Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3100-3113.DOI: 10.16085/j.issn.1000-6613.2023-0737
• Materials science and technology • Previous Articles
CHEN Zhiqiang(), XIA Mingwei, YANG Haiping(), CHEN Yingquan, WANG Xianhua, CHEN Hanping
Received:
2023-05-05
Revised:
2023-06-10
Online:
2024-07-02
Published:
2024-06-15
Contact:
YANG Haiping
陈志强(), 夏明巍, 杨海平(), 陈应泉, 王贤华, 陈汉平
通讯作者:
杨海平
作者简介:
陈志强(1999—),男,硕士研究生,研究方向为动力工程及工程热物理。chenzhiqiang1999@foxmail.com。
基金资助:
CLC Number:
CHEN Zhiqiang, XIA Mingwei, YANG Haiping, CHEN Yingquan, WANG Xianhua, CHEN Hanping. Research progress on synthesis and regulation of lignocellulose-based carbon quantum dots[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3100-3113.
陈志强, 夏明巍, 杨海平, 陈应泉, 王贤华, 陈汉平. 木质纤维素基碳量子点合成与调控研究进展[J]. 化工进展, 2024, 43(6): 3100-3113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0737
序号 | 合成方法 | 碳源 | 前体 | 结构尺寸/nm | 质量产率/% | 量子产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 热解碳化-氧化剥离 | 枯叶 | 热解焦炭 | 5~6 | — | 1 | [ |
2 | 热解碳化-氧化剥离 | 椰子壳 | 热解焦炭 | 约1 | — | — | [ |
3 | 水热碳化-氧化剥离 | 稻壳 | 热解焦炭 | 约8 | 10 | — | [ |
4 | 水热碳化-氧化剥离 | 纤维素 木质素 半纤维素 | 水热炭 | 1.6~4.1 | 42.5 | 16.6 | [ |
5 | 热解法 | 西瓜皮 | — | 约2 | — | 7.1 | [ |
6 | 热解法 | 树叶 | — | 约3.7 | — | 16.4 | [ |
7 | 热解法 | 花生壳 | — | 0.4~2.4 | — | 9.91 | [ |
8 | 热解法 | 荔枝皮 | — | 0.4~2.4 | — | — | [ |
9 | 热解法 | 胺化木质素 | — | 4~10 | — | 8.1 | [ |
10 | 热解法 | 芒果叶 | — | 2~10 | — | 18.2 | [ |
11 | 热解法 | 螺旋藻 | — | 约10 | — | 23.5 | [ |
12 | 微波热解 | 松果 | — | 约15.2 | — | 17 | [ |
13 | 水热合成 | 烟叶 | — | 约2.14 | — | 27.9 | [ |
14 | 水热合成 | 淀粉 | 葡萄糖 | 2.25~3.5 | — | 21.7 | [ |
15 | 水热合成 | 榴莲肉 | 小分子糖类 | 2~6 | 6.8 | 79 | [ |
16 | 水热合成 | 氧化纤维素 | — | 1~3.4 | 16.1 | 30.3 | [ |
17 | 水热合成 | 玉米芯 | 半纤维素为主的组分 | 约2.54 | 55 | 1.05 | [ |
18 | 微波水热 | 稻草 | — | 2~3 | — | — | [ |
19 | 微波水热 | 壳聚糖 丙烯酰胺 | — | — | 45.9 | 12.7 | [ |
20 | 酸预处理水热合成 | 碱木质素 | 碱木质素酸解产物 | 约4.76 | 45.8 | 30.6 | [ |
序号 | 合成方法 | 碳源 | 前体 | 结构尺寸/nm | 质量产率/% | 量子产率/% | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 热解碳化-氧化剥离 | 枯叶 | 热解焦炭 | 5~6 | — | 1 | [ |
2 | 热解碳化-氧化剥离 | 椰子壳 | 热解焦炭 | 约1 | — | — | [ |
3 | 水热碳化-氧化剥离 | 稻壳 | 热解焦炭 | 约8 | 10 | — | [ |
4 | 水热碳化-氧化剥离 | 纤维素 木质素 半纤维素 | 水热炭 | 1.6~4.1 | 42.5 | 16.6 | [ |
5 | 热解法 | 西瓜皮 | — | 约2 | — | 7.1 | [ |
6 | 热解法 | 树叶 | — | 约3.7 | — | 16.4 | [ |
7 | 热解法 | 花生壳 | — | 0.4~2.4 | — | 9.91 | [ |
8 | 热解法 | 荔枝皮 | — | 0.4~2.4 | — | — | [ |
9 | 热解法 | 胺化木质素 | — | 4~10 | — | 8.1 | [ |
10 | 热解法 | 芒果叶 | — | 2~10 | — | 18.2 | [ |
11 | 热解法 | 螺旋藻 | — | 约10 | — | 23.5 | [ |
12 | 微波热解 | 松果 | — | 约15.2 | — | 17 | [ |
13 | 水热合成 | 烟叶 | — | 约2.14 | — | 27.9 | [ |
14 | 水热合成 | 淀粉 | 葡萄糖 | 2.25~3.5 | — | 21.7 | [ |
15 | 水热合成 | 榴莲肉 | 小分子糖类 | 2~6 | 6.8 | 79 | [ |
16 | 水热合成 | 氧化纤维素 | — | 1~3.4 | 16.1 | 30.3 | [ |
17 | 水热合成 | 玉米芯 | 半纤维素为主的组分 | 约2.54 | 55 | 1.05 | [ |
18 | 微波水热 | 稻草 | — | 2~3 | — | — | [ |
19 | 微波水热 | 壳聚糖 丙烯酰胺 | — | — | 45.9 | 12.7 | [ |
20 | 酸预处理水热合成 | 碱木质素 | 碱木质素酸解产物 | 约4.76 | 45.8 | 30.6 | [ |
序号 | 碳源 | 制备方法 | 改性方式 | 量子产率/% | (激发/发射)/nm | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 小白菜 | 水热合成 | 钝化/功能化 | 10.28 | 413/488/678 | 细胞成像 | [ |
2 | 木聚糖 | 水热合成 | 钝化/功能化 | 16.18 | 320/415 | 细胞成像 | [ |
3 | 大米 | 热解法 | 钝化/功能化 | 54 | 340/440 | 细胞成像 | [ |
4 | 青稞 | 水热合成 | 钝化/功能化 | 14.4 | 400/480 | 汞离子检测 | [ |
5 | 悬铃木 | 热解碳化 激光烧蚀 | 钝化/功能化 | 32.4 | 377/447 397/476 | 细胞成像 | [ |
6 | 玫瑰花瓣 | 微波水热 | 磷掺杂 | — | 390/435 | 四环素检测 | [ |
7 | 毛尖茶叶 | 水热合成 | 氮掺杂 | 12.79 | 290/385 | 汞离子检测 | [ |
8 | 柚子皮 | 水热合成 | 氮自掺杂 | 6.9 | 365/444 | 汞离子检测 | [ |
9 | 麦秸 | 水热合成 | 氮自掺杂 | 9.2 | 304/418 364/464 | 细胞成像 | [ |
10 | 纤维素 | 水热合成 | 氮掺杂 | 10.9 | 360/438 | 亚铁离子检测 | [ |
11 | 绿茶叶 | 热解碳化 氧化剥离 | 氮、硫共掺杂 | 14.8 | 320/410 | 吉非替尼检测 | [ |
12 | 预水解木质素 | 水热合成 | 硫掺杂 | 13.5 | 320/410 | 苏丹Ⅰ检测 | [ |
13 | 玉米芯木质素 | 水热合成 | 氮、镁共掺杂 | 46.38 | 405/510 | pH检测 | [ |
14 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 21 | 380/488 | 过氧化氢检测 | [ |
15 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 30.5 | 450/520 | 荧光防伪 | [ |
16 | 碱木质素 | 水热合成 | 氮、硼共掺杂 | 7.4 | 300/346 330/428 490/514 | 荧光防伪 | [ |
17 | 木质素 | 水热合成 | 磷掺杂 | — | 310/388 | 光催化 | [ |
序号 | 碳源 | 制备方法 | 改性方式 | 量子产率/% | (激发/发射)/nm | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 小白菜 | 水热合成 | 钝化/功能化 | 10.28 | 413/488/678 | 细胞成像 | [ |
2 | 木聚糖 | 水热合成 | 钝化/功能化 | 16.18 | 320/415 | 细胞成像 | [ |
3 | 大米 | 热解法 | 钝化/功能化 | 54 | 340/440 | 细胞成像 | [ |
4 | 青稞 | 水热合成 | 钝化/功能化 | 14.4 | 400/480 | 汞离子检测 | [ |
5 | 悬铃木 | 热解碳化 激光烧蚀 | 钝化/功能化 | 32.4 | 377/447 397/476 | 细胞成像 | [ |
6 | 玫瑰花瓣 | 微波水热 | 磷掺杂 | — | 390/435 | 四环素检测 | [ |
7 | 毛尖茶叶 | 水热合成 | 氮掺杂 | 12.79 | 290/385 | 汞离子检测 | [ |
8 | 柚子皮 | 水热合成 | 氮自掺杂 | 6.9 | 365/444 | 汞离子检测 | [ |
9 | 麦秸 | 水热合成 | 氮自掺杂 | 9.2 | 304/418 364/464 | 细胞成像 | [ |
10 | 纤维素 | 水热合成 | 氮掺杂 | 10.9 | 360/438 | 亚铁离子检测 | [ |
11 | 绿茶叶 | 热解碳化 氧化剥离 | 氮、硫共掺杂 | 14.8 | 320/410 | 吉非替尼检测 | [ |
12 | 预水解木质素 | 水热合成 | 硫掺杂 | 13.5 | 320/410 | 苏丹Ⅰ检测 | [ |
13 | 玉米芯木质素 | 水热合成 | 氮、镁共掺杂 | 46.38 | 405/510 | pH检测 | [ |
14 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 21 | 380/488 | 过氧化氢检测 | [ |
15 | 碱木质素 | 水热合成 | 氮、硫共掺杂 | 30.5 | 450/520 | 荧光防伪 | [ |
16 | 碱木质素 | 水热合成 | 氮、硼共掺杂 | 7.4 | 300/346 330/428 490/514 | 荧光防伪 | [ |
17 | 木质素 | 水热合成 | 磷掺杂 | — | 310/388 | 光催化 | [ |
32 | SHI Yixin, LIU Xin, WANG Meng, et al. Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging[J]. International Journal of Biological Macromolecules, 2019, 128: 537-545. |
33 | SINGH Jagpreet, KAUR Sukhmeen, LEE Jechan, et al. Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions[J]. Science of the Total Environment, 2020, 720: 137604. |
34 | AGNOL Lucas Dall, NEVES Roberta Motta, MARASCHIN Marcelo, et al. Green synthesis of Spirulina-based carbon dots for stimulating agricultural plant growth[J]. Sustainable Materials and Technologies, 2021, 30: e00347. |
35 | SANNI Saheed O, MOUNDZOUNGA Theo H G, OSEGHE Ekemena O, et al. One-step green synthesis of water-soluble fluorescent carbon dots and its application in the detection of Cu2+ [J]. Nanomaterials, 2022, 12(6): 958. |
36 | MIAO Hong, WANG Yingyi, YANG Xiaoming. Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines[J]. Nanoscale, 2018, 10(17): 8139-8145. |
37 | CHEN Weifeng, LI Dejiang, TIAN Li, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging[J]. Green Chemistry, 2018, 20(19): 4438-4442. |
38 | WANG Gang, GUO Qinglei, CHEN Da, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5750-5759. |
39 | LIU Zhenzhen, CHEN Mingjie, GUO Yanzhu, et al. Oxidized nanocellulose facilitates preparing photoluminescent nitrogen-doped fluorescent carbon dots for Fe3+ ions detection and bioimaging[J]. Chemical Engineering Journal, 2020, 384: 123260. |
40 | WU Ying, LI Yadong, PAN Xiaoqin, et al. Hemicellulose-triggered high-yield synthesis of carbon dots from biomass[J]. New Journal of Chemistry, 2021, 45(12): 5484-5490. |
41 | SI Mengying, ZHANG Jin, HE Yuyang, et al. Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose[J]. Green Chemistry, 2018, 20(15): 3414-3419. |
42 | LIU Guanxiong, LI Baoqiang, LIU Ying, et al. Rapid and high yield synthesis of carbon dots with chelating ability derived from acrylamide/chitosan for selective detection of ferrous ions[J]. Applied Surface Science, 2019, 487: 1167-1175. |
43 | ZHU Lingli, SHEN Dekui, LIU Qian, et al. Mild acidolysis-assisted hydrothermal carbonization of lignin for simultaneous preparation of green and blue fluorescent carbon quantum dots[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(30): 9888-9898. |
44 | CHEN Wenxin, HU Chaofan, YANG Yunhua, et al. Rapid synthesis of carbon dots by hydrothermal treatment of lignin[J]. Materials, 2016, 9(3): 184. |
45 | JING Shuangshuang, ZHAO Yushuang, SUN Runcang, et al. Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7833-7843. |
46 | LUO Binhua, YANG Hang, ZHOU Boxun, et al. Facile synthesis of luffa sponge activated carbon fiber based carbon quantum dots with green fluorescence and their application in Cr(Ⅵ) determination[J]. ACS Omega, 2020, 5(10): 5540-5547. |
47 | QIN Fuwei, LI Qiqi, TANG Tingting, et al. Functional carbon dots from a mild oxidation of coal liquefaction residue[J]. Fuel, 2022, 322: 124216. |
48 | WANG Xin, CAO Li, YANG Shengtao, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles[J]. Angewandte Chemie (International Ed in English), 2010, 49(31): 5310-5314. |
49 | QIAO Zhen’an, WANG Yifan, GAO Yang, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chemical Communications (Cambridge, England), 2010, 46(46): 8812-8814. |
50 | KANG Chao, HUANG Ying, YANG Hui, et al. A review of carbon dots produced from biomass wastes[J]. Nanomaterials, 2020, 10(11): 2316. |
51 | DEKA Manash Jyoti, DUTTA Parlie, SARMA Sewaljyoti, et al. Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor[J]. Heliyon, 2019, 5(6): e01985. |
52 | REN Ruibo, ZHANG Zeyu, ZHAO Pinhui, et al. Facile and one-step preparation carbon quantum dots from biomass residue and their applications as efficient surfactants[J]. Journal of Dispersion Science and Technology, 2019, 40(5): 627-633. |
53 | LUO Hui, LARI Leonardo, KIM Hyunjeong, et al. Structural evolution of carbon dots during low temperature pyrolysis[J]. Nanoscale, 2022, 14(3): 910-918. |
54 | 王颖. 木质素水热炭化制备碳量子点及其性能研究[D]. 哈尔滨: 东北林业大学, 2022. |
WANG Ying. Properties of carbon quantum dots prepared from lignin via hydrothermal method[D]. Harbin: Northeast Forestry University, 2022. | |
55 | LI Weidong, LIU Yuan, WANG Boyang, et al. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging[J]. Chinese Chemical Letters, 2019, 30(12): 2323-2327. |
56 | MENG Weixue, BAI Xue, WANG Boyang, et al. Biomass-derived carbon dots and their applications[J]. Energy & Environmental Materials, 2019, 2(3): 172-192. |
57 | CHAI Xinyu, HE Hui, FAN Hanhan, et al. A hydrothermal-carbonization process for simultaneously production of sugars, graphene quantum dots, and porous carbon from sugarcane bagasse[J]. Bioresource Technology, 2019, 282: 142-147. |
58 | LI Yuehai, LIU Fengjiao, CAI Jiabai, et al. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications[J]. Microchemical Journal, 2019, 147: 1038-1047. |
59 | LIU Yinghui, ZHU Chong, GAO Ying, et al. Biomass-derived nitrogen self-doped carbon dots via a simple one-pot method: Physicochemical, structural, and luminescence properties[J]. Applied Surface Science, 2020, 510: 145437. |
60 | DING Zheyuan, LI Fengfeng, WEN Jialong, et al. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass[J]. Green Chemistry, 2018, 20(6): 1383-1390. |
61 | ZHU Lingli, SHEN Dekui, LIU Qian, et al. Sustainable synthesis of bright green fluorescent carbon quantum dots from lignin for highly sensitive detection of Fe3+ ions[J]. Applied Surface Science, 2021, 565: 150526. |
62 | ZHU Lingli, SHEN Dekui, Hong luo KAI. Triple-emission nitrogen and boron co-doped carbon quantum dots from lignin: Highly fluorescent sensing platform for detection of hexavalent chromium ions[J]. Journal of Colloid and Interface Science, 2022, 617: 557-567. |
63 | AI Lin, YANG Yisen, WANG Boyang, et al. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives[J]. Science Bulletin, 2021, 66(8): 839-856. |
64 | Vasilica ŢUCUREANU, MATEI Alina, AVRAM Andrei Marius. FTIR spectroscopy for carbon family study[J]. Critical Reviews in Analytical Chemistry, 2016, 46(6): 502-520. |
65 | ZUO Pengli, LU Xiuhua, SUN Zhigang, et al. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots[J]. Microchimica Acta, 2016, 183(2): 519-542. |
66 | ZHU Lingli, SHEN Dekui, WU Chunfei, et al. State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots[J]. Industrial & Engineering Chemistry Research, 2020, 59(51): 22017-22039. |
67 | ZHANG Hao, YOU Jiajian, WANG Jiahui, et al. Highly luminescent carbon dots as temperature sensors and “off-on” sensing of Hg2+ and biothiols[J]. Dyes and Pigments, 2020, 173: 107950. |
68 | 程朝歌. 生物质纤维素基碳量子点的功能化制备及应用研究[D]. 上海: 东华大学, 2019. |
CHENG Chaoge. Functional preparation and applications of biomass cellulose-based carbon quantum dots[D]. Shanghai: Donghua University, 2019. | |
69 | YANG Zhengchun, WANG Miao, YONG Anna Marie, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate[J]. Chemical Communications, 2011, 47(42): 11615-11617. |
70 | Mahasin Alam SK, ANANTHANARAYANAN Arundithi, HUANG Lin, et al. Revealing the tunable photoluminescence properties of graphene quantum dots[J]. Journal of Materials Chemistry C, 2014, 2(34): 6954-6960. |
71 | PEI Yixian, CHANG Anyi, LIU Xuan, et al. Nitrogen-doped carbon dots from Kraft lignin waste with inorganic acid catalyst and their brain cell imaging applications[J]. AIChE Journal, 2021, 67(5): e17132. |
72 | WANG Ruibin, GUO Ziyu, LIU Yuqian, et al. Concentration-dependent emissive lignin-derived graphene quantum dots for bioimaging and anti-counterfeiting[J]. Diamond and Related Materials, 2021, 117: 108482. |
73 | CHEN Menglin, ZHAI Jichao, AN Yulong, et al. Solvent-free pyrolysis strategy for the preparation of biomass carbon dots for the selective detection of Fe3+ ions[J]. Frontiers in Chemistry, 2022, 10: 940398. |
74 | Peggy Zhen Zhen NGU, CHIA Stephanie Pei Phing, FONG Jessica Fung Yee, et al. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions[J]. New Carbon Materials, 2016, 31(2): 135-143. |
75 | 李敏, 徐梦, 程朝歌, 等. 氨基功能化荧光碳量子点的制备及对铜离子的检测[J]. 材料导报, 2017, 31(S2): 157-160. |
LI Min, XU Meng, CHENG Chaoge, et al. Preparation of amine-functionalized fluorescent carbon quantum dots and its application for cooper ions detection[J]. Materials Review, 2017, 31(S2): 157-160. | |
76 | LI Feng, YANG Dayong, XU Huaping. Non-metal-heteroatom-doped carbon dots: Synthesis and properties[J]. Chemistry: A European Journal, 2019, 25(5): 1165-1176. |
77 | CUI Yong, LIU Rongjun, YE Fanggui, et al. Single-excitation, dual-emission biomass quantum dots: Preparation and application for ratiometric fluorescence imaging of coenzyme A in living cells[J]. Nanoscale, 2019, 11(19): 9270-9275. |
78 | LIANG Zicheng, ZENG Lei, CAO Xiaodong, et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation[J]. Journal of Materials Chemistry C, 2014, 2(45): 9760-9766. |
79 | KALITA Hemen, MOHAPATRA Jeotikanta, PRADHAN Lina, et al. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties[J]. RSC Advances, 2016, 6(28): 23518-23524. |
80 | XIE Yadian, CHENG Dandan, LIU Xingliang, et al. Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+ [J]. Sensors, 2019, 19(14): 3169. |
81 | REN Xin, ZHANG Fang, GUO Bingpeng, et al. Synthesis of N-doped micropore carbon quantum dots with high quantum yield and dual-wavelength photoluminescence emission from biomass for cellular imaging[J]. Nanomaterials, 2019, 9(4): 495. |
82 | FENG Yuanjiao, ZHONG Dan, MIAO Hong, et al. Carbon dots derived from rose flowers for tetracycline sensing[J]. Talanta, 2015, 140: 128-133. |
83 | XU Ying, FAN Yao, ZHANG Lei, et al. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 220: 117109. |
84 | LU Wenbo, QIN Xiaoyun, LIU Sen, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(Ⅱ) ions[J]. Analytical Chemistry, 2012, 84(12): 5351-5357. |
85 | YUAN Ming, ZHONG Ruibo, GAO Haiyang, et al. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing[J]. Applied Surface Science, 2015, 355: 1136-1144. |
86 | SU Hui, BI Zhihao, NI Yong, et al. One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution[J]. Green Energy & Environment, 2019, 4(4): 391-399. |
87 | HU Zhixiong, JIAO Xinyue, XU Li. The N, S co-doped carbon dots with excellent luminescent properties from green tea leaf residue and its sensing of gefitinib[J]. Microchemical Journal, 2020, 154: 104588. |
88 | YANG Xiaoxu, GUO Yanzhu, LIANG Shuang, et al. Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan Ⅰ in an acidic environment[J]. Journal of Materials Chemistry B, 2020, 8(47): 10788-10796. |
89 | YANG Xiaoxu, HOU Shiyao, CHU Tingting, et al. Preparation of magnesium, nitrogen-codoped carbon quantum dots from lignin with bright green fluorescence and sensitive pH response[J]. Industrial Crops and Products, 2021, 167: 113507. |
90 | WANG Ruibin, XIA Guangjie, ZHONG Wentao, et al. Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant[J]. Green Chemistry, 2019, 21(12): 3343-3352. |
91 | ZHU Lingli, SHEN Dekui, WANG Qi, et al. Green synthesis of tunable fluorescent carbon quantum dots from lignin and their application in anti-counterfeit printing[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56465-56475. |
92 | GU Xuexin, ZHU Lingli, SHEN Dekui, et al. Facile synthesis of multi-emission nitrogen/boron co-doped carbon dots from lignin for anti-counterfeiting printing[J]. Polymers, 2022, 14(14): 2779. |
93 | LIU Wei, NING Chenxi, SANG Ranran, et al. Lignin-derived graphene quantum dots from phosphous acid-assisted hydrothermal pretreatment and their application in photocatalysis[J]. Industrial Crops and Products, 2021, 171: 113963. |
94 | ZHANG Baohua, LIU Yijian, REN Muqing, et al. Sustainable synthesis of bright green fluorescent nitrogen-doped carbon quantum dots from alkali lignin[J]. ChemSusChem, 2019, 12(18): 4202-4210. |
95 | MANIOUDAKIS John, VICTORIA Florence, THOMPSON Christine A, et al. Effects of nitrogen-doping on the photophysical properties of carbon dots[J]. Journal of Materials Chemistry C, 2019, 7(4): 853-862. |
96 | LI Xiaoming, ZHANG Shengli, KULINICH Sergei A, et al. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection[J]. Scientific Reports, 2014, 4: 4976. |
97 | KWON Woosung, Sungan DO, KIM Ji Hee, et al. Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines[J]. Scientific Reports, 2015, 5: 12604. |
98 | LIU Liqin, LI Yuanfang, ZHAN Lei, et al. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions[J]. Science China Chemistry, 2011, 54(8): 1342-1347. |
99 | PAN Jiahong, ZHENG Zengyao, YANG Jianying, et al. A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots[J]. Talanta, 2017, 166: 1-7. |
100 | MIAO Shihai, LIANG Kang, ZHU Junjie, et al. Hetero-atom-doped carbon dots: Doping strategies, properties and applications[J]. Nano Today, 2020, 33: 100879. |
101 | 朱锋利, 杨玲, 王亚虎, 等. 掺杂型碳量子点的制备及其在重金属离子检测中的应用[J]. 分析化学, 2023, 51(1): 22-33. |
ZHU Fengli, YANG Ling, WANG Yahu, et al. Preparation of doped carbon quantum dots and its application in detection of heavy metal ions[J]. Chinese Journal of Analytical Chemistry, 2023, 51(1): 22-33. | |
102 | LIAO Xiufen, CHEN Congjin, ZHOU Ruxia, et al. Comparison of N-doped carbon dots synthesized from the main components of plants including cellulose, lignin, and xylose: Characterized, fluorescence mechanism, and potential applications[J]. Dyes and Pigments, 2020, 183: 108725. |
103 | LIU Yinghui, YONG Chao, TONG Bihai, et al. Modification of carbon dots derived from biomass by exogenous nitrogen doping: Action mechanism and difference analysis[J]. Optical Materials, 2022, 134: 113144. |
104 | HE Chuang, XU Peng, ZHANG Xuanhan, et al. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective[J]. Carbon, 2022, 186: 91-127. |
105 | ZHUANG Jiandong, REN Shiming, ZHU Bowen, et al. Lignin-based carbon dots as high-performance support of Pt single atoms for photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2022, 446: 136873. |
106 | CHAO Weixiang, LI Yudong, SUN Xiaohan, et al. Enhanced wood-derived photothermal evaporation system by in situ incorporated lignin carbon quantum dots[J]. Chemical Engineering Journal, 2021, 405: 126703. |
107 | MIAO Xiang, QU Dan, YANG Dongxue, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(1): 1704740. |
108 | Bowen LYU, LI Huijun, XUE Fengfeng, et al. Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process[J]. Chemical Engineering Journal, 2020, 388: 124285. |
1 | SUN Yaping, ZHOU Bing, LIN Yi, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757. |
2 | XU Xiaoyou, Robert RAY, GU Yunlong, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. |
3 | 张文博, 石建丽, 马建中, 等. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 139-149. |
ZHANG Wenbo, SHI Jianli, MA Jianzhong, et al. Fluorescent carbon quantum dots and their applications in anti-counterfeiting[J]. Materials Review, 2022, 36(7): 139-149. | |
4 | JEONG Yoon, MOON Kyunghwan, JEONG Soohyun, et al. Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bioimaging applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4510-4515. |
5 | ZHU Lingyan, LI Dongbing, LU Heng, et al. Lignin-based fluorescence-switchable graphene quantum dots for Fe3+ and ascorbic acid detection[J]. International Journal of Biological Macromolecules, 2022, 194: 254-263. |
6 | LI Xiaoming, RUI Muchen, SONG Jizhong, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: A review[J]. Advanced Functional Materials, 2015, 25(31): 4929-4947. |
7 | GAO Qichao, YUAN Zhimin, YANG Guihua, et al. Enhancement of lignin-based carbon quantum dots from poplar pre-hydrolysis liquor on photocatalytic CO2 reduction via TiO2 nanosheets[J]. Industrial Crops and Products, 2021, 160: 113161. |
8 | 张睿哲, 李可可, 张凯博, 等. 煤基碳量子点/氮化碳复合材料制备及其光催化还原CO2性能[J]. 化工学报, 2020, 71(6): 2788-2794. |
ZHANG Ruizhe, LI Keke, ZHANG Kaibo, et al. Coal-based carbon quantum dots/carbon nitride composites for photocatalytic CO2 reduction[J]. CIESC Journal, 2020, 71(6): 2788-2794. | |
9 | DONG Yongqiang, CHEN Congqiang, ZHENG Xinting, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. Journal of Materials Chemistry, 2012, 22(18): 8764-8766. |
10 | SHI Wenquan, HAN Qiurui, WU Jiajia, et al. Synthesis mechanisms, structural models, and photothermal therapy applications of top-down carbon dots from carbon powder, graphite, graphene, and carbon nanotubes[J]. International Journal of Molecular Sciences, 2022, 23(3): 1456. |
11 | KACZMAREK Agata, HOFFMAN Jacek, MORGIEL Jerzy, et al. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine[J]. Materials, 2021, 14(4): 729. |
12 | 刘标. 基于二维相关红外光谱的生物质中低温热解机理研究[D]. 武汉: 华中科技大学, 2018. |
LIU Biao. Mechanisms of lignocellulosic biomass pyrolysis at low temperature with generalized two-dimensional correlation Infrared spectroscopy[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
13 | JOSELIN HERBERT G M, UNNI KRISHNAN A. Quantifying environmental performance of biomass energy[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 292-308. |
14 | PRASANNAN Adhimoorthy, IMAE Toyoko. One-pot synthesis of fluorescent carbon dots from orange waste peels[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15673-15678. |
15 | SACHDEV Abhay, GOPINATH P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents[J]. Analyst, 2015, 140(12): 4260-4269. |
16 | THANGARAJ Baskar, SOLOMON Pravin Raj, CHUANGCHOTE Surawut, et al. Biomass-derived carbon quantum dots: A review. Part 1: Preparation and characterization[J]. ChemBioEng Reviews, 2021, 8(4): 265-301. |
17 | LIU Haochi, DING Jie, ZHANG Kun, et al. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis[J]. TrAC Trends in Analytical Chemistry, 2019, 118: 315-337. |
18 | ZHANG Xinyue, JIANG Mingyue, NIU Na, et al. Natural-product-derived carbon dots: From natural products to functional materials[J]. ChemSusChem, 2018, 11(1): 11-24. |
19 | 高雪, 孙靖, 刘晓, 等. 碳量子点的合成、性质及应用[J]. 化工进展, 2017, 36(5): 1734-1742. |
GAO Xue, SUN Jing, LIU Xiao, et al. Carbon quantum dots: Synthesis, properties and applications[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1734-1742. | |
20 | DONG Yongqiang, WANG Ruixue, LI Hao, et al. Polyamine-functionalized carbon quantum dots for chemical sensing[J]. Carbon, 2012, 50(8): 2810-2815. |
21 | WANG Hui, ZHUANG Jianqin, VELADO David, et al. Near-infrared- and visible-light-enhanced metal-free catalytic degradation of organic pollutants over carbon-dot-based carbocatalysts synthesized from biomass[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27703-27712. |
22 | CUI Xiaobiao, WANG Yinglin, LIU Jie, et al. Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions[J]. Sensors and Actuators B: Chemical, 2017, 242: 1272-1280. |
23 | CAGLAYAN Mustafa Oguzhan, MINDIVAN Ferda, Samet ŞAHIN. Sensor and bioimaging studies based on carbon quantum dots: The green chemistry approach[J]. Critical Reviews in Analytical Chemistry, 2022, 52(4): 814-847. |
24 | SURYAWANSHI Anil, BISWAL Mandakini, MHAMANE Dattakumar, et al. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions[J]. Nanoscale, 2014, 6(20): 11664-11670. |
25 | BARVIN Rasul Khan Barsana, PRAKASH Periakaruppan, GANESH Venkatachalam, et al. Highly selective and sensitive sensing of toxic mercury ions utilizing carbon quantum dot-modified glassy carbon electrode[J]. International Journal of Environmental Research, 2019, 13(6): 1015-1023. |
26 | WANG Zhaofeng, LIU Jingjing, WANG Weilin, et al. Photoluminescent carbon quantum dot grafted silica nanoparticles directly synthesized from rice husk biomass[J]. Journal of Materials Chemistry B, 2017, 5(24): 4679-4689. |
27 | ZHAO Yushuang, JING Shuangshuang, PENG Xinwen, et al. Synthesizing green carbon dots with exceptionally high yield from biomass hydrothermal carbon[J]. Cellulose, 2020, 27(1): 415-428. |
28 | ZHOU Jiaojiao, SHENG Zonghai, HAN Heyou, et al. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source[J]. Materials Letters, 2012, 66(1): 222-224. |
29 | ZHU Liangliang, YIN Yongjin, WANG Caifeng, et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding[J]. Journal of Materials Chemistry C, 2013, 1(32): 4925-4932. |
30 | XUE Mingyue, ZHAN Zhihua, ZOU Mengbing, et al. Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging[J]. New Journal of Chemistry, 2016, 40(2): 1698-1703. |
31 | XUE Mingyue, ZHAO Jingjin, ZHAN Zhihua, et al. Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy[J]. Nanoscale, 2018, 10(38): 18124-18130. |
[1] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[2] | CAO Jin, ZHU Lingli, SHEN Dekui. Green synthesis of biomass-based carbon quantum dots and LED application [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5852-5860. |
[3] | ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500. |
[4] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[5] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[6] | YANG Xiaofang, WEI Ming, SUN Li. Preparation and research of PAM/CQDs/GO composite hydrogel [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 301-308. |
[7] | FENG Yangyang, ZHAO Zhongcong, YANG Wenbo, HU Linqi, ZHANG Wenda, SHE Yuehui. Microbial natural synthetic metal nanoparticles and the application in heavy oil catalytic viscosity reduction [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2215-2226. |
[8] | DONG Yanmei, AN Yanxia, MA Yangyang, ZHANG Jian, LI Mengqin. Research progress on deep eutectic solvent of lignocellulose pretreatment [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1594-1603. |
[9] | Yuan HE, Lei XU, Yi XIA, Xueqian WANG, Ruiqi GANG, Langlang WANG. Photocatalytic performance of carbon quantum dots modified g-C3N4/SnO2 composites [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 908-916. |
[10] | Yunqi CAO,Xianli XIE,Zhenqiang GUO,Yanyan WANG,Yunyun LIU,Aimin WU,Yu ZHAO. Research progress on lignocellulose pretreatment technology [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. |
[11] | CAO Yujiu, ZHANG Xing. Removal of the typical products from lignocellulose acidolysis using Fenton reagent [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4265-4272. |
[12] | SUN Mingrong, LIU Xiaoxin, XIE Wenhua, ZONG Baoning, GAO Liang. Present economical development and prospective of biorefineries [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3250-3256. |
[13] | LI Xinli, ZHU Yuhong, WANG Baowei, FU Jing, WANG Zhiwen, CHEN Tao. Progress in bioethanol production via consolidated bioprocessing [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3600-3610. |
[14] | PING Qingwei, WANG Chun, PAN Mengli, ZHANG Jian, SHI Haiqiang, NIU Meihong. Separation and high-value utilization of lignin from the lignocellulose biomass refining [J]. Chemical Industry and Engineering Progree, 2016, 35(01): 294-301. |
[15] | SUN Fubao1,WANG Liang1,2,TAN Ling1,2,CAO Yu1,LIU Jianquan1,ZHANG Zhenyu1. Analytic technology of characterizing the substrate architecture in the Lignocellulose-to-sugar platform [J]. Chemical Industry and Engineering Progree, 2014, 33(04): 883-890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |