Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1961-1973.DOI: 10.16085/j.issn.1000-6613.2022-1187
• Materials science and technology • Previous Articles Next Articles
CHANG Xiaoqing1(), PENG Donglai1,2(), LI Dongyang1, ZHANG Yanwu1, WANG Jing1(), ZHANG Yatao1
Received:
2022-06-27
Revised:
2022-08-29
Online:
2023-05-08
Published:
2023-04-25
Contact:
PENG Donglai, WANG Jing
常晓青1(), 彭东来1,2(), 李东洋1, 张延武1, 王景1(), 张亚涛1
通讯作者:
彭东来,王景
作者简介:
常晓青(1997—),女,硕士研究生,研究方向为气体膜分离。E-mail:changxqing@163.com。
基金资助:
CLC Number:
CHANG Xiaoqing, PENG Donglai, LI Dongyang, ZHANG Yanwu, WANG Jing, ZHANG Yatao. Recent progress on mixed matrix membrane for efficient C3H6/C3H8 separation[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1961-1973.
常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1187
聚合物 | 测试温度/℃ | 原料侧压力/atm | 自由体积分数FFV/% | 丙烯渗透通量/Barrer | 选择性C3H6/C3H8 | 参考文献 |
---|---|---|---|---|---|---|
Matrimid® | 35 | 2.0 | — | 0.10 | 10.0 | [ |
6FDA-mPD | 35 | 3.8 | 15.6 | 0.13 | 10.0 | [ |
6FDA–IPDA | 35 | 3.8 | 16.8 | 0.58 | 15.0 | [ |
6FDA-6FpDA | 35 | 3.8 | 19.0 | 0.89 | 16.0 | [ |
6FDA-DDBT | 50 | 2.0 | 16.9 | 0.76 | 27.0 | [ |
6FDA-TrMPD | 50 | 2.0 | 18.2 | 30 | 11.0 | [ |
6FDA-TeMPD | 50 | 2.0 | 18.2 | 37 | 7.0 | [ |
PIM-PI-OH (250℃) | 35 | 2.0 | — | 3.50 | 30.0 | [ |
PIM | 30 | 1.0 | 22.0 | 1051 | 7.5 | [ |
KAUST-PI-1 | 35 | 2.0 | — | 817 | 16 | [ |
聚合物 | 测试温度/℃ | 原料侧压力/atm | 自由体积分数FFV/% | 丙烯渗透通量/Barrer | 选择性C3H6/C3H8 | 参考文献 |
---|---|---|---|---|---|---|
Matrimid® | 35 | 2.0 | — | 0.10 | 10.0 | [ |
6FDA-mPD | 35 | 3.8 | 15.6 | 0.13 | 10.0 | [ |
6FDA–IPDA | 35 | 3.8 | 16.8 | 0.58 | 15.0 | [ |
6FDA-6FpDA | 35 | 3.8 | 19.0 | 0.89 | 16.0 | [ |
6FDA-DDBT | 50 | 2.0 | 16.9 | 0.76 | 27.0 | [ |
6FDA-TrMPD | 50 | 2.0 | 18.2 | 30 | 11.0 | [ |
6FDA-TeMPD | 50 | 2.0 | 18.2 | 37 | 7.0 | [ |
PIM-PI-OH (250℃) | 35 | 2.0 | — | 3.50 | 30.0 | [ |
PIM | 30 | 1.0 | 22.0 | 1051 | 7.5 | [ |
KAUST-PI-1 | 35 | 2.0 | — | 817 | 16 | [ |
样品 | 扩散系数/109cm2·s-1 | 扩散选择性 | 溶解系数(标准状况) /0.0075cm3·cm-3·Pa-1 | 溶解选择性 | 渗透通量/Barrer | 选择性 | |||
---|---|---|---|---|---|---|---|---|---|
丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | |
PI | 5.29±0.14 | 0.51±0.01 | 10.40±0.10 | 3.17±0.06 | 2.87±0.13 | 1.10±0.03 | 16.63±0.14 | 1.47±0.05 | 11.30±0.30 |
PZ67-20 | 7.72±0.06 | 0.31±0.01 | 24.80±0.20 | 4.40±0.09 | 3.66±0.11 | 1.20±0.01 | 34.14±0.04 | 1.14±0.01 | 29.90±0.20 |
PZ8-20 | 8.09±0.08 | 0.43±0.04 | 18.70±1.60 | 4.67±0.14 | 4.18±0.30 | 1.10±0.04 | 37.73±0.56 | 1.82±0.06 | 20.70±0.40 |
样品 | 扩散系数/109cm2·s-1 | 扩散选择性 | 溶解系数(标准状况) /0.0075cm3·cm-3·Pa-1 | 溶解选择性 | 渗透通量/Barrer | 选择性 | |||
---|---|---|---|---|---|---|---|---|---|
丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | 丙烯 | 丙烷 | 丙烯/丙烷 | |
PI | 5.29±0.14 | 0.51±0.01 | 10.40±0.10 | 3.17±0.06 | 2.87±0.13 | 1.10±0.03 | 16.63±0.14 | 1.47±0.05 | 11.30±0.30 |
PZ67-20 | 7.72±0.06 | 0.31±0.01 | 24.80±0.20 | 4.40±0.09 | 3.66±0.11 | 1.20±0.01 | 34.14±0.04 | 1.14±0.01 | 29.90±0.20 |
PZ8-20 | 8.09±0.08 | 0.43±0.04 | 18.70±1.60 | 4.67±0.14 | 4.18±0.30 | 1.10±0.04 | 37.73±0.56 | 1.82±0.06 | 20.70±0.40 |
1 | ROY A, VENNA S R, ROGERS G, et al. Membranes for olefin-paraffin separation: an industrial perspective[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2022194118. |
2 | 刘治华, 李宇静. 中国丙烯市场回顾及“十四五”展望[J]. 现代化工, 2021, 41(8): 16-18. |
LIU Zhihua, LI Yujing. Review of China’s propylene market and outlook for 2021—2025 period[J]. Modern Chemical Industry, 2021, 41(8): 16-18. | |
3 | CORMA A, CORRESA E, MATHIEU Y, et al. Crude oil to chemicals: Light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46. |
4 | AMEDI H R, AGHAJANI M. Economic estimation of various membranes and distillation for propylene and propane separation[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4366-4376. |
5 | SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
6 | LIVELY R P. The refinery of today, tomorrow, and the future: A separations perspective[J]. AIChE Journal, 2021, 67(7): e17286. |
7 | CHEN Xiaoyuan, XIAO Anguo, RODRIGUE D. Polymer-based membranes for propylene/propane separation[J]. Separation & Purification Reviews, 2022, 51(1): 130-142. |
8 | HOU Junjun, LIU Pengchao, JIANG Meihuizi, et al. Olefin/paraffin separation through membranes: from mechanisms to critical materials[J]. Journal of Materials Chemistry A, 2019, 7(41): 23489-23511. |
9 | KOROS W J, ZHANG Chen. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
10 | HAMID M R A, JEONG H K. Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges[J]. Korean Journal of Chemical Engineering, 2018, 35(8): 1577-1600. |
11 | LIU Yang, LIU Gongping, ZHANG Chen, et al. Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations[J]. Advanced Science, 2018, 5(9): 1800982. |
12 | QIAN Qihui, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
13 | DATTA S J, MAYORAL A, MURTHY SRIVATSA BETTAHALLI N, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087. |
14 | FAN Yanfang, WANG Xueli, LI Nanwen. Interfacial manipulation of MOFs/polymer mixed matrix membranes for gas separations: a review[J]. Chinese Science Bulletin, 2021, 66(23): 2930-2942. |
15 | CHUAH C Y, BAE T H. Recent advances in mixed-matrix membranes for light hydrocarbon (C1—C3) separation[J]. Membranes, 2022, 12(2): 201. |
16 | ROBESON L M, LIU Qiang, FREEMAN B D, et al. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship[J]. Journal of Membrane Science, 2015, 476: 421-431. |
17 | CAMPOS A C C, DOS REIS R A, ORTIZ A, et al. A perspective of solutions for membrane instabilities in olefin/paraffin separations: A review[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10071-10085. |
18 | REN Yanxiong, LIANG Xu, DOU Haozhen, et al. Membrane-based olefin/paraffin separations[J]. Advanced Science, 2020, 7(19): 2001398. |
19 | MIZRAHI RODRIGUEZ K, BENEDETTI F M, ROY N, et al. Sorption-enhanced mixed-gas transport in amine functionalized polymers of intrinsic microporosity (PIMs)[J]. Journal of Materials Chemistry A, 2021, 9(41): 23631-23642. |
20 | GENDUSO G, WANG Y G, GHANEM B S, et al. Permeation, sorption, and diffusion of CO2-CH4 mixtures in polymers of intrinsic microporosity: the effect of intrachain rigidity on plasticization resistance[J]. Journal of Membrane Science, 2019, 584: 100-109. |
21 | GUO Meng, KANEZASHI M. Recent progress in a membrane-based technique for propylene/propane separation[J]. Membranes, 2021, 11(5): 310. |
22 | LIANG Bin, ZHANG Xin, XIE Yi, et al. An ultramicroporous metal-organic framework for high sieving separation of propylene from propane[J]. Journal of the American Chemical Society, 2020, 142: 17795-17801. |
23 | AN Heseong, PARK Sunghwan, KWON Hyuk Taek, et al. A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes[J]. Journal of Membrane Science, 2017, 526: 367-376. |
24 | LIN R J, VILLACORTA HERNANDEZ B, GE L, et al. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces[J]. Journal of Materials Chemistry A, 2018, 6(2): 293-312. |
25 | Jin Woo OH, CHO Kie Yong, KAN Mingyang, et al. High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for C3H6/C3H8 separation[J]. Journal of Membrane Science, 2020, 596: 117735. |
26 | MUELLER R, HARIHARAN V, ZHANG C, et al. Relationship between mixed and pure gas self-diffusion for ethane and ethene in ZIF-8/6FDA-DAM mixed-matrix membrane by pulsed field gradient NMR[J]. Journal of Membrane Science, 2016, 499: 12-19. |
27 | DONG Guangxi, LEE Young Moo. Microporous polymeric membranes inspired by adsorbent for gas separation[J]. Journal of Materials Chemistry A, 2017, 5(26): 13294-13319. |
28 | SANAEEPUR H, EBADI AMOOGHIN A, BANDEHALI S, et al. Polyimides in membrane gas separation: monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
29 | BURNS R L, KOROS W J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes[J]. Journal of Membrane Science, 2003, 211(2): 299-309. |
30 | STAUDT-BICKEL C, KOROS W J. Olefin/paraffin gas separations with 6FDA-based polyimide membranes[J]. Journal of Membrane Science, 2000, 170(2): 205-214. |
31 | SWAIDAN R J, MA X H, LITWILLER E, et al. Enhanced propylene/propane separation by thermal annealing of an intrinsically microporous hydroxyl-functionalized polyimide membrane[J]. Journal of Membrane Science, 2015, 495: 235-241. |
32 | KHAN M M, BENGTSON G, SHISHATSKIY S, et al. Cross-linking of polymer of intrinsic microporosity (PIM-1) via nitrene reaction and its effect on gas transport property[J]. European Polymer Journal, 2013, 49(12): 4157-4166. |
33 | SWAIDAN R J, GHANEM B, SWAIDAN R, et al. Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides[J]. Journal of Membrane Science, 2015, 492: 116-122. |
34 | TANAKA K, TAGUCHI A, HAO J Q, et al. Permeation and separation properties of polyimide membranes to olefins and paraffins[J]. Journal of Membrane Science, 1996, 121(2): 197-207. |
35 | TANAKA K, OSADA Y, KITA H, et al. Gas permeability and permselectivity of polyimides with large aromatic rings[J]. Journal of Polymer Science B: Polymer Physics, 1995, 33(13): 1907-1915. |
36 | SWAIDAN R, GHANEM B, LITWILLER E, et al. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity[J]. Macromolecules, 2015, 48(18): 6553-6561. |
37 | BUDD P M, GHANEM B S, MAKHSEED S, et al. Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials[J]. Chemical Communications, 2004(2): 230-231. |
38 | WANG Y, MA X, GHANEM B S, et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations[J]. Materials Today Nano, 2018, 3: 69-95. |
39 | YIN H J, YANG B, CHUA Y Z, et al. Effect of backbone rigidity on the glass transition of polymers of intrinsic microporosity probed by fast scanning calorimetry[J]. ACS Macro Letters, 2019, 8(8): 1022-1028. |
40 | CARTA M, CROAD M, MALPASS-EVANS R, et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers[J]. Advanced Materials, 2014, 26(21): 3526-3531. |
41 | CHEN Xiuling, WU Lei, YANG Huimin, et al. Tailoring the microporosity of polymers of intrinsic microporosity for advanced gas separation by atomic layer deposition[J]. Angewandte Chemie International Edition, 2021, 60(33): 17875-17880. |
42 | SWAIDAN R, GHANEM B, AL-SAEEDI M, et al. Role of intrachain rigidity in the plasticization of intrinsically microporous triptycene-based polyimide membranes in mixed-gas CO2/CH4 separations[J]. Macromolecules, 2014, 47(21): 7453-7462. |
43 | LIAO Kuo Sung, LAI Juin Yih, CHUNG Tai Shung. Metal ion modified PIM-1 and its application for propylene/propane separation[J]. Journal of Membrane Science, 2016, 515: 36-44. |
44 | SWAIDAN R, GHANEM B, LITWILLER E, et al. Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides[J]. Journal of Membrane Science, 2015, 475: 571-581. |
45 | PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: The trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
46 | BACHMAN J E, SMITH Z P, LI T, et al. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals[J]. Nature Materials, 2016, 15(8): 845-849. |
47 | DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-matrix membranes[J]. Angewandte Chemie International Edition, 2017, 56(32): 9292-9310. |
48 | KOSINOV N, et al. Recent developments in zeolite membranes for gas separation[J]. Journal of Membrane Science, 2016, 499: 65-79. |
49 | KIM Seong Joong, KWON YongSung, KIM DaeHun, et al. A review on polymer precursors of carbon molecular sieve membranes for olefin/paraffin separation[J]. Membranes, 2021, 11(7): 482. |
50 | MAHAJAN R, KOROS W J. Mixed matrix membrane materials with glassy polymers. Part 1[J]. Polymer Engineering & Science, 2002, 42(7): 1420-1431. |
51 | MAHAJAN Rajiv, KOROS William J. Mixed matrix membrane materials with glassy polymers. Part 2[J]. Polymer Engineering & Science, 2002, 42(7): 1432-1441. |
52 | LIU Gongping, CHERNIKOVA V, LIU Yang, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17(3): 283-289. |
53 | 潘宜昌, 邢卫红. 丙烯/丙烷分离的ZIF-8膜研究进展[J]. 化工进展, 2020, 39(6): 2036-2048. |
PAN Yichang, XING Weihong. Recent progress of ZIF-8 membrane for propylene/propane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048. | |
54 | BÖHME U, BARTH B, PAULA C, et al. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8[J]. Langmuir, 2013, 29(27): 8592-8600. |
55 | LI K H, OLSON D H, SEIDEL J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Journal of the American Chemical Society, 2009, 131(30): 10368-10369. |
56 | LEE Moon Joo, KWON Hyuk Taek, JEONG Hae Kwon. High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange[J]. Angewandte Chemie International Edition, 2018, 57(1): 156-161. |
57 | ZHANG C, DAI Y, JOHNSON J R, et al. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations[J]. Journal of Membrane Science, 2012, 389: 34-42. |
58 | PENG Yuan, LI Yanshuo, BAN Yujie, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
59 | LIU Yang, CHEN Zhijie, LIU Gongping, et al. Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation[J]. Advanced Materials, 2019, 31(14): e1807513. |
60 | CUI Xili, CHEN Kaijie, XING Huabin, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. |
61 | SHEN Qin, CONG Shenzhen, HE Rongrong, et al. SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation[J]. Journal of Membrane Science, 2019, 588: 117201. |
62 | LEE Tae Hoon, JUNG Jae Gu, KIM Yu Jin, et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation[J]. Angewandte Chemie International Edition, 2021, 60(23): 13081-13088. |
63 | MA L, SVEC F, LYU Y Q, et al. Engineering of the filler/polymer interface in metal-organic framework-based mixed-matrix membranes to enhance gas separation[J]. Chemistry: An Asian Journal, 2019, 14(20): 3502-3514. |
64 | MA X H, SWAIDAN R J, WANG Y G, et al. Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation[J]. ACS Applied Nano Materials, 2018, 1(7): 3541-3547. |
65 | WANG Ziyang, WANG Wenjian, ZENG Tao, et al. Covalent-linking-enabled superior compatibility of ZIF-8 hybrid membrane for efficient propylene separation[J]. Advanced Materials, 2022, 34(6): e2104606. |
66 | AN Heseong, CHO Kie Yong, BACK Seoin, et al. The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance[J]. Separation and Purification Technology, 2021, 261: 118279. |
67 | LIN Rijia, GE Lei, DIAO Hui, et al. Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler[J]. Journal of Materials Chemistry A, 2016, 4(16): 6084-6090. |
68 | MOGHADAM F, LEE T H, PARK I, et al. Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity[J]. Journal of Membrane Science, 2020, 603: 118019. |
69 | JAPIP S, WANG H, XIAO Y C, et al. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation[J]. Journal of Membrane Science, 2014, 467: 162-174. |
70 | LIU Jiangtao, XIAO Youchang, CHUNG Tai Shung. Flexible thermally treated 3D PIM-CD molecular sieve membranes exceeding the upper bound line for propylene/propane separation[J]. Journal of Materials Chemistry A, 2017, 5(9): 4583-4595. |
71 | PARK Sunghwan, JEONG Hae Kwon. In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8 (ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation[J]. Journal of Membrane Science, 2020, 596: 117689. |
72 | AN Heseong, CHO Kie Yong, Qiang LYU, et al. Facile defect engineering of zeolitic imidazolate frameworks towards enhanced C3H6/C3H8 separation performance[J]. Advanced Functional Materials, 2021, 31(47): 2105577. |
73 | ASKARI M, CHUNG T S. Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes[J]. Journal of Membrane Science, 2013, 444: 173-183. |
74 | GUO Xiangyu, XUE Wenjuan, SUN Yuxiu, et al. A confined flexibility release enabled non-equilibrium stage in mixed-matrix membranes: unprecedented selectivity for olefin/paraffin deep separation[J]. Journal of Materials Chemistry A, 2021, 9(46): 26045-26050. |
75 | LIU Donghui, XIANG Long, CHANG Hao, et al. Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation[J]. Chemical Engineering Science, 2019, 204: 151-160. |
[1] | FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962. |
[2] | ZHU Xiao, ZHU Junyong, ZHANG Yatao. Research progress of metal organic framework/polyamide thin film nanocomposite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4314-4326. |
[3] | GAO Yifei, YI Qun, QI Kai, GAO Lili, LI Xuelian. Research status and application in H2/CH4 separation of MOFs-based membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6395-6407. |
[4] | ZHAO Guoke, PAN Guoyuan, ZHANG Yang, YU Hao, ZHAO Muhua, TANG Gongqing, LIU Yiqun. Recent advances in graphene-based membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5896-5911. |
[5] | ZHANG Yi, LIU Donghao, DING Yigang. Research progress of membrane technology for the separation of rare earth elements [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5567-5577. |
[6] | LI Zhilu, WANG Min, ZHAO Youjing, PENG Zhengjun, BAI Lu. Effects of membrane characteristics for lithium extraction [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5061-5072. |
[7] | LIN Shaohua, WU Haixia, GAO Liping, YU Yiping. Current status and future prospects of modified carbon nanotube and its composite materials application for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3466-3479. |
[8] | CAI Di, LI Shufeng, SI Zhihao, QIN Peiyong, TAN Tianwei. Current advances and development of bio-butanol separation techniques [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1161-1177. |
[9] | LI Chunli, CHENG Yonghui, LI Hao. Simulation of high pure alcohol preparation by distillation-adsorption-membrane separation coupling process [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1354-1361. |
[10] | NING Mengjia, DAI Yan, XI Yuan, ZHANG Xing, LIU Hongjing, HE Gaohong. CO2 separation of Pebax-based mixed matrix membranes promoted by Cu(Qc)2 [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5652-5659. |
[11] | Bingchen CHEN, Jibin XU, Chao WAN, Liangliang DONG, Chunfang ZHANG, Yunxiang BAI. ZIF-8 filled carboxylated polymer of intrinsic microporosity membranes for CO2/CH4 separation [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3518-3524. |
[12] | Yanfang DENG, Anru LIU, Minghui LUO, Jieping FAN. Research progress of molecularly imprinted membrane for separation [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2166-2176. |
[13] | Fei SHI, Yifan LI. Advances of mixed matrix membrane for CO2 capture [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. |
[14] | Jiang FAN, Wei WANG, Jiahao CAI, Zong LU, Li DING, Yanying WEI, Haihui WANG. A review of structural design and tuning methods of two-dimensional membranes [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4823-4836. |
[15] | Linjun YANG, Lin ZHANG, Ying SUN. Present situation of the effect of coexistent impurities in coal fired flue gas on CO2 capture by membranes [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1996-2002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |