Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6226-6238.DOI: 10.16085/j.issn.1000-6613.2023-0066
• Energy processes and technology • Previous Articles
LI Weidong(), LI Yilong, TENG Lin(), YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong
Received:
2023-01-13
Revised:
2023-03-24
Online:
2024-01-08
Published:
2023-12-25
Contact:
TENG Lin
李卫东(), 李逸龙, 滕霖(), 尹鹏博, 黄鑫, 李加庆, 罗宇, 江莉龙
通讯作者:
滕霖
作者简介:
李卫东(1991—),男,博士,副教授,研究方向为新能源储运。E-mail:liweidongsc@126.com。
基金资助:
CLC Number:
LI Weidong, LI Yilong, TENG Lin, YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong. Research progress on ammonia energy technology and economy under "carbon emission peak" and "carbon neutrality" targets[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238.
李卫东, 李逸龙, 滕霖, 尹鹏博, 黄鑫, 李加庆, 罗宇, 江莉龙. “双碳”目标下的氨能技术与经济性研究进展[J]. 化工进展, 2023, 42(12): 6226-6238.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0066
工艺类型 | 氢气价格/CNY·kg-1 | 氢气成本/CNY·(t NH3)-1 | 合成氨成本/CNY·t-1 | 碳排放/t CO2·(t NH3)-1 | 绿色溢价/CNY·(t NH3)-1 |
---|---|---|---|---|---|
PEM工艺 | 25.82 | 4556 | 5293 | — | 3451 |
AWE工艺 | 24.92 | 4398 | 5135 | — | 3293 |
SOE工艺 | 27.69 | 4886 | 4922 | — | 3080 |
传统H-B工艺 | — | — | 1842 | 2.78 | — |
工艺类型 | 氢气价格/CNY·kg-1 | 氢气成本/CNY·(t NH3)-1 | 合成氨成本/CNY·t-1 | 碳排放/t CO2·(t NH3)-1 | 绿色溢价/CNY·(t NH3)-1 |
---|---|---|---|---|---|
PEM工艺 | 25.82 | 4556 | 5293 | — | 3451 |
AWE工艺 | 24.92 | 4398 | 5135 | — | 3293 |
SOE工艺 | 27.69 | 4886 | 4922 | — | 3080 |
传统H-B工艺 | — | — | 1842 | 2.78 | — |
运输方式 | 事故可能性 | 事故严重程度 | 风险等级 |
---|---|---|---|
管道 | 极低 | 中 | 低 |
公路 | 中 | 高 | 高 |
铁路 | 低 | 极高 | 高 |
驳船 | 低 | 中 | 中 |
运输方式 | 事故可能性 | 事故严重程度 | 风险等级 |
---|---|---|---|
管道 | 极低 | 中 | 低 |
公路 | 中 | 高 | 高 |
铁路 | 低 | 极高 | 高 |
驳船 | 低 | 中 | 中 |
燃料 | 热值/mJ·kg-1 | 能量密度/mJ·L-1 | 密度/kg·m-3 | 辛烷值(RON) | 火焰速度/m·s-1 | 可燃性极限体积分数/% | 汽化潜热/kJ·kg-1 |
---|---|---|---|---|---|---|---|
液氨 | 18.6 | 12.69(1atm,33°C) | 682 | >130 | 0.067 | 15~28 | 1370 |
液氢 | 120 | 8.5(1atm,-253°C) | 70.85 | >130 | 3.25 | 4.7~75 | 445.6 |
柴油 | 44.11 | 32.89(1atm,25°C) | 745.7 | <20 | ~0.80 | 0.43~0.6 | 240 |
汽油 | 44.34 | 30.93(1atm,25°C) | 697.6 | 100 | 0.41 | 0.6~8 | 305 |
甲醇 | 19.90 | 15.65(1atm,25°C) | 786.3 | 108.7 | 0.56 | 6.7~36 | 109 |
乙醇 | 26.84 | 21.07(1atm,25°C) | 785.1 | 108.6 | 0.58 | 3.3~19 | 840 |
燃料 | 热值/mJ·kg-1 | 能量密度/mJ·L-1 | 密度/kg·m-3 | 辛烷值(RON) | 火焰速度/m·s-1 | 可燃性极限体积分数/% | 汽化潜热/kJ·kg-1 |
---|---|---|---|---|---|---|---|
液氨 | 18.6 | 12.69(1atm,33°C) | 682 | >130 | 0.067 | 15~28 | 1370 |
液氢 | 120 | 8.5(1atm,-253°C) | 70.85 | >130 | 3.25 | 4.7~75 | 445.6 |
柴油 | 44.11 | 32.89(1atm,25°C) | 745.7 | <20 | ~0.80 | 0.43~0.6 | 240 |
汽油 | 44.34 | 30.93(1atm,25°C) | 697.6 | 100 | 0.41 | 0.6~8 | 305 |
甲醇 | 19.90 | 15.65(1atm,25°C) | 786.3 | 108.7 | 0.56 | 6.7~36 | 109 |
乙醇 | 26.84 | 21.07(1atm,25°C) | 785.1 | 108.6 | 0.58 | 3.3~19 | 840 |
1 | Genovaitė LIOBIKIENĖ, BUTKUS Mindaugas. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy[J]. Renewable Energy, 2017, 106: 298-309. |
2 | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
3 | SAZALI Norazlianie. Emerging technologies by hydrogen: A review[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753-18771. |
4 | Ankica KOVAČ, PARANOS Matej, Doria MARCIUŠ. Hydrogen in energy transition: A review[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10016-10035. |
5 | YAPICIOGLU Arda, DINCER Ibrahim. A review on clean ammonia as a potential fuel for power generators[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 96-108. |
6 | MACFARLANE Douglas R, CHEREPANOV Pavel V, CHOI Jaecheol, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. |
7 | SMITH Collin, HILL Alfred K, Laura TORRENTE-MURCIANO. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape[J]. Energy & Environmental Science, 2020, 13(2): 331-344. |
8 | NAYAK-LUKE Richard Michael, BAÑARES-ALCÁNTARA R. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production[J]. Energy & Environmental Science, 2020, 13(9): 2957-2966. |
9 | COLLODI Guido, AZZARO Giuliana, FERRARI Noemi, et al. Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel[J]. Energy Procedia, 2017, 114: 2690-2712. |
10 | 范天熙. MOFs催化剂制备及其低温电催化合成氨性能[D]. 北京: 北京化工大学, 2016. |
FAN Tianxi. The preparation of MOFs and their catalytic performance for ammonia synthesis at low temperature and atmospheric pressure[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
11 | 景俊萌, 庞杰, 房晓敏, 等. 电化学合成氨研究进展[J]. 化学研究, 2019, 30(5): 522-531. |
JING Junmeng, PANG Jie, FANG Xiaomin, et al. Research progress of electrochemical ammonia synthesis[J]. Chemical Research, 2019, 30(5): 522-531. | |
12 | NUTTALL L J, FICKETT A P, TITTERINGTON W A. Hydrogen generation by solid polymer electrolyte water electrolysis[M]//VEZIROĞLU T N. Hydrogen Energy. Boston, MA: Springer, 1975: 441-455. |
13 | GRUBB W T. Ionic migration in ion-exchange membranes[J]. The Journal of Physical Chemistry, 1959, 63(1): 55-58. |
14 | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
15 | LAN Rong, IRVINE John T S, TAO Shanwen. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3(1): 1145. |
16 | CHEN Shiming, PERATHONER Siglinda, AMPELLI Claudio, et al. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7393-7400. |
17 | RENNER J N, GREENLEE L F, AYRES K E, et al. Electrochemical synthesis of ammonia: A low pressure, low temperature approach[J]. Interface Magazine, 2015, 24(2): 51-57. |
18 | OZTURK Merve, DINCER Ibrahim. An integrated system for ammonia production from renewable hydrogen: A case study[J]. International Journal of Hydrogen Energy, 2021, 46(8): 5918-5925. |
19 | ADAM Duckett. Green ammonia project set for launch in UK today[EB/OL]. (2018-06-26) [2022-12-24]. . |
20 | CARMO Marcelo, FRITZ David L, Jürgen MERGEL, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. |
21 | ZOULIAS Emmanuel, VARKARAKI Elli, LYMBEROPOULOS Nicolaos, et al. A review on water electrolysis[J]. Tcjst, 2004, 4(2): 41-71. |
22 | BIROL Fatih. The future of hydrogen: Seizing today’s opportunities[R]. IEA, 2019. |
23 | GRUNDT T, CHRISTIANSEN K. Hydrogen by water electrolysis as basis for small scale ammonia production. A comparison with hydrocarbon based technologies[J]. International Journal of Hydrogen Energy, 1982, 7(3): 247-257. |
24 | BICER Yusuf, DINCER Ibrahim, ZAMFIRESCU Calin, et al. Comparative life cycle assessment of various ammonia production methods[J]. Journal of Cleaner Production, 2016, 135: 1379-1395. |
25 | FRATTINI D, CINTI G, BIDINI G, et al. A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants[J]. Renewable Energy, 2016, 99: 472-482. |
26 | CHEHADE Ghassan, DINCER Ibrahim. Progress in green ammonia production as potential carbon-free fuel[J]. Fuel, 2021, 299: 120845. |
27 | O'BRIEN J E, MCKELLAR M G, HARVEGO E A, et al. High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy-summary of system simulation and economic analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4808-4819. |
28 | BUTTLER Alexander, SPLIETHOFF Hartmut. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
29 | CINTI Giovanni, FRATTINI Domenico, JANNELLI Elio, et al. Coupling solid oxide electrolyser (SOE) and ammonia production plant[J]. Applied Energy, 2017, 192: 466-476. |
30 | HARVEGO E A, MCKELLAR M G, SOHAL M S, et al. Economic analysis of a nuclear reactor powered high-temperature electrolysis hydrogen production plant[C]//Proceedings of ASME 2008 2nd International Conference on Energy Sustainability Collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences, August 10-14, 2008, Jacksonville, Florida, USA. 2009: 549-558. |
31 | ALZAHRANI Abdullah, DINCER Ibrahim. Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production[J]. Applied Energy, 2018, 225: 471-485. |
32 | Ulrik FRØHLKE. Topsoe and first ammonia launch zero emission ammonia production with the world’s largest reservation of electrolyzer capacity[EB/OL]. (2022-09-14) [2022-12-24]. . |
33 | KRAGLUND Mikkel Rykær, CARMO Marcelo, Günter SCHILLER, et al. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers[J]. Energy & Environmental Science, 2019, 12(11): 3313-3318. |
34 | GÜR Turgut M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 2696-2767. |
35 | 刘畅, 刘先军, 刘淑芝, 等. 电化学合成氨研究进展[J]. 当代化工, 2020, 49(3): 655-659. |
LIU Chang, LIU Xianjun, LIU Shuzhi, et al. Research progress in electrochemical ammonia synthesis[J]. Contemporary Chemical Industry, 2020, 49(3): 655-659. | |
36 | 李志军, 刘京京, 陈爱琴, 等. 可再生能源转化为氨氢能源体系技术和经济性分析[J]. 上海节能, 2022(9): 1125-1131. |
LI Zhijun, LIU Jingjing, CHEN Aiqin, et al. Technical and economic analysis on renewable energy conversion to ammonia hydrogen energy system[J]. Shanghai Energy Saving, 2022(9): 1125-1131. | |
37 | 刘化章. 合成氨工业:过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: Past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
38 | MCENANEY Joshua M, SINGH Aayush R, SCHWALBE Jay A, et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure[J]. Energy & Environmental Science, 2017, 10(7): 1621-1630. |
39 | SURYANTO Bryan H R, MATUSZEK Karolina, CHOI Jaecheol, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
40 | ZHOU Fengling, AZOFRA Luis Miguel, Muataz ALI, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
41 | WANG D, AZOFRA L M, HARB M, et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions[J]. ChemSusChem, 2018, 11(19): 3416-3422. |
42 | GIDDEY Sarb, MUNNINGS Chris, KULKARNI Ani, et al. CSIRO hydrogen to ammonia R&D[R]. Australia’s National Science Agency, 2020. |
43 | HOCHMAN Gal, GOLDMAN Alan S, FELDER Frank A, et al. Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938-8948. |
44 | Mohammed AL-BREIKI, BICER Yusuf. Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses[J]. International Journal of Hydrogen Energy, 2020, 45(60): 34927-34937. |
45 | WOLF Erik. Large-scale hydrogen energy storage[M]//Electrochemical energy storage for renewable sources and grid balancing. Elsevier, 2015: 129-142. |
46 | SONKER Muskan, TIWARY Saurabh Kr, SHREYASH Nehil, et al. Ammonia as an alternative fuel for vehicular applications: Paving the way for adsorbed ammonia and direct ammonia fuel cells[J]. Journal of Cleaner Production, 2022, 376: 133960. |
47 | BARTELS Jeffrey Ralph. A feasibility study of implementing an ammonia economy[D]. Ames: Iowa State University, 2008. |
48 | ROUWENHORST Kevin, Louis van der HAM, Guido MUL, et al. Power-to-ammonia-to-power (P 2A2P) for local electricity storage in 2025[EB/OL]. (2018-10-30) [2022-12-24]. . |
49 | PALYS Matthew J, DAOUTIDIS Prodromos. Using hydrogen and ammonia for renewable energy storage: A geographically comprehensive techno-economic study[J]. Computers & Chemical Engineering, 2020, 136: 106785. |
50 | NationMaster. Top countries for ammonia productio[EB/OL]. [2022-12-24]. . |
51 | World Integrated Trade Solution. Ammonia; anhydrous exports by country in 2019[EB/OL]. [2022-12-24]. . |
52 | World Integrated Trade Solution. Ammonia; anhydrous imports by country in 2019[EB/OL]. [2022-12-24]. . |
53 | ROUWENHORST Kevin H R, BROWN Trevor. Techno-economic considerations for ammonia production, storage, and transportation[M]//Aika Ki, Kobayashi H. CO2 Free ammonia as an energy carrier. Singapore: Springer, 2023: 667-679. |
54 | 唐景奥, 李振威, 杨骞翔. 液氨的储存、运输及液氨储罐区的安全标准评价[J]. 中国石油和化工标准与质量, 2016, 36(13): 61, 63. |
TANG Jing’ao, LI Zhenwei, YANG Qianxiang. Storage and transportation of liquid ammonia and safety standard evaluation of liquid ammonia storage tank area[J]. China Petroleum and Chemical Standard and Quality, 2016, 36(13): 61, 63. | |
55 | YANG Christopher, OGDEN Joan. Determining the lowest-cost hydrogen delivery mode[J]. International Journal of Hydrogen Energy, 2007, 32(2): 268-286. |
56 | Agustin VALERA-MEDINA, VRIES Niels de, LAURSEN Rene, et al. Ammonia as marine fuel[EB/OL]. (2018-11-01) [2022-12-24]. . |
57 | Minnesota Department of Agriculture. Anhydrous ammonia (NH3) transportation[EB/OL]. [2022-12-24]. . |
58 | MALENKOV A S, V Yu NAUMOV, SHABALOVA S I, et al. Economic feasibility assessment of using ammonia for hydrogen transportation[C]//SOLOVEV D B, KYRIAKOPOULOS G L, VENELIN T. SMART Automatics and Energy. Singapore: Springer, 2022: 89-98. |
59 | 王华林. 液氨安全贮存浅析[J]. 现代工业经济和信息化, 2014, 4(13): 64-65. |
WANG Hualin. Safe storage of liquid ammonia[J]. Modern Industrial Economy and Informationization, 2014, 4(13): 64-65. | |
60 | 李重谦. 浅析液氨存储及运输安全应对[J]. 化学工程与装备, 2019(10): 294-295. |
LI Zhongqian. Analysis on the safety countermeasures of liquid ammonia storage and transportation[J]. Chemical Engineering & Equipment, 2019(10): 294-295. | |
61 | LIPPMANN Dennis G. Evaluation of risks related to the transport of anhydrous ammonia and their mitigation by localized small scale production[C]//Proceedings of 2012 AIChE Ammonia Safety Symposium, 2012. |
62 | Norihiko IKI, KURATA Osamu, MATSUNUMA Takayuki, et al. Micro gas turbine firing kerosene and ammonia[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, June 15-19, 2015, Montreal, Quebec, Canada. 2015. |
63 | HAPUTHANTHRI Shehan Omantha, MAXWELL Timothy Taylor, FLEMING John, et al. Ammonia and gasoline fuel blends for spark ignited internal combustion engines[J]. Journal of Energy Resources Technology, 2015, 137(6): 062201. |
64 | NOZARI Hadi, Arif KARABEYOĞLU. Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms[J]. Fuel, 2015, 159: 223-233. |
65 | REITER Aaron J, KONG Song-Charng. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97. |
66 | Kyunghyun RYU, ZACHARAKIS-JUTZ George E, KONG Song-Charng. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2390-2398. |
67 | ZAMFIRESCU C, DINCER I. Ammonia as a green fuel and hydrogen source for vehicular applications[J]. Fuel Processing Technology, 2009, 90(5): 729-737. |
68 | ZAMFIRESCU C, DINCER I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465. |
69 | CAIRNS E J, SIMONS E L, TEVEBAUGH A D. Ammonia-oxygen fuel cell[J]. Nature, 1968, 217(5130): 780-781. |
70 | GUO Yuqi, PAN Zhefei, AN Liang. Carbon-free sustainable energy technology: Direct ammonia fuel cells[J]. Journal of Power Sources, 2020, 476: 228454. |
71 | RATHORE Shambhu Singh, BISWAS Saheli, FINI Daniel, et al. Direct ammonia solid-oxide fuel cells: A review of progress and prospects[J]. International Journal of Hydrogen Energy, 2021, 46(71): 35365-35384. |
72 | MIYAZAKI Kazunari, MUROYAMA Hiroki, MATSUI Toshiaki, et al. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells[J]. Sustainable Energy & Fuels, 2020, 4(10): 5238-5246. |
73 | WANG Yuanhui, YANG Jun, WANG Jianxin, et al. Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2020, 167(6): 064501. |
74 | OKANISHI T, OKURA K, SRIFA A, et al. Comparative study of ammonia-fueled solid oxide fuel cell systems[J]. Fuel Cells, 2017, 17(3): 383-390. |
75 | LUO Yu, SHI Yixiang, LIAO Shuting, et al. Coupling ammonia catalytic decomposition and electrochemical oxidation for solid oxide fuel cells: A model based on elementary reaction kinetics[J]. Journal of Power Sources, 2019, 423: 125-136. |
76 | LUO Yu, LIAO Shuting, CHEN Shuai, et al. Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation[J]. Applied Energy, 2022, 307: 118158. |
77 | LI Yi, PILLAI Hemanth Somarajan, WANG Teng, et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells[J]. Energy & Environmental Science, 2021, 14(3): 1449-1460. |
78 | LIU Yun, PAN Zhefei, ESAN Oladapo Christopher, et al. Performance characteristics of a direct ammonia fuel cell with an anion exchange membrane[J]. Energy & Fuels, 2022, 36(21): 13203-13211. |
79 | 方辉煌, 程金星, 罗宇, 等. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814. |
FANG Huihuang, CHENG Jinxing, LUO Yu, et al. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells[J]. CIESC Journal, 2022, 73(9): 3802-3814. | |
80 | ROSS Philip. Characteristics of an NH3-air fuel cell system for vehicular applications[C]//ASME 16th Intersociety Energy Conversion Engineering Conference, Atlanta, USA. 1981: LBL-12754. |
81 | JIAO Kui, XUAN Jin, DU Qing, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
82 | LIN Li, ZHANG Lixuan, LUO Yu, et al. Highly-integrated and cost-efficient ammonia-fueled fuel cell system for efficient power generation: A comprehensive system optimization and techno-economic analysis[J]. Energy Conversion and Management, 2022, 251: 114917. |
83 | The Hong Kong Polytechnic University. World’s first ammonia-powered electric vehicle created at PolyU[EB/OL]. [2022-12-24]. . |
84 | AFIF Ahmed, RADENAHMAD Nikdalila, CHEOK Quentin, et al. Ammonia-fed fuel cells: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 822-835. |
85 | VERHELST Sebastian, WALLNER Thomas. Hydrogen-fueled internal combustion engines[J]. Progress in Energy and Combustion Science, 2009, 35(6): 490-527. |
86 | CORNELIUS Walter, William HUELLMANTEL L, MITCHELL Harry R. Ammonia as an engine fuel[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1965: 300-326. |
87 | LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki, et al. Study on using hydrogen and ammonia as fuels: Combustion characteristics and NO x formation[J]. International Journal of Energy Research, 2014, 38(9): 1214-1223. |
88 | LEE J H, KIM J H, PARK J H, et al. Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1054-1064. |
89 | FRIGO Stefano, GENTILI Roberto. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1607-1615. |
90 | HAPUTHANTHRI Shehan O. Ammonia gasoline fuel blends: Feasibility study of commercially available emulsifiers and effects on stability and engine performance[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. |
91 | VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
92 | YAPICIOGLU Arda, DINCER Ibrahim. Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators[J]. Applied Thermal Engineering, 2019, 154: 1-8. |
93 | GRAY James T, DIMITROFF Edward, MECKEL Nelson T, et al. Ammonia fuel-engine compatibility and combustion[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1966: 785-807. |
94 | LASOCKI J, BEDNARSKI M, SIKORA M. Simulation of ammonia combustion in dual-fuel compression-ignition engine[J]. IOP Conference Series: Earth and Environmental Science, 2019, 214: 012081. |
95 | HOGERWAARD Janette, DINCER Ibrahim. Comparative efficiency and environmental impact assessments of a hydrogen assisted hybrid locomotive[J]. International Journal of Hydrogen Energy, 2016, 41(16): 6894-6904. |
96 | CROLIUS Stephen H. Sturman industries’ dual-fuel ammonia engine[EB/OL]. (2016-10-21) [2022-12-24]. . |
97 | TORNATORE Cinzia, MARCHITTO Luca, SABIA Pino, et al. Ammonia as green fuel in internal combustion engines: State-of-the-art and future perspectives[J]. Frontiers in Mechanical Engineering, 2022, 8: 944201. |
98 | RUNGE Philipp, Christian SÖLCH, ALBERT Jakob, et al. Economic comparison of different electric fuels for energy scenarios in 2035[J]. Applied Energy, 2019, 233: 1078-1093. |
99 | Norihiko IKI, KURATA Osamu, MATSUNUMA Takayuki, et al. Micro gas turbine operation with kerosene and ammonia[C]//Proceedings of the 11th Annual NH3 Fuel Conference, Iowa, IA. USA: 2014: 21-24. |
100 | Norihiko IKI, KURATA Osamu, MATSUNUMA Takayuki, et al. Micro gas turbine firing ammonia[C]//Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. Seoul, South Korea. American Society of Mechanical Engineers, 2016. |
101 | KURATA Osamu, Norihiko IKI, INOUE Takahiro, et al. Development of a wide range-operable, rich-lean low-NO x combustor for NH3 fuel gas-turbine power generation[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4587-4595. |
102 | ATCHISON Julian. Mitsubishi Heavy Industries to explore ammonia-fired gas turbines in Singapore, Indonesia[EB/OL]. (2022-11-01) [2022-12-24]. . |
103 | CROLIUS Stephen H. Cardiff University launches ammonia gas turbine project[EB/OL]. (2020-04-23) [2022-12-24]. . |
104 | T-RAISSI A, BLOCK D L. Hydrogen: Automotive fuel of the future[J]. IEEE Power and Energy Magazine, 2004, 2(6): 40-45. |
105 | LIAN Haoyu, LI Xiaosong, LIU Jinglin, et al. Oxidative pyrolysis reforming of methanol in warm plasma for an on-board hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13617-13624. |
106 | SUN Shangcong, JIANG Qiuqiao, ZHAO Dongyue, et al. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112918. |
107 | LAMB Krystina E, DOLAN Michael D, KENNEDY Danielle F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3580-3593. |
108 | LUCENTINI Ilaria, CASANOVAS Albert, LLORCA Jordi. Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2 [J]. International Journal of Hydrogen Energy, 2019, 44(25): 12693-12707. |
109 | ZHANG Zhenyu, LIGUORI Simona, FUERST Thomas F, et al. Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5975-5985. |
110 | WANG Ziqing, QU Yingmin, SHEN Xiaolong, et al. Ruthenium catalyst supported on Ba modified ZrO2 for ammonia decomposition to CO x -free hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7300-7307. |
111 | HU Xiucui, WANG Weiwei, JIN Zhao, et al. Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia[J]. Journal of Energy Chemistry, 2019, 38: 41-49. |
112 | MUKHERJEE Shreya, DEVAGUPTAPU Surya V, SVIRIPA Anna, et al. Low-temperature ammonia decomposition catalysts for hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 162-181. |
113 | AKIYAMA Mao, AIHARA Keigo, SAWAGUCHI Tomiko, et al. Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14493-14497. |
114 | KURTOĞLU Samira Fatma, SARP Seda, YıLMAZ AKKAYA Ceren, et al. CO x -free hydrogen production from ammonia decomposition over sepiolite-supported nickel catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9954-9968. |
115 | DASIREDDY Venkata D B C, LIKOZAR Blaž. CO x -free hydrogen generation via decomposition of ammonia over copper and zinc-based catalysts[J]. Fuel, 2017, 196: 325-335. |
116 | Špela HAJDUK, DASIREDDY Venkata D B C, LIKOZAR Blaž, et al. CO x -free hydrogen production via decomposition of ammonia over Cu-Zn-based heterogeneous catalysts and their activity/stability[J]. Applied Catalysis B: Environmental, 2017, 211: 57-67. |
117 | SATO Katsutoshi, Naruhiko ABE, KAWAGOE Takafumi, et al. Supported Ni catalysts prepared from hydrotalcite-like compounds for the production of hydrogen by ammonia decomposition[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6610-6617. |
118 | ENGELBRECHT Nicolaas, CHIUTA Steven, BESSARABOV Dmitri G. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes[J]. Journal of Power Sources, 2018, 386: 47-55. |
119 | GIDDEY S, BADWAL S P S, MUNNINGS C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
120 | LEE Boreum, PARK Junhyung, LEE Hyunjun, et al. Assessment of the economic potential: CO x -free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109262. |
121 | LIN Li, TIAN Yao, SU Wenbin, et al. Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia: Hybrid hydrogen purification with both high H2 purity and high recovery[J]. Sustainable Energy & Fuels, 2020, 4(6): 3006-3017. |
122 | 李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target:Research on development basis and route[J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. | |
123 | 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129. |
TENG Lin, YIN Pengbo, NIE Chaofei, et al. Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115-1129. | |
124 | 吴全, 沈珏新, 余磊, 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39. |
WU Quan, SHEN Juexin, YU Lei, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the “dual-carbon” background[J]. Petroleum And New Energy, 2022, 34(5): 27-33, 39. | |
125 | JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
[1] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[2] | SUN Hui, MENG Xianghai, WEI Jinghai, ZHOU Hongjun, XU Chunming. New scene for ammonia synthesis by green hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. |
[3] | MA Youfu, WANG Ziwen, LYU Junfu. Simulation of off-design performance of an efficient power generation system with cold-ends optimization using hot air recirculation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2340-2347. |
[4] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[5] | WANG Jianbin, CHEN Yun, WANG Kehua, YU Xuepeng, CHEN Cong, LIU Jianzhong. Co-processing of solid waste in industrial kilns: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1494-1502. |
[6] | YIN Jiming, DONG Fenglian, YANG Lei, LIU Pengfei, WANG Nan. Lean benefit calculation model for production and operation of crude oil industry chain [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 156-161. |
[7] | WANG Jianxun. Comprehensive analysis of cascade heating technology based on waste heat of thermal power units [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 149-155. |
[8] | ZHANG Yimeng, MA Huanhuan, CHEN Dengyu, ZHOU Jianbin. Application case analysis of 3MW apricot shell gasification power generation co-production of activated carbon, heat and fertilizer [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1667-1674. |
[9] | LIU Xuetao, LI Minxia, MA Yitai, YAO Liang, ZHAN Haomiao. Comparative analysis of energy efficiency and economy of CO2 transcritical heat pump system under heating condition [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1315-1324. |
[10] | Zijian WANG. Optimization of heat extraction in the middle section of atmospheric and vacuum plant based on profit accounting [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 73-77. |
[11] | Jianxun WANG. Analysis on influence of variation of operating back pressure on safety and economy of zero output technology of low-pressure cylinder [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 85-89. |
[12] | Gesheng HUANG, Jie HU, Jinshan LI, Xiaoyu SHI, Wenjuan DING, Xiaoyang ZHOU. Development status and trend of coal-to-olefins technology [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3966-3974. |
[13] | Guojie MA,Chun CHANG,Shaohui SUN. Research progress on influencing factors of large scale cultivation of microalgae for energy production [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5323-5329. |
[14] | Linhui LI,Huazhang LIU,Wenfeng HAN,Zhi LI,Lei LI,Zhikun WANG. Effect of SrO promoter on the activity and thermal-stability of wüstite based catalyst for ammonia synthesis [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1371-1376. |
[15] | Guojie MA, Chun CHANG, Junwu CHEN. Advance on technical and economic analysis of the biomass supply chain [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 720-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |