82, 87. | |
60 | 中国产学研合作促进会. 碱性水电解制氢系统“领跑者行动”性能评价导则: T/CAB 0166—2022 [S]. 北京: 全国团体标准信息平台, 2022. |
China Industry-University-Research Institute Collaboration Association. Hydrogen top runner program evaluation guidelines of alkaline water electrolysis system for hydrogen production: T/CAB 0166—2022 [S]. Beijing: National group standard information platform, 2022. | |
61 | 宁夏回族自治区发展和改革委员会. 自治区发展改革委关于优化峰谷分时电价机制的通知[EB/OL]. (2023-01-04) [2023-02-15]. . |
Development and Reform Commission of Ningxia Hui Autonomous Region. Notice of the Development and Reform Commission of the Autonomous Region on optimizing the peak-valley time-of-use electricity price mechanism[EB/OL]. (2023-01-04) [2023-02-15]. . | |
62 | 李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target: Research on development basis and route [J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. | |
63 | 谢易奇. 绿氢应用于甲醇和合成氨工业的情景和路径[C]// 2021势银氢能与燃料电池产业年会, 2021: 1-24. |
XIE Yiqi. Scenario and path of green hydrogen application in methanol and synthetic ammonia industry[C]// 2021 TrendBank Hydrogen Energy & Fuel Cell Annual Conference, 2021: 1-24. | |
64 | 李建华, 黄二梅. 双碳背景下合成氨的发展研究[J/OL]. 现代化工, 2023,43(9):16-19, 23. |
LI Jianhua, HUANG Ermei. Study on the development of synthetic ammonia at the background of carbon-peaking and carbon-neutralization (Double Carbon) Goals [J/OL]. Modern Chemical Industry, 2023, 43(9):16-19, 23. | |
65 | BARTELS J R. A feasibility study of implementing an ammonia economy[D]. Ames: Iowa State University, 2008. |
66 | 吴全, 沈珏新, 余磊, 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39. |
WU Quan, SHEN Juexin, YU Lei, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the "dual-carbon" background[J]. Petroleum and New Energy, 2022, 34(5): 27-33, 39. | |
67 | VALERA-MEDINA A, BANARES-ALCANTARA R. Techno-economic challenges of green ammonia as an energy vector[M]. UK: Academic Press, 2020. |
68 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. |
[1] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[2] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[3] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[4] | SUN Hui, MENG Xianghai, WEI Jinghai, ZHOU Hongjun, XU Chunming. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. |
[5] | ZHOU Jiali, MA Ziran, LI Ge, ZHAO Chunlin, WANG Hongyan, WANG Lei. Research progress on anti-poisoning of SCR catalysts in flue gas of coal and renewable fuel co-fired power plant [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6286-6300. |
[6] | LI Weidong, LI Yilong, TENG Lin, YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong. Research progress on ammonia energy technology and economy under "carbon emission peak" and "carbon neutrality" targets [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238. |
[7] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[8] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[9] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
[10] | YAO Lun, ZHOU Yongjin. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16-29. |
[11] | YANG Zheng, XIE Yongli, YANG Guangyao, ZHANG Lizhong, LIU Yunxiang. Application analysis of direct cooling exhaust air heat pump system in Xiaobaodang coal mine [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 643-647. |
[12] | WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131. |
[13] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[14] | LI Xiang, GE Wujie, MA Xianguo, PENG Gongchang. Research progress on countermeasures for microcrack-induced capacity degradation of Ni-rich cathode materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4277-4287. |
[15] | MA Youfu, WANG Ziwen, LYU Junfu. Simulation of off-design performance of an efficient power generation system with cold-ends optimization using hot air recirculation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2340-2347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |