Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 2954-2962.DOI: 10.16085/j.issn.1000-6613.2022-1453
• Industrial catalysis • Previous Articles Next Articles
ZHANG Wei1,2(), QIN Chuan1,2, XIE Kang1,2, ZHOU Yunhe1,2, DONG Mengyao1,2, LI Jie1,2, TANG Yunhao1,2, MA Ying3, SONG Jian4
Received:
2022-08-03
Revised:
2022-12-25
Online:
2023-06-29
Published:
2023-06-25
Contact:
ZHANG Wei
张巍1,2(), 秦川1,2, 谢康1,2, 周运河1,2, 董梦瑶1,2, 李婕1,2, 汤云灏1,2, 马英3, 宋健4
通讯作者:
张巍
作者简介:
张巍(1974—),男,博士,副教授,硕士生导师,研究方向为高效清洁燃烧与污染物控制。E-mail:weizhang@csust.edu.cn。
基金资助:
CLC Number:
ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962.
张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1453
催化剂 | 制备方法 | 最佳反应温度/最佳脱硝 效率/最佳N2选择性 | 反应条件 | 参考 文献 |
---|---|---|---|---|
Pt/MnO x | 共沉淀法 | 100℃/64%/30% | 0.048mL/min NO,5%(体积分数)O2,He平衡,空速(GHSV)为78000h-1 | [ |
Pt/ZrO2 | 浸渍法 | 150℃/71%/75% | 0.2mL/min NO x,1mL/min H2,10%(体积分数)O2,N2为平衡气,温度60~280℃, 总流量200mL/min | [ |
Pt/MgO | 浸渍法 | 150℃/71.4%/62% | 0.2mL/min NO x,1mL/min H2,10%(体积分数)O2,N2为平衡气,温度60~280℃, 总流量200mL/min | [ |
Pt/Al2O3 | 浸渍法 | 91℃/88%/90% | 4.8mL/min NO,1vol% H2, 5vol% O2,N2为平衡气,温度20~350℃,总流量2400mL/min,GHSV为12000h-1 | [ |
Pt/Mg3Al1O x | 共沉淀法 | 200~220℃/92%/60% | 0.125mL/min NO x,0.5%~2%(体积分数)H2,0~10%(体积分数)O2,Ar为平衡气, 总流量200~300mL/min,GHSV为12000h-1 | [ |
Pt/Ce0.5Zr0.5O2 | 溶胶-凝胶法 | 120~220℃/92%/78% | 0.03mL/min NO,2.5%(体积分数)O2,0.8%(体积分数)H2,10%(体积分数)CO2,15%(体积分数)H2O,0.5%(体积分数)C3H6,总流量200mL/min,GHSV为33000h-1 | [ |
Pt/MgO-CeO2 | 湿浸渍法 | 150℃/94%/80% | 0.25%(摩尔分数)NO,1.0%(摩尔分数)H2,5%(摩尔分数)O2,He为平衡气体,总流量100mL/min,GHSV为80000h-1 | [ |
催化剂 | 制备方法 | 最佳反应温度/最佳脱硝 效率/最佳N2选择性 | 反应条件 | 参考 文献 |
---|---|---|---|---|
Pt/MnO x | 共沉淀法 | 100℃/64%/30% | 0.048mL/min NO,5%(体积分数)O2,He平衡,空速(GHSV)为78000h-1 | [ |
Pt/ZrO2 | 浸渍法 | 150℃/71%/75% | 0.2mL/min NO x,1mL/min H2,10%(体积分数)O2,N2为平衡气,温度60~280℃, 总流量200mL/min | [ |
Pt/MgO | 浸渍法 | 150℃/71.4%/62% | 0.2mL/min NO x,1mL/min H2,10%(体积分数)O2,N2为平衡气,温度60~280℃, 总流量200mL/min | [ |
Pt/Al2O3 | 浸渍法 | 91℃/88%/90% | 4.8mL/min NO,1vol% H2, 5vol% O2,N2为平衡气,温度20~350℃,总流量2400mL/min,GHSV为12000h-1 | [ |
Pt/Mg3Al1O x | 共沉淀法 | 200~220℃/92%/60% | 0.125mL/min NO x,0.5%~2%(体积分数)H2,0~10%(体积分数)O2,Ar为平衡气, 总流量200~300mL/min,GHSV为12000h-1 | [ |
Pt/Ce0.5Zr0.5O2 | 溶胶-凝胶法 | 120~220℃/92%/78% | 0.03mL/min NO,2.5%(体积分数)O2,0.8%(体积分数)H2,10%(体积分数)CO2,15%(体积分数)H2O,0.5%(体积分数)C3H6,总流量200mL/min,GHSV为33000h-1 | [ |
Pt/MgO-CeO2 | 湿浸渍法 | 150℃/94%/80% | 0.25%(摩尔分数)NO,1.0%(摩尔分数)H2,5%(摩尔分数)O2,He为平衡气体,总流量100mL/min,GHSV为80000h-1 | [ |
1 | SHENG Liping, MA Zhaoxia, CHEN Shiyuan, et al. Mechanistic insight into N2O formation during NO reduction by NH3 over Pd/CeO2 catalyst in the absence of O2 [J]. Chinese Journal of Catalysis, 2019, 40(7): 1070-1077. |
2 | FENG Shuo, LI Zhaoming, SHEN Boxing, et al. An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust[J]. J Environ Manage, 2022, 317: 115457. |
3 | 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(001). |
The Fourteenth Five-Year Plan for the national economic and social development of the People's Republic of China and the outline of the vision for 2035[N]. People's Daily, 2021-03-13(001). | |
4 | XU Haidi, LIN Qingjin, FENG Xi, et al. Grain size effect on the high-temperature hydrothermal stability of Cu/SAPO-34 catalysts for NH3-SCR[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 2213-3437. |
5 | VIVEK K P, SWETA S. Effect of oxide supports on palladium based catalysts for NO reduction by H2-SCR[J]. Catalysis Today, 2020, 375: 591-600. |
6 | YANG Shufang, WANG Xinping, CHU Wenling, et al. An investigation of the surface intermediates of H2-SCR of NO x over Pt/H-FER[J]. Applied Catalysis B: Environmental, 2011, 107 (3-4): 380-385. |
7 | 武鹏, 于青, 严晶晶, 等. 富氧条件下氢气选择催化还原氮氧化物研究的进展[J]. 催化学报, 2010, 31(8): 912-918. |
WU Peng, YU Qing, YAN Jingjing, et al. Research progress in selective catalytic reduction of nitrogen oxides with hydrogen under oxygen-enriched conditions[J]. Journal of Catalysis, 2010, 31(8): 912-918 | |
8 | KYUNGSEOK L, BYUNGCHUL C, CHUNBEOM L. Effects of SiO2/Al2O3 ratio, reaction atmosphere and metal additive on de-NO x performance of HC-SCR over Cu-based ZSM-5[J]. Journal of Industrial and Engineering Chemistry, 2020, 90: 132-144. |
9 | RAJBALA Bhatia Divesh. Crystallite-scale model for NO x reduction by hydrogen spillover on SBA-15 and MCM-41[J]. Catalysis Today, 2021, 360: 263-274. |
10 | DENG D, DENG S J, He D, et al. A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR[J]. Journal of Rare Earths, 2021, 39 (8): 969-978. |
11 | DENG Y Q, ZHANG T, AU C T, et al. Oxidation of p-chlorotoluene to p-chlorobenzaldehyde over manganese-based octahedral molecular sieves of different morphologies[J]. Catalysis Communications, 2014, 43: 126-130. |
12 | AGLIULLIN M R, KOLYAGIN Y G, SEREBRENNIKOV D V, et al. Acid properties and morphology of SAPO-11 molecular sieve controled by silica source[J]. Microporous and Mesoporous Materials, 2022, 338. |
13 | 刘东升, 邹志强, 姚成, 等. 低温氧化型过渡金属氧化物催化剂研究进展[J]. 化学工业与工程, 2010, 27(6): 556-564. |
LIU Dongsheng, ZHOU Zhiqiang, YAO Cheng, et al. Research progress of low temperature oxidative transition metal oxide catalysts[J]. Chemical Industry and Engineering, 2010, 27 (6): 556-564. | |
14 | YANG Chen, JIAO Qingrui, ZHAO Dong, et al. Promotion effect and mechanism of MnO doped CeO2 nano-catalyst for NH3-SCR[J]. Ceramics International, 2020, 46 (4): 4394-4401. |
15 | LIU Xuesong, JIANG Peng, CHEN Yong, et al. A basic comprehensive study on synergetic effects among the metal oxides in CeO2-WO3/TiO2 NH3-SCR catalyst[J]. Chemical Engineering Journal, 2020, 421: 1385-8947. |
16 | ZHANG Yihuan, HAO Cuicui, ZHANG Jia, et al. Ratio of adsorptive abilities for NH3 and NO x determined SCR activity of transition-metal catalyst[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635: 0927-7757. |
17 | MASAHIRO I, MAKOTO S, MASAHIKO T, et al. Influence of supported-metal characteristics on deNO x catalytic activity over Pt/CeO2 [J]. Journal of Molecular Catalysis A: Chemical, 2009, 304(1/2): 159-165. |
18 | LI Xinyan, ZHANG Xiaoxiao, XU Yongzhen, et al. Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts[J]. Chinese Journal of Catalysis, 2015, 36 (2): 197-203. |
19 | CHRISTOS M, KALAMARAS, GEORGE G, et al. Selective catalytic reduction of NO by H2/C3H6 over Pt/Ce1- x Zr x O2- δ : the synergy effect studied by transient techniques[J]. Applied Catalysis B: Environmental, 2017, 206: 308-318. |
20 | SUNG S K, SUNG C H. Relationship between the surface characteristics of Pt catalyst and catalytic performance on the H2 SCR[J]. Journal of Industrial and Engineering Chemistry, 2010, 16 (6): 992-996. |
21 | LIU Zhiming, LU Yunan, YUAN Lei, et al. Selective catalytic reduction of NO x with H2 over WO3 promoted Pt/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2016, 188: 189-197. |
22 | ZHANG Xiaoxiao, WANG Xinping, ZHAO Xiaojuan, et al. Promotion effect of tungsten on the activity of Pt/HZSM-5 for H2-SCR[J]. Chemical Engineering Journal, 2015, 260: 419-426. |
23 | HONG Xiaowei, Ye SUM, ZHU Tianle, et al. Promoting effect of TiO2 on the catalytic performance of Pt-Au/TiO2(x)-CeO2 for the co-oxidation of CO and H2 at room temperature[J]. Applied Surface Science, 2017, 396: 226-234. |
24 | SE M P, MI-YOUNG K, EUN S K, et al. H2-SCR of NO on Pt-MnO x catalysts: reaction path via NH3 formation[J]. Applied Catalysis A: General, 2011, 395 (1/2): 120-128. |
25 | YANG J I, HEON J. The effect of temperature on NO x reduction by H2 in the presence of excess oxygen on a Pt/Al2O3 monolithic catalyst[J]. Chemical Engineering Journal, 2009, 146 (1): 11-15. |
26 | ZHANG Cheng, GAO Yanshan, YAN Qinghua, et al. Fundamental investigation on layered double hydroxides derived mixed metal oxides for selective catalytic reduction of NO x by H2 [J]. Catalysis Today, 2020, 355: 450-457. |
27 | COSTAS N, EFSTATHION A M. Low-temperature H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2007, 72 (3/4): 240-252. |
28 | WANG Xinping, WANG Xuejing, YU Haibiao, et al. The functions of Pt located at different positions of HZSM-5 in H2-SCR[J]. Chemical Engineering Journal, 2019, 355: 470-477. |
29 | WU Peng, LIU Yunxia, ZHANG Fuxiang, et al. Influences of mesoporous structure on the NO+H2+O2 low temperature reaction over Pt/Si-MCM-41 catalyst[J]. Acta Physico-Chimica Sinica, 2008, 24 (3): 369-374. |
30 | WU Peng, LI Landong, YU Qing, et al. Study on Pt/Al-MCM-41 for NO selective reduction by hydrogen[J]. Catalysis Today, 2010, 158 (3/4): 228-234. |
31 | LI Landong, WU Peng, YU Qing, et al. Low temperature H2-SCR over platinum catalysts supported on Ti-containing MCM-41[J]. Applied Catalysis B: Environmental, 2010, 94 (3/4): 254-262. |
32 | YU Q, RICHTER M, KONG F X, et al. Selective catalytic reduction of NO by hydrogen over Pt/ZSM-35[J]. Catalysis Today, 2010, 158 (3/4): 452-458. |
33 | YU Q, RICHTER M, LI L D, et al. The promotional effect of Cr on catalytic activity of Pt/ZSM-35 for H2-SCR in excess oxygen[J]. Catalysis Communications, 2010, 11 (11): 955-959. |
34 | WU Yaohui, LIU Hao, LI Guoying, et al. Tuning composition on B sites of LaM0.5Mn0.5O3 (M = Cu, Co, Fe, Ni, Cr) perovskite catalysts in NO x efficient reduction[J]. Applied Surface Science, 2020, 508. |
35 | PAPP H, SABDE D P. An investigation on the mechanism of NO decomposition over Rh/SiO2 catalysts in presence of pulse injected H2 [J]. Applied Catalysis B: Environmental, 2005, 60 (1/2): 65-71 |
36 | BRIGITTA F, GERHARF E, ALBERT R. Kinetics and mechanism of the reduction of nitric oxides by H2 under lean-burn conditions on a Pt±Mo±Co/-Al2O3 catalyst[J]. Applied Catalysis B: Environmental, 2017. |
37 | ZHANG Xiaoxiao, WANG Xinping, ZHAO Xiaojuan, et al. An investigation on N2O formation route over Pt/HY in H2-SCR[J]. Chemical Engineering Journal, 2014, 252: 288-297. |
38 | GIORIA E, MARCHESINI F A, SOLDATI A, et al. Green synthesis of a Cu/SiO2 catalyst for efficient H2-SCR of NO[J]. Applied Sciences, 2019, 9(19): 4075. |
39 | COSTA C N, EFSTATHIOU A M. Mechanistic aspects of the H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst[J]. The Journal of Physical Chemistry C, 2007, 111: 3010-3020. |
40 | COSTAS N, COSTA P G S, JOSE L G, et al. Industrial H2-SCR of NO on a novel Pt/MgO-CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2007, 75 (3/4): 147-156. |
41 | HU Maocong, YAO Zhenhua, LI Lili, et al. Boron-doped graphene nanosheet-supported Pt: a highly active and selective catalyst for low temperature H2-SCR[J]. Nanoscale, 2018, 10 (21): 10203-10212. |
42 | SHIBATA J, HASHIMOTO M, SHIMIZU K, et al. Factors controlling activity and selectivity for SCR of NO by hydrogen over supported platinum catalysts[J]. The Journal of Physical Chemistry B, 2004, 108(47): 18327-18335. |
43 | JONG K G, HUN S J, BIN K S, et al. The role of Pt valence state and La doping on titanium supported Pt-La/TiO2 catalyst for selective catalytic reduction with H2 [J]. Applied Surface Science, 2023, 608. |
44 | PARK S M, JANG H G, KIM E S, et al. Incorporation of zirconia onto silica for improved Pt/SiO2 catalysts for the selective reduction of NO by H2 [J]. Applied Catalysis A: General, 2012, 427-428: 155-64. |
45 | SCHOTT F J P, BALLE P, ADLER J, et al. Reduction of NO x by H2 on Pt/WO3/ZrO2 catalysts in oxygen-rich exhaust[J]. Applied Catalysis B: Environmental, 2009, 87(1/2): 18-29. |
46 | LU Jianyi, ZHOU Zhiyong, ZHANG Hanzhi, et al. Influenced factors study and evaluation for SO2/SO3 conversion rate in SCR process[J]. Fuel, 2019, 245: 528-533. |
47 | OLSSON L, KARLSSON H. The beneficial effect of SO2 on platinum migration and NO oxidation over Pt containing monolith catalysts[J]. Catalysis Today, 2009, 147: S290-S294. |
48 | CORRO G, RAMON M, CARLOS V L. Promoting and inhibiting effect of SO2 on propane oxidation over Pt/Al2O3 [J]. Catalysis Communications, 2002, 3(11): 533-539. |
49 | DAWODY J, SKOGLUNDH M, OLSSON L, et al. Sulfur deactivation of Pt/SiO2, Pt/BaO/Al2O3, and BaO/Al2O3 NO x storage catalysts: influence of SO2 exposure conditions[J]. Journal of Catalysis, 2005, 234 (1): 206-218. |
50 | HAMZEHLOUYAN T, SAMPARA C S, LI J, et al. Kinetic study of adsorption and desorption of SO2 over γ-Al2O3 and Pt/γ-Al2O3 [J]. Applied Catalysis B: Environmental, 2016, 181: 587-598. |
51 | WAKITA H, KANI Y, UKAI K, et al. Effect of SO2 and H2O on CO preferential oxidation in H2-rich gas over Ru/Al2O3 and Pt/Al2O3 catalysts[J]. Applied Catalysis A: General, 2005, 283 (1-2): 53-61. |
52 | WILBURN M S, EPLING W S. SO2 adsorption and desorption characteristics of bimetallic Pd-Pt catalysts: Pd∶Pt ratio dependency[J]. Catalysis Today, 2019, 320: 11-19. |
53 | LANA I D, KARGE H G, GEORGE Z M. Dissociative adsorption of sulfur dioxide on γ-alumina investigated by TPD and mass spectrometry[J]. The Journal of Physical Chemistry, 1993, 97(30): 8005-8011. |
54 | DATTA A, CAVELL R G, TOWER R W, et al. Claus catalysis. 1. Adsorption of SO2 on the alumina catalyst studied by FTIR and EPR spectroscopy[J]. Journal of Physical Chemistry, 1985, 89(3): 443-449. |
55 | MIKHAIL Yu Smirnov, Kalinkin ALEXANDER V, Pashis ANDREI V, et al. Interaction of Al2O3 and CeO2 surfaces with SO2 and SO2 + O2 studied by X-ray photoelectron spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109(23): 11712–11719. |
56 | LIU Y, TURSUN M, Yu H, et al. Surface property and activity of Pt/Nb2O5-ZrO2 for selective catalytic reduction of NO by H2 [J]. Molecular Catalysis, 2019, 464: 22-28. |
57 | YOSHIDA H, YAZAWA Y, HATTORA T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion[J]. Catalysis Today, 2003, 87 (1/2/3/4): 19-28. |
58 | YOSHITERU Y N T, HISAO Y, SHIN K, et al. The support effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the acid strength of support materials[J]. Applied Catalysis A: General, 2002, 233 (1/2): 103-112. |
[1] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[2] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[3] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[4] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[5] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[6] | LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225. |
[7] | WANG Xing, ZHAO Zilong, ZHANG Xiaoshan, WANG Hongjie, DONG Wenyi, CHEN Huihui. Influence of preparation conditions of biochar-supported iron catalyst on its decomplexation of Ni-EDTA and iron-leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4831-4839. |
[8] | ZENG Junjian, ZHAO Jigang. Research progress of gold based mercury-free catalysts for acetylene hydrochlorination [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3589-3596. |
[9] | TANG Jinqiong, KONG Yong, SHEN Xiaodong. Advances in the synthesis and application of the carbide-derived carbons [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 791-802. |
[10] | ZHANG Yongxiang, WANG Delong, GUO Xiaoyan, SHAO Huaiqi. Structure and performance of CrO x /Ti-Al2O3 catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5879-5886. |
[11] | CHEN Zhiqiang, CHE Chunxia, WU Dengfeng, WEN He, HAN Wei, ZHANG Feng, XU Haoxiang, CHENG Daojian. Advances in catalysts for selective hydrogenation of acetylene [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5390-5405. |
[12] | DAI Xiaojun, CHENG Yan, WANG Xiaohan, HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress in the synthesis of small particle-size SAPO-11 molecular sieves [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 191-203. |
[13] | ZHANG Wenhui, HUA Rui, QI Suitao. Research progress of low temperature Fischer-Tropsch synthetic wax oil hydrocracking refining technology [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 81-87. |
[14] | DING Xin, ZHANG Dongming, JIAO Weizhou, LIU Youzhi. Research progress of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4918-4930. |
[15] | ZENG Maozhu, SHE Yuqi, HU Yubin, WU Linjun, YUAN Manjing, QI Yi, WANG Huan, LIN Xuliang, QIN Yanlin. Progress in preparation and application of lignin porous carbon [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |