Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 21-32.DOI: 10.16085/j.issn.1000-6613.2023-1044
• Chemical processes and equipment • Previous Articles Next Articles
Received:
2023-06-25
Revised:
2023-08-05
Online:
2023-11-30
Published:
2023-10-25
作者简介:
杨建平(1965—),男,高级工程师,研究方向为石油化工工艺开发与设计。E-mail:yangjianping.ssec@sinopec.com。
CLC Number:
YANG Jianping. PSE for feedstock consumption reduction in reaction system of HPPO plant[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 21-32.
杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1044
工艺参数 | 数值 | |||
---|---|---|---|---|
100kt∙a-1 | 200kt∙a-1 | 300kt∙a-1 | 400kt∙a-1 | |
催化反应器数量范围/台 | 2~6 | 2~8 | 4~10 | 6~12 |
设计催化反应器数量 | 4 | 4 | 6 | 8 |
第1反应器反应温度/℃ | 78 | 79 | 78 | 77 |
第2反应器反应温度/℃ | 65 | 70 | 73 | 73 |
第3反应器反应温度/℃ | 58 | 59 | 69 | 68 |
第4反应器反应温度/℃ | 50 | 50 | 63 | 64 |
第5反应器反应温度/℃ | — | — | 59 | 61 |
第6反应器反应温度/℃ | — | — | 53 | 57 |
第7反应器反应温度/℃ | — | — | — | 52 |
第8反应器反应温度/℃ | — | — | — | 49 |
催化反应器反应压力/ MPa | 2.8 | 3.2 | 3.6 | 4.0 |
循环水/新鲜水流量比/ t∙t-1 | 8.0 | 10.0 | 12.0 | 16.0 |
工艺参数 | 数值 | |||
---|---|---|---|---|
100kt∙a-1 | 200kt∙a-1 | 300kt∙a-1 | 400kt∙a-1 | |
催化反应器数量范围/台 | 2~6 | 2~8 | 4~10 | 6~12 |
设计催化反应器数量 | 4 | 4 | 6 | 8 |
第1反应器反应温度/℃ | 78 | 79 | 78 | 77 |
第2反应器反应温度/℃ | 65 | 70 | 73 | 73 |
第3反应器反应温度/℃ | 58 | 59 | 69 | 68 |
第4反应器反应温度/℃ | 50 | 50 | 63 | 64 |
第5反应器反应温度/℃ | — | — | 59 | 61 |
第6反应器反应温度/℃ | — | — | 53 | 57 |
第7反应器反应温度/℃ | — | — | — | 52 |
第8反应器反应温度/℃ | — | — | — | 49 |
催化反应器反应压力/ MPa | 2.8 | 3.2 | 3.6 | 4.0 |
循环水/新鲜水流量比/ t∙t-1 | 8.0 | 10.0 | 12.0 | 16.0 |
项目 | 数值 | |||
---|---|---|---|---|
100kt∙a-1 | 200kt∙a-1 | 300kt∙a-1 | 400kt∙a-1 | |
过氧化氢原料消耗/kt∙a-1 | 60.254 | 120.496 | 180.708 | 240.894 |
丙烯原料消耗/kt∙a-1 | 74.432 | 148.849 | 223.227 | 297.575 |
节省过氧化氢原料/t∙a-1 | 149 | 311 | 502 | 720 |
节省丙烯原料/t∙a-1 | 184 | 384 | 621 | 889 |
常规总传热系数/W∙m-2∙K-1 | 1000~2000 | 1000~2000 | 1000~2000 | 1000~2000 |
常规催化剂寿命/a | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 |
改进后总传热系数/W∙m-2∙K-1 | 2490 | 2600 | 2710 | 2750 |
改进后催化剂寿命/a | 4.9 | 4.9 | 4.9 | 5.0 |
项目 | 数值 | |||
---|---|---|---|---|
100kt∙a-1 | 200kt∙a-1 | 300kt∙a-1 | 400kt∙a-1 | |
过氧化氢原料消耗/kt∙a-1 | 60.254 | 120.496 | 180.708 | 240.894 |
丙烯原料消耗/kt∙a-1 | 74.432 | 148.849 | 223.227 | 297.575 |
节省过氧化氢原料/t∙a-1 | 149 | 311 | 502 | 720 |
节省丙烯原料/t∙a-1 | 184 | 384 | 621 | 889 |
常规总传热系数/W∙m-2∙K-1 | 1000~2000 | 1000~2000 | 1000~2000 | 1000~2000 |
常规催化剂寿命/a | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 |
改进后总传热系数/W∙m-2∙K-1 | 2490 | 2600 | 2710 | 2750 |
改进后催化剂寿命/a | 4.9 | 4.9 | 4.9 | 5.0 |
工艺参数 | 数值 | |||
---|---|---|---|---|
400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | |
第1反应器反应温度/℃ | 70 | 74 | 77 | 95 |
第2反应器反应温度/℃ | 66 | 70 | 73 | 90 |
第3反应器反应温度/℃ | 61 | 66 | 68 | 84 |
第4反应器反应温度/℃ | 57 | 61 | 64 | 79 |
第5反应器反应温度/℃ | 52 | 57 | 61 | 74 |
第6反应器反应温度/℃ | 48 | 52 | 57 | 68 |
第7反应器反应温度/℃ | 43 | 48 | 52 | 63 |
第8反应器反应温度/℃ | 39 | 44 | 49 | 57 |
催化反应器反应压力/ MPa | 1.5 | 3.0 | 4.0 | 4.5 |
循环水/新鲜水流量比/ t∙t-1 | 2.0 | 8.0 | 16.0 | 20.0 |
工艺参数 | 数值 | |||
---|---|---|---|---|
400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | |
第1反应器反应温度/℃ | 70 | 74 | 77 | 95 |
第2反应器反应温度/℃ | 66 | 70 | 73 | 90 |
第3反应器反应温度/℃ | 61 | 66 | 68 | 84 |
第4反应器反应温度/℃ | 57 | 61 | 64 | 79 |
第5反应器反应温度/℃ | 52 | 57 | 61 | 74 |
第6反应器反应温度/℃ | 48 | 52 | 57 | 68 |
第7反应器反应温度/℃ | 43 | 48 | 52 | 63 |
第8反应器反应温度/℃ | 39 | 44 | 49 | 57 |
催化反应器反应压力/ MPa | 1.5 | 3.0 | 4.0 | 4.5 |
循环水/新鲜水流量比/ t∙t-1 | 2.0 | 8.0 | 16.0 | 20.0 |
项目 | 数值 | |||
---|---|---|---|---|
400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | |
过氧化氢原料消耗/kt∙a-1 | 241.105 | 240.978 | 240.894 | 240.857 |
丙烯原料消耗/kt∙a-1 | 297.835 | 297.678 | 297.575 | 297.529 |
节省过氧化氢原料/t∙a-1 | 509 | 636 | 720 | 757 |
节省丙烯原料/t∙a-1 | 629 | 786 | 889 | 935 |
常规总传热系数/W∙m-2∙K-1 | 1000~2000 | 1000~2000 | 1000~2000 | 1000~2000 |
常规催化剂寿命/a | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 |
改进后总传热系数/W∙m-2∙K-1 | 2400 | 2600 | 2750 | 2800 |
改进后催化剂寿命/a | 4.8 | 4.9 | 5.0 | 5.0 |
项目 | 数值 | |||
---|---|---|---|---|
400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | 400kt∙a-1 | |
过氧化氢原料消耗/kt∙a-1 | 241.105 | 240.978 | 240.894 | 240.857 |
丙烯原料消耗/kt∙a-1 | 297.835 | 297.678 | 297.575 | 297.529 |
节省过氧化氢原料/t∙a-1 | 509 | 636 | 720 | 757 |
节省丙烯原料/t∙a-1 | 629 | 786 | 889 | 935 |
常规总传热系数/W∙m-2∙K-1 | 1000~2000 | 1000~2000 | 1000~2000 | 1000~2000 |
常规催化剂寿命/a | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 | 3.9~4.1 |
改进后总传热系数/W∙m-2∙K-1 | 2400 | 2600 | 2750 | 2800 |
改进后催化剂寿命/a | 4.8 | 4.9 | 5.0 | 5.0 |
1 | 杨友麒, 陈丙珍. 中国过程系统工程30年: 回顾与展望[J]. 化工进展, 2022, 41(8): 3991-4008. |
YANG Youqi, CHEN Bingzhen. 30 years of process systems engineering in China: Review and prospect[J]. Chemical Progress, 2022, 41(8): 3991-4008. | |
2 | 刘雪鹏. 过程系统工程方法在炼油厂设计阶段节水优化中的应用[J]. 石油石化节能, 2017, 7(6): 28-30. |
LIU Xuepeng. Application of process system engineering method in water-saving optimization of refinery design stage[J]. Petroleum and Petrochemical Pnergy Saving, 2017, 7(6): 28-30. | |
3 | 杨友麒, 成思危. 现代过程系统工程[M]. 北京: 化学工业出版社, 2003: 1-20. |
YANG Youqi, CHENG Siwei. Modern process systems engineering[M]. Beijing: Chemical Industry Press, 2003: 1-20. | |
4 | 杨友麒. 化学工业的转型升级和过程系统工程(PSE) [J]. 化工进展, 2018, 37(3): 803-814. |
YANG Youqi. Transformation and upgrading of chemical industry and process systems engineering(PSE)[J]. Chemical Progress, 2018, 37(3): 803-814. | |
5 | 杨友麒, 刘裔安. 国外化工园区的发展现况和启示[J]. 现代化工, 2020, 40(1): 1-7, 13. |
YANG Youqi, LIU Yian. Development status and enlightenment of foreign chemical parks[J]. Modern Chemical Industry, 2020, 40(1): 1-7, 13. | |
6 | 钱宇, 杨思宇, 贾小平, 等. 能源和化工系统的全生命周期评价和可持续性研究[J]. 化工学报, 2013, 64(1): 133-147. |
QIAN Yu, YANG Siyu, JIA Xiaoping, et al. Life cycle assessment and sustainability of energy and chemical systems[J]. Chemical Journal, 2013, 64(1): 133-147. | |
7 | 贾小平, 石磊, 杨友麒. 工业园区生态化发展的挑战与过程系统工程的机遇[J]. 化工学报, 2021, 72(5): 2373-2391. |
JIA Xiaoping, SHI Lei, YANG Youqi. Challenges in the ecological development of industrial parks and opportunities for process system engineering[J]. Chemical Journal, 2021, 72(5): 2373-2391. | |
8 | 张臻烨, 胡山鹰, 金涌. 2060中国碳中和——化石能源转向化石资源时代[J]. 现代化工, 2021, 41(6): 1-5. |
ZHANG Zhenye, HU Shanying, JIN Yong. 2060 China's carbon neutral—Fossil energy shift to the era of fossil resources[J]. Modern Chemical Industry, 2021, 41(6): 1-5. | |
9 | 吴德荣. 化工装置工艺设计(上册)[M]. 上海: 华东理工大学出版社, 2014: 12-23. |
WU Derong. Process design of chemical plant (I)[M]. Shanghai: East China University of Science and Technology Press, 2014: 12-23. | |
10 | 钱泽华, 武起, 裴康乐, 等. 基于Aspen Plus的环氧丙烷原料预处理工段工艺流程模拟[J]. 山东化工, 2022, 51(20): 160-162. |
QIAN Zehua, WU Qi, PEI Kangle, et al. Process simulation of propylene oxide raw material pretreatment section based on Aspen Plus[J]. Shandong Chemical Industry, 2022, 51(20): 160-162. | |
11 | 马紫峰. 过程工程导论[M]. 北京: 化学工业出版社, 2009: 53-69. |
MA Zifeng. Introduction to process engineering[M]. Beijing: Chemical Industry Press, 2009: 53-69. | |
12 | 王玉梅, 于钧, 刘甦, 等. 环氧丙烷生产方法及国内发展方向[J]. 化学工程师, 2001(3): 50-51. |
WANG Yumei, YU Jun, LIU Su, et al. Propylene oxide production methods and domestic development direction[J]. Chemical Engineer, 2001(3): 50-51. | |
13 | 李明威. 国内环氧丙烷工艺技术进展及市场分析[J]. 广东化工, 2020, 47(11): 112-114. |
LI Mingwei. Domestic propylene oxide process technology progress and market analysis[J]. Guangdong Chemical Industry, 2020, 47(11): 112-114. | |
14 | 王忠伟, 王逦, 黄贺, 等. 环氧丙烷现状及发展趋势[J]. 弹性体, 2022, 32(3): 81-84. |
WANG Zhongwei, WANG Ci, HUANG He, et al. Current status and development trend of propylene oxide[J]. Elastomers, 2022, 32(3): 81-84. | |
15 | 陈继军. 环氧丙烷产业的绿化者——访中国石油化工股份有限公司HPPO技术首席专家林民[J]. 中国石油和化工产业观察, 2022(12): 12-15. |
CHEN Jijun. Greener of propylene oxide industry — Interview with lin min, chief expert of HPPO technology, SINOPEC[J]. China Petroleum and Chemical Industry Observation, 2022(12): 12-15. | |
16 | 夏苗, 黄晶晶, 胡猛, 等. 过氧化氢法制环氧丙烷用钛硅分子筛催化剂的研究进展[J]. 天然气化工—C1化学与化工, 2020, 45(6): 124-130. |
XIA Miao, HUANG Jingjing, HU Meng, et al. Research progress of titanium silicalite molecular sieve catalyst for propylene oxide production by hydrogen peroxide method[J]. Natural gas chemical industry-C1 chemistry and chemical industry, 2020, 45(6): 124-130. | |
17 | 张春雷, 马建学, 邵敬铭. 丙烯-H2O2氧化制环氧丙烷绿色合成技术进展[J]. 化学世界, 2006(4): 242-245. |
ZHANG Chunlei, MA Jianxue, SHAO Jingming. Progress in green synthesis of propylene-H2O2 oxidation to propylene oxide[J]. Chemical World, 2006(4): 242-245. | |
18 | TARAMASSO M, PEREGO G, NOTARI B. Preparation of porous crystalline synthetic material comprised of silion and titanium oxides: US 4410501[P]. 1983-10-08. |
19 | 丁燕. 环氧丙烷绿色合成的研究进展[J]. 精细石油化工, 2022, 39(5): 71-75. |
DING Yan. Research progress in green synthesis of propylene oxide[J]. Fine Petrochemical Industry, 2022, 39(5): 71-75. | |
20 | 林栋, 冯翔, 刘熠斌, 等. 高性能钛硅分子筛可控合成及其催化丙烯气相环氧化研究进展[J]. 化工进展, 2022, 41(5): 2389-2403. |
LIN Dong, FENG Xiang, LIU Yibin, et al. Research progress on controllable synthesis of high-performance titanium silicalite molecular sieve and its catalytic gas-phase epoxidation of propylene[J]. Chemical progress, 2022, 41(5): 2389-2403. | |
21 | 王刚, 段学志, 袁渭康, 等. 钛硅分子筛TS-1催化环氧丙烷异构反应的机理探究[J]. 化工学报, 2021, 72(10): 5150-5158. |
WANG Gang, DUAN Xuezhi, YUAN Weikang, et al. Mechanism of propylene oxide isomerization catalyzed by titanium silicalite molecular sieve TS-1[J]. Acta Chemical Sinica, 2021, 72(10): 5150-5158. | |
22 | 林栋, 冯翔, 刘熠斌, 等. 钛硅分子筛催化剂高效钛位点理性构筑与调控及催化烯烃环氧化性能[J]. 中国科学: 化学, 2022, 52(4): 560-579. |
LIN Dong, FENG Xiang, LIU Yibin, et al. Rational construction and regulation of high-efficiency titanium sites and catalytic olefin epoxidation performance of titanium silicalite molecular sieve catalysts[J]. China Science: Chemistry, 2022, 52(4): 560-579. | |
23 | 朱佳, 王明哲, 唐志勇. 钛硅分子筛的技术现状及国内专利分析[J]. 化工时刊, 2012, 26(4): 48-51. |
ZHU Jia, WANG Mingzhe, TANG Zhiyong. Technical status of titanium silicalite molecular sieve and domestic patent analysis[J]. Chemical Times, 2012, 26(4): 48-51. | |
24 | YIN Jinpeng, JIN Xin, XU Hao, et al. Structured binder‐free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation[J]. Chinese Journal of Catalysis, 2021 (42): 1561-1575. |
25 | 谭素华, 常伟先, 张伟华. 一种HPPO法制备环氧丙烷中快速取走反应热的装置及方法: CN201811189903.3[P]. 2021-07-16. |
TAN Suhua, CHANG Weixian, ZHANG Weihua. A device and method for quickly removing the reaction heat in the preparation of propylene oxide by HPPO method: CN201811189903.3[P]. 2021-07-16. | |
26 | 杨建平, 严政, 徐尔玲, 等. 制备环氧丙烷的方法: CN201310683291.4[P]. 2015-10-21. |
YANG Jianping, YAN Zheng, XU Erling, et al. Preparation method of propylene oxide: CN201310683291.4[P]. 2015-10-21. | |
27 | 中华人民共和国国家质量监督检验检疫总局. 工业用环氧丙烷: [S]. 北京: 中国标准出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Industrial propylene oxide: [S]. Beijing: China Standards Press, 2016. | |
28 | 吴德荣, 张斌, 孙丽丽, 等. HPPO装置反应器工艺控制方法: CN201710648332.4[P]. 2019-11-29. |
WU Derong, ZHANG Bin, SUN Lili, et al. HPPO reactor process control method: CN201710648332.4[P]. 2019-11-29. | |
29 | 杨建平, 单丹, 何琨. 环氧丙烷的生产方法: CN201310681129.9[P]. 2016-08-17. |
YANG Jianping, SHAN Dan, HE Kun. Production method of propylene oxide: CN201310681129.9[P]. 2016-08-17. | |
30 | 杨建平, 叶志一, 白玫, 等. 生产环氧丙烷的方法: CN201310411768.3[P]. 2015-04-08. |
YANG Jianping, YE Zhiyi, BAI Mei, et al. Production of propylene oxide method: CN201310411768.3[P]. 2015-04-08. | |
31 | 杨建平, 王洁, 何琨. HPPO装置反应器的节能优化方法: CN201310681567.5[P]. 2014-03-19. |
YANG Jianping, WANG Jie, HE Kun. Energy-saving optimization method to reactor of HPPO plant: CN201310681567.5[P]. 2014-03-19. | |
32 | 杨建平, 叶志一, 白玫, 等. 板式催化反应器: CN201310411666.1[P]. 2013-12-18. |
YANG Jianping, YE Zhiyi, BAI Mei, et al. Plate catalytic reactor: CN201310411666.1[P]. 2013-12-18. | |
33 | 李真泽, 白玫, 杨建平, 等. HPPO装置反应器优化方法: CN201710648333.9[P]. 2019-11-19. |
LI Zhenze, BAI Mei, YANG Jianping, et al. Optimization method to reactor of HPPO plant: CN201710648333.9[P]. 2019-11-19. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[3] | LAI Huaidong, CHENG Deshu, WANG Jian, LUO Juxiang. Preparation and application of α-methyl styrene maleic anhydride copolymer microspheres immobilized β-cyclodextrin [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2038-2046. |
[4] | CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973. |
[5] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[6] | ZHOU Hao, ZHANG Heng, WEN Nini, WANG Xurui, XU Lu, LI Wei, SU Yaxin. Preparation and de-NO x performance of C3H6-SCR over Cu-SAPO-44 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1373-1382. |
[7] | ZHANG Mengxu, WANG Hongqin, LI Jin, AN Nihong, DAI Yunsheng, QIAN Yin, SHEN Yafeng. Preparation of PtSn/MgAl2O4-sheet catalyst and its PDH reaction performance [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1365-1372. |
[8] | HU Zhaoyan, ZHANG Jingxin, HE Yiliang. Catalytic pyrolysis of polypropylene plastics and product properties with Fe-loaded sludge biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 631-640. |
[9] | SUN Yiming, RAN Baoqing, BIAN Wuxun, LIU Jinchao, YIN Shaoding, ZHAO Xipo. Preparation and process optimization of polypropylene wax solid-solid phase change material [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 336-345. |
[10] | LIU Nan, HU Yiming, YANG Ying, LI Hongjin, GAO Zhuqing, HAO Xiuli. Microwave assisted co-pyrolysis of waste polypropylene /activated carbon to produce combustible pyrolysis gas and light pyrolysis oil [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 150-159. |
[11] | SONG Wangyi, ZHAO Xinfang, LIU Wei, XUE Ling. Effect of valve hardening process on hydrogen peroxide production by anthraquinone process [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 54-59. |
[12] | ZHANG Guangyu, ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei. Recent advances on catalytic conversion of CO2 into propylene carbonate: catalyst design, performance and reaction mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189. |
[13] | YANG Youqi, CHEN Bingzhen. PSE in China: retrospect and prospects [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 3991-4008. |
[14] | LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248. |
[15] | LI Qinghui, SONG Huanling, ZHAO Huahua, YANG Jian, ZHAO Jun, YAN Liang, CHOU Lingjun. Selective oxidation of light olefins to aldehydes catalyzed by molybdenum-bismuth composite metal oxides [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1873-1885. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |