1 |
中华人民共和国生态环境部. 中国机动车污染防治年报[J]. 2022.
|
|
Ministry of Ecology and Environmental Protection of the People's Republic of China, China Mobile Source Environmental Management Annual Report[J]. 2022.
|
2 |
刘颖帅, 胡广地, 齐宝华. 固态SCR技术降低柴油机尾气NO x 的排放[J]. 环境工程学报, 2021, 15(2): 626-634.
|
|
LIU Yingshuai, HU Guangdi, QI Baohua. Reduction of NO x emissions from diesel engines by solid SCR technology[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 626-634.
|
3 |
王晋刚, 张剑波, 唐雪娇, 等. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023,42(9):4636-4648.
|
|
WANG Jingang, ZHANG Jianbo, TANG Xuejiao, et al. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas[J]. Chemical Industry and Engineering Progress, 2023, 42(9):4636-4648.
|
4 |
ZHANG Ling, WU Qinming, MENG Xiangju, et al. Recent advances in the preparation of zeolites for the selective catalytic reduction of NO x in diesel engines[J]. Reaction Chemistry & Engineering, 2019, 4(6): 975-985.
|
5 |
张恒, 周皞, 温妮妮, 等. Cu-SAPO-44选择性催化丙烯还原NO性能研究 [J]. 燃料化学学报, 2022, 50(8): 1064-1074.
|
|
ZHANG Heng, ZHOU Hao, WEN Nini, et al. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1064-1074.
|
6 |
宁淑英, 苏亚欣, 杨洪海, 等. 用于HC-SCR还原NO x 的Cu基分子筛催化剂研究进展[J]. 化工进展, 2023, 42(3): 1308-1320.
|
|
NING Shuying, SU Yaxin, YANG Honghai, et al. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320.
|
7 |
YANG Di, ZHOU Hao, WANG Congying, et al. NO selective catalytic reduction with propylene over one-pot synthesized Fe-SAPO-34 catalyst under diesel exhaust conditions[J]. Fuel, 2021, 290:119822.
|
8 |
GAO Zhongnan, ZHAO Dongyue, YANG Yuexi, et al. Influence of copper locations on catalytic properties and activities of Cu/SAPO-34 in C3H6-SCR[J]. Industrial & Engineering Chemistry Research, 2021, 60(19): 6940-6949.
|
9 |
ZHOU Jiayi, LI Nan, WANG Xurui, et al. Effects of the preparation method of Cu-SAPO-34 catalysts in de-NO x SCR by propylene[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108160.
|
10 |
殷成阳, 侯铭, 杨爽, 等. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6):2963-2974.
|
|
YIN Chengyang, HOU Ming, YANG Shuanget al. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(6):2963-2974.
|
11 |
周皞, 苏亚欣, 邓文义, 等. 负载金属分子筛类催化剂上HC-SCR研究进展[J]. 环境科学与技术, 2015, 38(10): 64-73.
|
|
ZHOU Hao, SU Yaxin, DENG Wenyi, et al. A review of HC-SCR over metal-based zeolite catalysts[J]. Environmental Science & Technology, 2015, 38(10): 64-73.
|
12 |
CAO Yi, ZOU Sha, LAN Li, et al. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NO x with ammonia[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 304-311.
|
13 |
刘崇飞, 王学涛, 邢利利, 等. 双金属Cu-Ce/SAPO-34催化剂的制备及其NH3-SCR脱硝性能研究[J]. 燃料化学学报, 2022, 50(10): 1316-1323.
|
|
LIU Chongfei, WANG Xuetao, XING Lili, et al. Study on Preparation and denitrification performance of NH3-SCR of bimetallic Cu-Ce/SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 2022, 50(10): 1316-1323.
|
14 |
张雷, 孙敬方, 熊燕, 等. CeO2表面分散态WO3的氨选择性催化还原性能[J]. 催化学报, 2017, 38(10): 1749-1758.
|
|
ZHANG Lei, SUN Jingfang, XIONG Yan, et al. Catalytic performance of highly dispersed WO3 loaded on CeO2 in the selective catalytic reduction of NO by NH3 [J]. Chinese Journal of Catalysis, 2017, 38(10): 1749-1758.
|
15 |
ZHOU Xiaoming, CHEN Zhuoyuan, GUO Zhiyong, et al. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction[J]. Journal of Hazardous Materials, 2021, 405: 124177.
|
16 |
ZHANG Qiongdan, WANG Qiongsheng, WANG Shiming. Efficient heterogeneous Fenton-like catalysis of Fe-doped SAPO-44 zeolite synthesized from bauxite and rice husk[J]. Chemical Physics Letters, 2020, 753: 137598.
|
17 |
NIU Can, SHI Xiaoyan, LIU Fudong, et al. High hydrothermal stability of Cu-SAPO-34 catalysts for the NH3-SCR of NO x [J]. Chemical Engineering Journal, 2016, 294: 254-263.
|
18 |
CAO Yi, FENG Xi, XU Haidi, et al. Novel promotional effect of yttrium on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NO x by NH3 (NH3-SCR)[J]. Catalysis Communications, 2016, 76: 33-36.
|
19 |
LIU Lianjun, CAO Yuan, SUN Wenjing, et al. Morphology and nanosize effects of ceria from different precursors on the activity for NO reduction[J]. Catalysis Today, 2011, 175(1): 48-54.
|
20 |
SHAN Yulong, SHI Xiaoyan, DU Jinpeng, et al. Cu-exchanged RTH-type zeolites for NH3-selective catalytic reduction of NO x : Cu distribution and hydrothermal stability[J]. Catalysis Science & Technology, 2019, 9(1): 106-115.
|
21 |
HUANG Bichun, FANG Hansun, HUANG Huajun, et al. A one-pot synthesis of Cu-modified Mn-rich MnSAPO-34 catalyst with excellent low temperature NH3-selective catalytic reduction performance and H2O resistance[J]. Journal of Industrial and Engineering Chemistry, 2021, 95: 252-259.
|
22 |
周皞, 杨迪, 王聪颖, 等. 一步水热合成Cu-SAPO-34选择性催化丙烯还原氮氧化物[J]. 无机化学学报, 2020, 36(10): 1997-2004.
|
|
ZHOU Hao, YANG Di, WANG Congying, et al. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-34 catalysts[J]. Chinese Journal of Inorganic Chemistry. 2020, 36(10):1997-2004.
|
23 |
GAO Feng, WASHTON Nancy M, WANG Yilin, et al. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity[J]. Journal of Catalysis, 2015, 331: 25-38.
|
24 |
LEZCANO-GONZALEZ I, DEKA U, ARSTAD B, et al. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems[J]. Physical Chemistry Chemical Physics, 2014, 16(4): 1639-1650.
|
25 |
WEN Nini, SU Yaxin, DENG Wenyi, et al. Synergy of CuNiFe-LDH based catalysts for enhancing low-temperature SCR-C3H6 performance: Surface properties and reaction mechanism[J]. Chemical Engineering Journal, 2022, 438: 135570.
|
26 |
LI Junhua, ZHU Yongqing, KE Rui, et al. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions[J]. Applied Catalysis B: Environmental, 2008, 80(3/4): 202-213.
|
27 |
BRANDENBERGER Sandro, Oliver KRÖCHER, WOKAUN Alexander, et al. The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. Journal of Catalysis, 2009, 268(2): 297-306.
|