Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (4): 1811-1821.DOI: 10.16085/j.issn.1000-6613.2022-1062
• Industrial catalysis • Previous Articles Next Articles
WANG Jia1(), PENG Chong2(), TANG Lei1, LU Anhui1()
Received:
2022-06-06
Revised:
2022-09-30
Online:
2023-05-08
Published:
2023-04-25
Contact:
PENG Chong, LU Anhui
通讯作者:
彭冲,陆安慧
作者简介:
王嘉(1997—),女,博士研究生,研究方向为渣油加氢。E-mail:jiajiawang@mail.dlut.edu.cn。
基金资助:
CLC Number:
WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821.
王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1062
1 | ZHU Huihong, MAO Zhiwei, LIU Bin, et al. Regulating catalyst morphology to boost the stability of Ni-Mo/Al2O3 catalyst for ebullated-bed residue hydrotreating[J]. Green Energy & Environment, 2021, 6(2): 283-290. |
2 | Victor GARCIA-MONTOTO, VERDIER Sylvain, MAROUN Zeina, et al. Understanding the removal of V, Ni and S in crude oil atmospheric residue hydrodemetallization and hydrodesulfurization[J]. Fuel Processing Technology, 2020, 201: 106341. |
3 | PENG Chong, LIU Bin, FENG Xiang, et al. Engineering dual bed hydrocracking catalyst towards enhanced high-octane gasoline generation from light cycle oil[J]. Chemical Engineering Journal, 2020, 389: 123461. |
4 | KOHLI K, PRAJAPATI R, MAITY Samir K, et al. Accelerated pre-coking of NiMo/γ-Al2O3 catalyst: Effect on the hydroprocessing activity of vacuum residue[J]. Fuel, 2019, 235: 437-447. |
5 | ZHANG Di, LIU Xinmei, LIU Yuxiang, et al. Impact of γ-alumina pore structure on structure and performance of Ni-Mo/γ-Al2O3 catalyst for 4,6-dimethyldibenzothiophene desulfurization[J]. Microporous and Mesoporous Materials, 2021, 310: 110637. |
6 | WANG Haiyan, LIU Shida, SMITH Kevin J. Understanding selectivity changes during hydrodesulfurization of dibenzothiophene on Mo2C/carbon catalysts[J]. Journal of Catalysis, 2019, 369: 427-439. |
7 | SALEH Tawfik A, SULAIMAN Kazeem O, AL-HAMMADI Saddam A. Effect of carbon on the hydrodesulfurization activity of MoCo catalysts supported on zeolite/active carbon hybrid supports[J]. Applied Catalysis B: Environmental, 2020, 263: 117661. |
8 | Dragana PROKIĆ-VIDOJEVIĆ, GLIŠIĆ Sandra B, KRSTIĆ Jugoslav B, et al. Aerogel Re/Pd-TiO2/SiO2 and Co/Mo-Al2O3/SiO2 catalysts for hydrodesulphurisation of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Catalysis Today, 2021, 378: 10-23. |
9 | WANG Youhe, KOU Long, LU Jinzhi, et al. One-step synthesis of egg-tray-like layered ordered macro-mesoporous SiO2-Al2O3 composites for enhanced hydrodesulfurization performance[J]. Microporous and Mesoporous Materials, 2021, 322: 111131. |
10 | VÁZQUEZ-SALAS P J, HUIRACHE-ACUÑA R, ZEPEDA T A, et al. Enhancement of dibenzothiophene hydrodesulphurization via hydrogenation route on NiMoW catalyst supported on HMS modified with Ti[J]. Catalysis Today, 2018, 305: 65-74. |
11 | ROY Teddy, ROUSSEAU Julie, DAUDIN Antoine, et al. Deep hydrodesulfurization of 4,6-dimethydibenzothiophene over CoMoS/TiO2 catalysts: Impact of the TiO2 treatment[J]. Catalysis Today, 2021, 377: 17-25. |
12 | ONFROY Thomas, LI Wencui, Ferdi SCHÜTH, et al. Surface chemistry of carbon-templated mesoporous aluminas[J]. Physical Chemistry Chemical Physics, 2009, 11(19): 3671-3679. |
13 | WANG Fei, MA Jinzhu, XIN Shaohui, et al. Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance[J]. Nature Communications, 2020, 11: 529. |
14 | WANG Yi, HUANG Bin, XU Jing, et al. Hydroxyl groups promoted Ag dispersion and excellent performance of Ag/Al2O3 catalyst for HCHO oxidation[J]. Catalysis Letters, 2021, 151(8): 2376-2683. |
15 | KWAK Jahun, HU Jianzhi, MEI Donghai, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on gamma-Al2O3 [J]. Science, 2009, 325(5948): 1670-1673. |
16 | LI Mingfeng, LI Huifeng, JIANG Feng, et al. Effect of surface characteristics of different alumina on metal-support interaction and hydrodesulfurization activity[J]. Fuel, 2009, 88(7): 1281-1285. |
17 | SAKASHITA Yukio, ARAKI Yasuhiro, SHIMADA Hiromichi. Effects of surface orientation of alumina supports on the catalytic functionality of molybdenum sulfide catalysts[J]. Applied Catalysis A: General, 2001, 215(1/2): 101-110. |
18 | SAKASHITA Y, YONEDA T. Orientation of MoS2 clusters supported on two kinds of γ-Al2O3 single crystal surfaces with different indices[J]. Journal of Catalysis, 1999, 185(2): 487-495. |
19 | BARA Cédric, Anne-Félicie LAMIC-HUMBLOT, FONDA Emiliano, et al. Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016, 344: 591-605. |
20 | CAO Jing, XIA Jing, ZHANG Yicen, et al. Influence of the alumina crystal phase on the performance of CoMo/Al2O3 catalysts for the selective hydrodesulfurization of fluid catalytic cracking naphtha[J]. Fuel, 2021, 289: 119843. |
21 | WANG Xilong, ZHAO Zhen, ZHENG Peng, et al. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Journal of Catalysis, 2016, 344: 680-691. |
22 | WANG Xilong, FAN Jiyuan, ZHAO Zhen, et al. Hydro-upgrading performance of fluid catalytic cracking diesel over different crystal forms of alumina-supported CoMo catalysts[J]. Energy & Fuels, 2017, 31(7): 7456-7463. |
23 | ZHANG Minghui, FAN Jiyuan, CHI Kebin, et al. Synthesis, characterization, and catalytic performance of NiMo catalysts supported on different crystal alumina materials in the hydrodesulfurization of diesel[J]. Fuel Processing Technology, 2017, 156: 446-453. |
24 | ZHANG Cen, LI Ping, LIU Xinyi, et al. Morphology-performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2018, 556: 20-28. |
25 | ZHANG Cen, BRORSON Michael, LI Ping, et al. CoMo/Al2O3 catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2019, 570: 84-95. |
26 | Pablo TORRES-MANCERA, RAYO Patricia, ANCHEYTA Jorge, et al. Catalyst deactivation pattern along a residue hydrotreating bench-scale reactor[J]. Catalysis Today, 2014, 220/221/222: 153-158. |
27 | GUICHARD Bertrand, GAULIER Florine, BARBIER Jérémie, et al. Asphaltenes diffusion/adsorption through catalyst alumina supports-Influence on catalytic activity[J]. Catalysis Today, 2018, 305: 49-57. |
28 | 隋宝宽, 施尧, 林见阳, 等.焙烧气氛和孔结构对加氢脱金属催化剂性能的影响[J]. 化工学报, 2021, 72(2): 993-1000. |
SUI Baokuan, SHI Yao, LIN Jianyang, et al. Impacts of calcination atmosphere and pore structure on performance of hydrodemetallization catalysts[J]. CIESC Journal, 2021, 72(2): 993-1000. | |
29 | ANCHEYTA Jorge, RANA Mohan S, FURIMSKY Edward. Hydroprocessing of heavy petroleum feeds: Tutorial[J]. Catalysis Today, 2005, 109(1/2/3/4): 3-15. |
30 | BADOGA Sandeep, SHARMA Rajesh V, DALAI Ajay K, et al. Synthesis and characterization of mesoporous aluminas with different pore sizes: Application in NiMo supported catalyst for hydrotreating of heavy gas oil[J]. Applied Catalysis A: General, 2015, 489: 86-97. |
31 | LIU Xinmei, LI Xiang, YAN Zifeng. Facile route to prepare bimodal mesoporous γ-Al2O3 as support for highly active CoMo-based hydrodesulfurization catalyst[J]. Applied Catalysis B: Environmental, 2012, 121/122: 50-56. |
32 | CHEN W, NIE H, LONG X, et al. Role of pore structure on the activity and stability of sulfide catalyst[J]. Catalysis Today, 2021, 377: 69-81. |
33 | SAPTIAMA Indra, KANETI Yusuf Valentino, SUZUKI Yoshitaka, et al. Template-free fabrication of mesoporous alumina nanospheres using post-synthesis water-ethanol treatment of monodispersed aluminium glycerate nanospheres for molybdenum adsorption[J]. Small, 2018, 14(21): 1800474. |
34 | GROEN Johan C, ZHU Weidong, BROUWER Sander, et al. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. Journal of the American Chemical Society, 2007, 129(2): 355-360. |
35 | ZHANG Di, LIU Weiqiang, LIU Yanan, et al. Pore confinement effect of MoO3/Al2O3 catalyst for deep hydrodesulfurization[J]. Chemical Engineering Journal, 2017, 330: 706-717. |
36 | 曹东炜. 渣油加氢脱金属催化剂的对比研究与改进[D]. 东营: 中国石油大学(华东), 2017. |
CAO Dongwei. Comparison and improvement of catalysts for residue hydrogenation[D]. Dongying: China University of Petroleum (East China), 2017. | |
37 | STANISLAUS Antony, Khalida AL-DOLAMA, Mamun ABSI-HALABI. Preparation of a large pore alumina-based HDM catalyst by hydrothermal treatment and studies on pore enlargement mechanism[J]. Journal of Molecular Catalysis A: Chemical, 2002, 181(1/2): 33-39. |
38 | LI Huifeng, LI Mingfeng, NIE Hong. Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst[J]. Microporous and Mesoporous Materials, 2014, 188: 30-36. |
39 | 曾双亲, 杨清河, 聂红, 等. 水热处理时间对氧化铝载体及加氢脱硫催化剂性能的影响[J]. 石油学报(石油加工), 2020, 36(5): 937-943. |
ZENG Shuangqin, YANG Qinghe, NIE Hong, et al. Effect of hydrothermal treatment duration on the performance of alumina support and catalytic activity in hydrodesulfurization[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2020, 36(5): 937-943. | |
40 | YUE Yuanyuan, LI Jiawei, DONG Peng, et al. From cheap natural bauxite to high-efficient slurry-phase hydrocracking catalyst for high temperature coal tar: A simple hydrothermal modification[J]. Fuel Processing Technology, 2018, 175: 123-130. |
41 | RÉOCREUX R, GIREL É, CLABAUT P, et al. Reactivity of shape-controlled crystals and metadynamics simulations locate the weak spots of alumina in water[J]. Nature Communications, 2019, 10(1): 3139. |
42 | GIREL Etienne, CABIAC Amandine, CHAUMONNOT Alexandra, et al. Selective carbon deposition on γ-alumina acid sites: Toward the design of catalyst supports with improved hydrothermal stability in aqueous media[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 13558-13567. |
43 | LIU Fang, OKOLIE Chukwuemeka, RAVENELLE Ryan M, et al. Silica deposition as an approach for improving the hydrothermal stability of an alumina support during glycerol aqueous phase reforming[J]. Applied Catalysis A: General, 2018, 551: 13-22. |
44 | MUKHAMBETOV Ildar N, EGOROVA Svetlana R, MUKHAMED’YAROVA Aliya N, et al. Hydrothermal modification of the alumina catalyst for the skeletal isomerization of n-butenes[J]. Applied Catalysis A: General, 2018, 554: 64-70. |
45 | 季洪海, 凌凤香, 王少军, 等. NH4HCO3水热改性对氧化铝载体结构与性质的影响[J]. 石油化工, 2019, 48(12): 1206-1211. |
JI Honghai, LING Fengxiang, WANG Shaojun, et al. The effect of NH4HCO3 hydrothermal modification on structure and properties of alumina support[J]. Petrochemical Technology, 2019, 48(12): 1206-1211. | |
46 | 汪佩华, 秦志峰, 吴琼笑, 等. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2021, 40(2): 890-900. |
WANG Peihua, QIN Zhifeng, WU Qiongxiao, et al. Effect of phosphorus adding manners on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 890-900. | |
47 | NADEINA K A, KAZAKOV M O, DANILOVA I G, et al. The influence of B and P in the impregnating solution on the properties of NiMo/γ-δ-Al2O3 catalysts for VGO hydrotreating[J]. Catalysis Today, 2019, 329: 2-12. |
48 | CHEN Wenbin, Francoise MAUGÉ, VAN GESTEL Jacob, et al. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts[J]. Journal of Catalysis, 2013, 304: 47-62. |
49 | VATUTINA Yu V, KLIMOV O V, NADEINA K A, et al. Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts[J]. Applied Catalysis B: Environmental, 2016, 199: 23-32. |
50 | ZHAO Ruiyu, LU Pingjuan, ZHAO Yuansheng, et al. Effect of phosphorus modification on the acidity, nanostructure of the active phase, and catalytic performance of residue hydrodenitrogenation catalysts[J]. ACS Omega, 2020, 5(30): 19111-19119. |
51 | RASHIDI Fereshteh, SASAKI Takehiko, RASHIDI Ali Morad, et al. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity[J]. Journal of Catalysis, 2013, 299: 321-335. |
52 | MAITY S K, ANCHEYTA J, RANA M S, et al. Effect of phosphorus on activity of hydrotreating catalyst of Maya heavy crude[J]. Catalysis Today, 2005, 109(1/2/3/4): 42-48. |
53 | 李会峰, 李明丰, 张乐, 等. 氟改性对不同钨物种在催化剂载体上分散及其加氢脱硫性能的影响[J]. 石油炼制与化工, 2019, 50(10): 1-7. |
LI Huifeng, LI Mingfeng, ZHANG Le, et al. Effect of fluorine modification on dispersion of different tungsten species on support and hydrodesulfurization performance[J]. Petroleum Processing and Petrochemicals, 2019, 50(10): 1-7. | |
54 | MARQUES Joao, GUILLAUME Denis, MERDRIGNAC Isabelle, et al. Effect of catalysts acidity on residues hydrotreatment[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 727-737. |
55 | HAN Wei, NIE Hong, LONG Xiangyun, et al. Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support Brønsted acidity on HDN activity[J]. Journal of Catalysis, 2016, 339: 135-142. |
56 | GUO Xingmei, SONG Maoning, ZHAO Xu, et al. Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1326-1333. |
57 | ZHANG Yanru, HAN Wei, LONG Xiangyun, et al. Redispersion effects of citric acid on CoMo/γ-Al2O3 hydrodesulfurization catalysts[J]. Catalysis Communications, 2016, 82: 20-23. |
58 | Perla CASTILLO-VILLALÓN, RAMIREZ Jorge, Antonio VARGAS-LUCIANO J. Analysis of the role of citric acid in the preparation of highly active HDS catalysts[J]. Journal of Catalysis, 2014, 320: 127-136. |
59 | PIMERZIN Aleksey, MOZHAEV Alexander, VARAKIN Andrey, et al. Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al2O3 hydrotreating catalysts[J]. Applied Catalysis B: Environmental, 2017, 205: 93-103. |
60 | CHEN Jianjun, DOMINGUEZ GARCIA Elizabeth, OLIVIERO Erwan, et al. Effect of high pressure sulfidation on the morphology and reactivity of MoS2 slabs on MoS2/Al2O3 catalyst prepared with citric acid[J]. Journal of Catalysis, 2016, 339: 153-162. |
61 | IWAMOTO Ryuichiro, KAGAMI Narinobu, SAKODA Yukihiro, et al. Effect of polyethylene glycol addition on NiO-MoO3/Al2O3 and NiO-MoO3-P2O5/Al2O3 hydrodesulfurization catalyst[J]. Journal of the Japan Petroleum Institute, 2005, 48(6): 351-357. |
62 | HAANDEL Lvan, BREMMER G M, HENSEN E J M, et al. Influence of sulfiding agent and pressure on structure and performance of CoMo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2016, 342: 27-39. |
63 | EIJSBOUTS S, VAN DEN OETELAAR L C A, VAN PUIJENBROEK R R. MoS2 morphology and promoter segregation in commercial Type 2 Ni-Mo/Al2O3 and Co-Mo/Al2O3 hydroprocessing catalysts[J]. Journal of Catalysis, 2005, 229(2): 352-364. |
64 | KOCHUBEY D I, BABENKO V P. Structure of MoS2-based catalysts for hydrodesulfurization prepared via exfoliation[J]. Reaction Kinetics and Catalysis Letters, 2002, 77: 237-243. |
65 | LIU Bin, CHAI Yongming, LI Yanpeng, et al. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. Applied Catalysis A: General, 2014, 471: 70-79. |
66 | OKAMOTO Yasuaki, HIOKA Kazuya, ARAKAWA Kenichi, et al. Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts: Local structure and intrinsic activity of the active sites[J]. Journal of Catalysis, 2009, 268(1): 49-59. |
67 | DUGULAN A I, HENSEN E J M, VAN VEEN J A R. High-pressure sulfidation of a calcined CoMo/Al2O3 hydrodesulfurization catalyst[J]. Catalysis Today, 2008, 130(1): 126-134. |
68 | CHEN W, LONG X, LI M, et al. Influence of active phase structure of CoMo/Al2O3 catalyst on the selectivity of hydrodesulfurization and hydrodearomatization[J]. Catalysis Today, 2017, 292: 97-109. |
69 | HE Shuisen, HUANG Tingting, FAN Yu. Tetradecylamine-induced assembly of Mo and Al precursors to prepare efficient NiMoS/Al2O3 catalysts for ultradeep hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2022, 317: 121801. |
70 | QI Lu, ZHENG Peng, ZHAO Zhen, et al. Insights into the intrinsic kinetics for efficient hydrodesulfurization of 4,6-dimethyldibenzothiophene over mesoporous CoMoS2/ZSM-5[J]. Journal of Catalysis, 2022, 408: 279-293. |
71 | Jorge RAMÍREZ, Perla CASTILLO-VILLALÓN, Aída GUTIÉRREZ-ALEJANDRE, et al. Interaction of different molecules with the hydrogenation and desulfurization sites of NiMoS supported particles with different morphology[J]. Catalysis Today, 2020, 353: 99-111. |
72 | LIU Zhiwei, HAN Wei, HU Dawei, et al. Effects of Ni-Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts[J]. Journal of Catalysis, 2020, 387: 62-72. |
73 | YUAN Hui, QIHERIMA, XU Guang-Tong, et al. Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy[J]. Chinese Chemical Letters, 2013, 24(12): 1041-1044. |
74 | Leticia ESPINOSA-ALONSO, BEALE Andrew M, WECKHUYSEN Bert M. Profiling physicochemical changes within catalyst bodies during preparation: New insights from invasive and noninvasive microspectroscopic studies[J]. Accounts of Chemical Research, 2010, 43(9): 1279-1288. |
75 | YANG Xuesong, WANG Shuai, ZHANG Kai, et al. Investigation of coke deposition inside catalyst with heterogeneous active component distribution[J]. Fuel, 2021, 287: 119547. |
76 | YU Ke, KONG Weimin, ZHAO Zhen, et al. Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over NiMo supported on yolk-shell silica catalysts with adjustable shell thickness and yolk size[J]. Journal of Catalysis, 2022, 410: 128-143. |
77 | JANG Min-Su, CHO Eui Hyun, Kee Young KOO, et al. Facile preparation of egg-shell-type pellet catalysts using immiscibility between hydrophobic solvent and hydrophilic solution: Enhancement of catalytic activity due to position control of metallic nickel inside alumina pellet[J]. Applied Catalysis A: General, 2017, 530: 211-216. |
78 | FRATALOCCHI Laura, VISCONTI Carlo Giorgio, LIETTI Luca, et al. Exploiting the effects of mass transfer to boost the performances of Co/γ-Al2O3 eggshell catalysts for the Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2016, 512: 36-42. |
79 | CHO Eunkyung, YU Yeon Jeong, KIM Youngji, et al. Egg-shell-type Ni supported on MgAl2O4 pellets as catalyst for steam methane reforming: Enhanced coke-resistance and pellet stability[J]. Catalysis Today, 2020, 352: 157-165. |
80 | KOHLI K, PRAJAPATI R, MAITY S K, et al. Deactivation of hydrotreating catalyst by metals in resin and asphaltene parts of heavy oil and residues[J]. Fuel, 2016, 175: 264-273. |
81 | DUARTE Liseth, Laura GARZÓN, BALDOVINO-MEDRANO Víctor Gabriel. An analysis of the physicochemical properties of spent catalysts from an industrial hydrotreating unit[J]. Catalysis Today, 2019, 338: 100-107. |
82 | OVALLES Cesar, ROGEL Estrella, MOIR Michael E, et al. Hydroprocessing of vacuum residues: Asphaltene characterization and solvent extraction of spent slurry catalysts and the relationships with catalyst deactivation[J]. Applied Catalysis A: General, 2017, 532: 57-64. |
83 | JIA Yanzi, YANG Qinghe, SUN Shuling, et al. The influence of metal deposits on residue hydrodemetallization catalysts in the absence and presence of coke[J]. Energy & Fuels, 2016, 30(4): 2544-2554. |
[1] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[2] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[3] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[4] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[5] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[6] | KONG Qian, SUN Jinchao, GE Jiaqi, ZHANG Peng, MA Yanlong, LIU Baijun. Effect of precipitant on the hydrocracking performance of NiW/TiO2-ASA catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 265-271. |
[7] | LIU Liang, WANG Zhaoxi, LI Xinlong, ZHANG Gaoshan, WANG Shouyang, ZHANG Linlin, LU Chang, QING Mengxia. Research progress on the improvement of vanadium and titanium denitrification catalysts against ammonium bisulfate poisoning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 215-225. |
[8] | GUO Zhenxue, YU Haibin, ZHANG Guohui, ZHANG Jingcheng, LU Yanfei, HE Yanzhen, SUN Yanmin, HAN Enshan. Effect of silica modification on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 210-220. |
[9] | WANG Xing, ZHAO Zilong, ZHANG Xiaoshan, WANG Hongjie, DONG Wenyi, CHEN Huihui. Influence of preparation conditions of biochar-supported iron catalyst on its decomplexation of Ni-EDTA and iron-leaching [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4831-4839. |
[10] | ZENG Junjian, ZHAO Jigang. Research progress of gold based mercury-free catalysts for acetylene hydrochlorination [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3589-3596. |
[11] | SONG Shaotong, LI Tianshu, JU Yana, LYU Zhongwu, WU Pei, SUN Changyu, DUAN Aijun. Effect of alumina on aromatization performance of FCC light gasoline [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2460-2467. |
[12] | TANG Jinqiong, KONG Yong, SHEN Xiaodong. Advances in the synthesis and application of the carbide-derived carbons [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 791-802. |
[13] | REN Kexin, LU Junhui, WANG Suilin, TANG Jinjing. Adsorption characteristics of CO2/H2O with low humidity [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6698-6710. |
[14] | ZHANG Yongxiang, WANG Delong, GUO Xiaoyan, SHAO Huaiqi. Structure and performance of CrO x /Ti-Al2O3 catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5879-5886. |
[15] | CHEN Zhiqiang, CHE Chunxia, WU Dengfeng, WEN He, HAN Wei, ZHANG Feng, XU Haoxiang, CHENG Daojian. Advances in catalysts for selective hydrogenation of acetylene [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5390-5405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |