1 |
习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. (2020-09-22) [2023-02-15]. .
|
|
President Xi Jinping addresses the general debate of the 75th session of the United Nations General Assembly[EB/OL]. (2020-09-22) [2023-02-15]. .
|
2 |
国家发展改革委员会, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23) [2023-02-15]. .
|
|
National Development and Reform Commission, National Energy Administration. Medium- and long-term plan for the development of hydrogen energy industry (2021—2035)[EB/OL]. (2022-03-23) [2023-02-15]. .
|
3 |
刘化章. 合成氨工业节能减排的分析[J]. 化工进展, 2011, 30(6): 1147-1157.
|
|
LIU Huazhang. Analysis of energy saving in ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1147-1157.
|
4 |
夏鑫, 蔺建民, 李妍, 等. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339.
|
|
XIA Xin, LIN Jianmin, LI Yan, et al. Research progress on performance and application of ammonia fuel on engines[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2332-2339.
|
5 |
CHAI Wai Siong, BAO Yulei, JIN Pengfei, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111254.
|
6 |
WANG Lu, XIA Meikun, WANG Hong, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074.
|
7 |
SMIL V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production[M]. Cambridge, Mass: MIT Press, 2001.
|
8 |
ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639.
|
9 |
程明睿, 高宏. 绿氢已成为未来维护能源安全的重要方向[J]. 科技中国, 2022(10): 60-65.
|
|
CHENG Mingrui, GAO Hong. Green hydrogen has become an important direction to maintain energy security in the future[J]. Scitech in China, 2022(10): 60-65.
|
10 |
JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691.
|
11 |
刘化章. 合成氨催化剂研究的新进展[J]. 催化学报, 2001, 22(3): 304-316.
|
|
LIU Huazhang. Recent advances in research of catalysts for ammonia synthesis[J]. Chinese Journal of Catalysis, 2001, 22(3): 304-316.
|
12 |
孙珍珍, 刘化章, 叶攀, 等. Fe1- x O基氨合成催化剂助催化剂的优选[J]. 化工进展, 2022, 41(4): 1886-1893.
|
|
SUN Zhenzhen, LIU Huazhang, YE Pan, et al. Optimization of promoters for Fe1- x O-based ammonia synthesis catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1886-1893.
|
13 |
杨海深. 合成氨催化剂研究进展[J]. 化工设计通讯, 2019, 45(3): 6-7.
|
|
YANG Haishen. Research progress of catalysts for ammonia synthesis[J]. Chemical Engineering Design Communications, 2019, 45(3): 6-7.
|
14 |
郑晓玲, 魏可镁. 第二代氨合成催化体系——钌系氨合成催化剂及其工业应用[J]. 化学进展, 2001, 13(6): 472-480.
|
|
ZHENG Xiaoling, WEI Kemei. The second generation catalysis system for ammonia synthesis—Ruthenium-based ammonia synthesis catalyst and its industrial application[J]. Progress in Chemistry, 2001, 13(6): 472-480.
|
15 |
倪军, 刘本耀, 朱永龙, 等. 双结构助剂对Ru/AC氨合成催化剂稳定性的影响[J]. 分子催化, 2013, 27(4): 371-376.
|
|
NI Jun, LIU Benyao, ZHU Yonglong, et al. Effects of dual structure promoters on Ru/AC catalyst for ammonia synthesis[J]. Journal of Molecular Catalysis, 2013, 27(4): 371-376.
|
16 |
LIU Anmin, YANG Yanan, REN Xuefeng, et al. Current progress of electrocatalysts for ammonia synthesis through electrochemical nitrogen reduction under ambient conditions[J]. ChemSusChem, 2020, 13(15): 3766-3788.
|
17 |
JIA H P, QUADRELLI E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen[J]. Chemical Society Reviews, 2014, 43(2): 547-564.
|
18 |
ZOU Haiyuan, RONG Weifeng, WEI Shuting, et al. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462-29468.
|
19 |
ZHOU F L, AZOFRA L M, ALI M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520.
|
20 |
DU H L, CHATTI M, HODGETTS R Y, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency[J]. Nature, 2022, 609(7928): 722-727.
|
21 |
LI K, ANDERSEN S Z, STATT M J, et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen[J]. Science, 2021, 374(6575): 1593-1597.
|
22 |
FU X B, PEDERSEN J B, ZHOU Y Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 379(6633): 707-712.
|
23 |
SHEN Huidong, CHOI Changhyeok, MASA Justus, et al. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design[J]. Chem, 2021, 7(7): 1708-1754.
|
24 |
LIANG Zhao, LIU Chao, CHEN Mingwei, et al. Theoretical screening of di-metal atom (M=Fe, Co, Ni, Cu, Zn) electrocatalysts for ammonia synthesis[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31881-31891.
|
25 |
QIU Weibin, YANG Na, LUO Dan, et al. Precise synthesis of Fe-N2 with N vacancies coordination for boosting electrochemical artificial N2 fixation[J]. Applied Catalysis B: Environmental, 2021, 293: 120216.
|
26 |
VAN DER HAM C J M, KOPER M T M, HETTERSCHEID D G H. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191.
|
27 |
GOMEZ J R, GARZON F. Preliminary economics for green ammonia synthesis via lithium mediated pathway[J]. International Journal of Energy Research, 2021, 45(9): 13461-13470.
|
28 |
CHENG Ming, XIAO Chong, XIE Yi. Photocatalytic nitrogen fixation: The role of defects in photocatalysts[J]. Journal of Materials Chemistry A, 2019, 7(34): 19616-19633.
|
29 |
HU Shaozheng, CHEN Xin, LI Qiang, et al. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis[J]. Applied Catalysis B: Environmental, 2017, 201: 58-69.
|
30 |
LI Xiaohong, CHEN Weilin, TAN Huaqiao, et al. Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37927-37938.
|
31 |
ZHAO Yunxuan, ZHAO Yufei, SHI Run, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700nm[J]. Advanced Materials, 2019, 31(16): 1806482.
|
32 |
MOU Hongyu, WANG Jinfang, YU Dongkun, et al. Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-driven ambient ammonia synthesis[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44360-44365.
|
33 |
ZHANG Shuai, ZHAO Yunxuan, SHI Run, et al. Sub-3nm ultrafine Cu2O for visible light driven nitrogen fixation[J]. Angewandte Chemie International Edition, 2021, 60(5): 2554-2560.
|
34 |
XIAO Cailin, WANG Haipeng, ZHANG Ling, et al. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite[J]. ChemCatChem, 2019, 11(24): 6467-6472.
|
35 |
MAO Chengliang, LI Hao, GU Honggang, et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light[J]. Chem, 2019, 5(10): 2702-2717.
|
36 |
BIAN Xuan'ang, ZHAO Yunxuan, WATERHOUSE G I N, et al. Quantifying the contribution of hot electrons in photothermal catalysis: A case study of ammonia synthesis over carbon-supported Ru catalyst[J]. Angewandte Chemie, 2023, 135(25): e202304452.
|
37 |
ANASTASOPOULOU A, KEIJZER R, PATIL B, et al. Environmental impact assessment of plasma-assisted and conventional ammonia synthesis routes[J]. Journal of Industrial Ecology, 2020, 24(5): 1171-1185.
|
38 |
GORBANEV Y, VERVLOESSEM E, NIKIFOROV A, et al. Nitrogen fixation with water vapor by nonequilibrium plasma: Toward sustainable ammonia production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2996-3004.
|
39 |
GUO Cheng'an, TANG Fei, CHEN Jin, et al. Development of dielectric-barrier-discharge ionization[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 2345-2364.
|
40 |
GÓMEZ-RAMÍREZ A, COTRINO J, LAMBERT R, et al. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor[J]. Plasma Sources Science and Technology, 2015, 24(6): 065011.
|
41 |
BAI Mindong, ZHANG Zhitao, BAI Mindi, et al. Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly condition[J]. Plasma Chemistry and Plasma Processing, 2008, 28(4): 405-414.
|
42 |
XIE Deyuan, SUN Ye, ZHU Tianle, et al. Ammonia synthesis and by-product formation from H2O, H2 and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst[J]. RSC Advances, 2016, 6(107): 105338-105346.
|
43 |
WINTER L R, ASHFORD B, HONG Junmi, et al. Identifying surface reaction intermediates in plasma catalytic ammonia synthesis[J]. ACS Catalysis, 2020, 10(24): 14763-14774.
|
44 |
ZHAO Hao, SONG Guohui, CHEN Zhe, et al. In situ identification of NNH and N2H2 by using molecular-beam mass spectrometry in plasma-assisted catalysis for NH3 synthesis[J]. ACS Energy Letters, 2022, 7(1): 53-58.
|
45 |
LI Laiquan, TANG Cheng, CUI Xiaoyang, et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction[J]. Angewandte Chemie, 2021, 133(25): 14250-14256.
|
46 |
REN Yongwen, YU Chang, WANG Linshan, et al. Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system[J]. Journal of the American Chemical Society, 2022, 144(23): 10193-10200.
|
47 |
GÁLVEZ M E, HALMANN M, STEINFELD A. Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses[J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2042-2046.
|
48 |
MICHALSKY R, PFROMM P H. An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23243-23251.
|
49 |
MICHALSKY R, AVRAM A M, PETERSON B A, et al. Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage[J]. Chemical Science, 2015, 6(7): 3965-3974.
|
50 |
YE Tian-Nan, PARK Sang-Won, LU Yangfan, et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst[J]. Nature, 2020, 583(7816): 391-395.
|
51 |
GAO Wenbo, GUO Jianping, WANG Peikun, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers[J]. Nature Energy, 2018, 3(12): 1067-1075.
|
52 |
GAO Wenbo, WANG Peikun, GUO Jianping, et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt[J]. ACS Catalysis, 2017, 7(5): 3654-3661.
|
53 |
FENG Sheng, GAO Wenbo, WANG Qianru, et al. A multi-functional composite nitrogen carrier for ammonia production via a chemical looping route[J]. Journal of Materials Chemistry A, 2021, 9(2): 1039-1047.
|
54 |
国家发展改革委员会, 国家能源局. “十四五”新型储能发展实施方案[EB/OL]. (2022-01-29) [2023-02-15]. .
|
|
National Development and Reform Commission, National Energy Administration. Implementation Plan for the Development of New Energy Storage in the 14th Five-Year Plan[EB/OL]. (2022-01-29) [2023-02-15]. .
|
55 |
国家发展改革委员会, 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-01-29) [2023-02-15]. .
|
|
National Development and Reform Commission, National Energy Administration. The 14th Five-Year Plan for Modern Energy System[EB/OL]. (2022-01-29) [2023-02-15]. .
|
56 |
徐玉华. 对型煤制作中两个观念的看法[J]. 化工设计通讯, 2013, 39(1): 30-32.
|
|
XU Yuhua. View of two briquette production concepts[J]. Chemical Engineering Design Communications, 2013, 39(1): 30-32.
|
57 |
陕煤集团. 渭化公司: 虎年新春各项工作齐头并进[EB/OL]. (2022-02-21) [2023-09-11]. .
|
|
Shaanxi Coal and Chemical Industry Group Co., Ltd.. Shaanxi Weihe Coal Chemical Corporation Group Ltd.: All the work goes together in the year of Tiger Spring Festival[EB/OL]. (2022-02-21) [2023-09-11]. .
|
58 |
潞安阳煤化工集团.储粮备衣战寒冬③平原化工: 多措并举精准发力 画好“战寒冬”同心圆[EB/OL]. (2022-10-20) [2023-09-11]. .
|
|
Lu'an Chemical Group. Grain storage and clothing against cold winter @ Pingyuan Chemical Industry: Take multiple measures to fight the cold winter precisely[EB/OL]. (2022-10-20) [2023-09-11]. .
|
59 |
杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82, 87.
|
|
YANG Yang, ZHANG Shengzhong, WANG Hongtao. Research progress on key materials for alkaline water electrolysis to hydrogen[J]. Modern Chemical Industry, 2021, 41(5): 78-82, 87.
|
60 |
中国产学研合作促进会. 碱性水电解制氢系统“领跑者行动”性能评价导则: T/CAB 0166—2022 [S]. 北京: 全国团体标准信息平台, 2022.
|
|
China Industry-University-Research Institute Collaboration Association. Hydrogen top runner program evaluation guidelines of alkaline water electrolysis system for hydrogen production: T/CAB 0166—2022 [S]. Beijing: National group standard information platform, 2022.
|
61 |
宁夏回族自治区发展和改革委员会. 自治区发展改革委关于优化峰谷分时电价机制的通知[EB/OL]. (2023-01-04) [2023-02-15]. .
|
|
Development and Reform Commission of Ningxia Hui Autonomous Region. Notice of the Development and Reform Commission of the Autonomous Region on optimizing the peak-valley time-of-use electricity price mechanism[EB/OL]. (2023-01-04) [2023-02-15]. .
|
62 |
李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899.
|
|
LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target: Research on development basis and route [J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899.
|
63 |
谢易奇. 绿氢应用于甲醇和合成氨工业的情景和路径[C]// 2021势银氢能与燃料电池产业年会, 2021: 1-24.
|
|
XIE Yiqi. Scenario and path of green hydrogen application in methanol and synthetic ammonia industry[C]// 2021 TrendBank Hydrogen Energy & Fuel Cell Annual Conference, 2021: 1-24.
|
64 |
李建华, 黄二梅. 双碳背景下合成氨的发展研究[J/OL]. 现代化工, 2023,43(9):16-19, 23.
|
|
LI Jianhua, HUANG Ermei. Study on the development of synthetic ammonia at the background of carbon-peaking and carbon-neutralization (Double Carbon) Goals [J/OL]. Modern Chemical Industry, 2023, 43(9):16-19, 23.
|
65 |
BARTELS J R. A feasibility study of implementing an ammonia economy[D]. Ames: Iowa State University, 2008.
|
66 |
吴全, 沈珏新, 余磊, 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39.
|
|
WU Quan, SHEN Juexin, YU Lei, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the "dual-carbon" background[J]. Petroleum and New Energy, 2022, 34(5): 27-33, 39.
|
67 |
VALERA-MEDINA A, BANARES-ALCANTARA R. Techno-economic challenges of green ammonia as an energy vector[M]. UK: Academic Press, 2020.
|
68 |
邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
|
|
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20.
|