Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3080-3092.DOI: 10.16085/j.issn.1000-6613.2023-0729
• Industrial catalysis • Previous Articles
FENG Zhanxiong1(), ZHANG Chuang1,2(), LIU Dezheng1, WANG Yun1, MA Qiang1, WANG Cheng2()
Received:
2023-05-04
Revised:
2023-08-28
Online:
2024-07-02
Published:
2024-06-15
Contact:
ZHANG Chuang, WANG Cheng
冯占雄1(), 张创1,2(), 刘德政1, 汪云1, 马强1, 王诚2()
通讯作者:
张创,王诚
作者简介:
冯占雄(1995—),女,硕士研究生,研究方向为催化剂的制备及电化学。E-mail: zhanxiongfeng@hbuas.edu.cn。
基金资助:
CLC Number:
FENG Zhanxiong, ZHANG Chuang, LIU Dezheng, WANG Yun, MA Qiang, WANG Cheng. Effect of different atmosphere heat treatment on the oxygen reduction performance of Pt/C catalysts prepared by continuous pipeline microwave technology[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3080-3092.
冯占雄, 张创, 刘德政, 汪云, 马强, 王诚. 不同气氛热处理对连续管道微波技术制备Pt/C催化剂氧还原性能的影响[J]. 化工进展, 2024, 43(6): 3080-3092.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0729
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(20% H2) | Pt | 48.5 |
Pt/C-300(20% H2) | Pt | 47.3 |
Pt/C-400(20% H2) | Pt | 46.5 |
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(20% H2) | Pt | 48.5 |
Pt/C-300(20% H2) | Pt | 47.3 |
Pt/C-400(20% H2) | Pt | 46.5 |
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(Air) | Pt | 49.2 |
Pt/C-300(Air) | Pt | 48.7 |
Pt/C-400(Air) | Pt | 48.1 |
检测样品 | 检测元素 | 质量分数/% |
---|---|---|
Pt/C-200(Air) | Pt | 49.2 |
Pt/C-300(Air) | Pt | 48.7 |
Pt/C-400(Air) | Pt | 48.1 |
1 | 孙世刚. 电催化纳米材料[M]. 北京: 化学工业出版社, 2018. |
SUN Shigang. Nanostructured electrocatalysts[M]. Beijing: Chemical Industry Press, 2018. | |
2 | KAMEL A A, REZK H, ABDELKAREEM M A. Enhancing the operation of fuel cell-photovoltaic-battery-supercapacitor renewable system through a hybrid energy management strategy[J]. International Journal of Hydrogen Energy, 2021, 46(8): 6061-6075. |
3 | 高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
GAO Weitao, LEI Yijie, ZHANG Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. | |
4 | CHEN C, KANG Y J, HUO Z Y, et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014, 343(6177): 1339-1343. |
5 | CUI C H, GAN L, HEGGEN M, et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis[J]. Nature Materials, 2013, 12(8): 765-771. |
6 | 侯明, 衣宝廉. 燃料电池的关键技术[J]. 科技导报, 2016, 34(6): 52-61. |
HOU Ming, YI Baolian. Fuel cell technologies for vehicle applications[J]. Science & Technology Review, 2016, 34(6): 52-61. | |
7 | ISLAM J, KIM S K, KIM K H, et al. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1133-1143. |
8 | MOHIDEEN M M, LIU Y, RAMAKRISHNA S. Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation[J]. Applied Energy, 2020, 257: 114027. |
9 | RAVICHANDRAN S, BHUVANENDRAN N, ZHANG W, et al. Comprehensive studies on the effect of reducing agents on electrocatalytic activity and durability of platinum supported on carbon support for oxygen reduction reaction[J]. Journal of Electrochemical Energy Conversion and Storage, 2020, 17(3): 031012. |
10 | NOSRATABADI S M, HEMMATI R, BORNAPOUR M, et al. Economic evaluation and energy/exergy analysis of PV/Wind/PEMFC energy resources employment based on capacity, type of source and government incentive policies: Case study in Iran[J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100963. |
11 | SHARMA R, ANDERSEN S M. An opinion on catalyst degradation mechanisms during catalyst support focused accelerated stress test (AST) for proton exchange membrane fuel cells (PEMFCs)[J]. Applied Catalysis B-Environmental, 2018, 239: 636-643. |
12 | AO Y J, CHEN K, LAGHROUCHE S, et al. Proton exchange membrane fuel cell degradation model based on catalyst transformation theory[J]. Fuel Cells, 2021, 21(3): 254-268. |
13 | LI B, WAN K C, XIE M, et al. Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack[J]. Applied Energy, 2022, 314: 119020. |
14 | KAKAEI K, ESRAFILI M D, EHSANI A. Oxygen reduction reaction[M]//Graphene surfaces: particles and catalysts. San Diego: Elsevier Academic Press Inc, 2019: 203-252. |
15 | 张创, 王诚, 汪云, 等. 一维/二维混合负载Pt催化剂的电化学性能[J]. 化工进展, 2017, 36(2): 573-580. |
ZHANG Chuang, WANG Cheng, WANG Yun, et al. High performance Pt electrocatalyst based on 1D-2D mixed materials[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 573-580. | |
16 | 杜泽学. 车用燃料电池关键材料技术研发应用进展[J]. 化工进展, 2021, 40(1): 6-20. |
DU Zexue. Application advances of manufacturing technology for key materials of vehicle fuel cell stack[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20. | |
17 | CHEREVKO S, KULYK N, MAYRHOFER K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum[J]. Nano Energy, 2016, 29: 275-298. |
18 | MEIER J C, GALEANO C, KATSOUNAROS I, et al. Design criteria for stable Pt/C fuel cell catalysts[J]. Beilstein Journal of Nanotechnology, 2014, 5: 44-67. |
19 | 王晓冉. 铂基三元催化剂的制备及催化氧还原性能研究[D]. 北京: 北京化工大学, 2020. |
WANG Xiaoran. Preparation and catalytic oxygen reduction performance of platinum based ternary catalysts[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
20 | DAUDT N F, POOZHIKUNNATH A, YU H, et al. Nano-sized Pt-NbO x supported on TiN as cost-effective electrocatalyst for oxygen reduction reaction[J]. Materials for Renewable and Sustainable Energy, 2020, 9(3): 1-17. |
21 | GHASEMI M, CHOI J, JU H. Performance analysis of Pt/TiO2/C catalyst using a multi-scale and two-phase proton exchange membrane fuel cell model[J]. Electrochimica Acta, 2021, 366: 137484. |
22 | PARK C, LEE E, LEE G, et al. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells [J]. Applied Catalysis B: Environmental, 2020, 268: 118414. |
23 | BAVISKAR V S, SALUNKHE D B, PATIL G P, et al. Effect of deposition time on photoelectrochemical performance of chemically grown Bi2Se3-sensitized TiO2 nanostructure solar cells[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(20): 17440-17450. |
24 | 冯占雄, 汪云, 马强, 等. 连续管道微波技术制备Pt/C催化剂及其氧还原性能[J] 化工进展, 2022, 41(12): 6377-6384. |
FENG Zhanxiong, WANG Yun, MA Qiang, et al. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6377-6384. | |
25 | MARDLE P, JI X, WU J, et al. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells[J]. Applied Catalysis B: Environmental, 2020, 260: 118031. |
26 | MOGHADAMESFAHANI R A, VANKOVA S K, EASTON E B, et al. A hybrid Pt/NbO/CNTs catalyst with high activity and durability for oxygen reduction reaction in PEMFC[J]. Renewable Energy, 2020, 154: 913-924. |
27 | VERMA S, SINHA-RAY S, SINHA-RAY S. Electrospun CNF supported ceramics as electrochemical catalysts for water splitting and fuel cell: A review[J]. Polymers, 2020, 12(1): 238. |
28 | WANG R R, CHANG Z, FANG Z W, et al. Pt nanowire/Ti3C2T x -CNT hybrids catalysts for the high performance oxygen reduction reaction for high temperature PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(52): 28190-28195. |
29 | JEN-HUI H, TSUNG-KUANG Y, MEI-YA W. Preparation of unique flower-like Pt-Ni alloy catalysts as the cathode of a PEMFC by electrodeposition technique[J]. ECS Transactions, 2020, 97(7): 627-638. |
30 | LETEBA G M, WANG Y C, SLATER T J A, et al. Oleylamine aging of PtNi nanoparticles giving enhanced functionality for the oxygen reduction reaction[J]. Nano Letters, 2021, 21(9): 3989-3996. |
31 | LIN R, CHE L, SHEN D, et al. High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis[J]. Electrochimica Acta, 2020, 330: 135251. |
32 | LIN R, SUN Y, CAI X, et al. Embedding Pt-Ni octahedral nanoparticles in the 3D nitrogen-doped porous graphene for enhanced oxygen reduction activity[J]. Electrochimica Acta, 2021, 391: 138956. |
33 | CHENG Q, YANG S, FU C, et al. High-loaded sub-6 nm Pt1Co1 intermetallic compounds with highly efficient performance expression in PEMFCs[J]. Energy & Environmental Science, 2022, 15(1): 278-286. |
34 | LIU Z, YIN Y, YANG D, et al. Efficient synthesis of Pt-Co nanowires as cathode catalysts for proton exchange membrane fuel cells[J]. RSC Advances, 2020, 10(11): 6287-6296. |
35 | LITKOHI H R, BAHARI A, GATABI M P. Improved oxygen reduction reaction in PEMFCs by functionalized CNTs supported Pt-M (M = Fe, Ni, Fe-Ni) bi- and tri-metallic nanoparticles as efficient electrocatalyst[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23543-23556. |
36 | YANG X, ZHANG G, DU L, et al. PGM-free Fe/N/C and ultralow loading Pt/C hybrid cathode catalysts with enhanced stability and activity in PEM fuel cells[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13739-13749. |
37 | DING C, MAO Z, LIANG J S, et al. Aqueous phase approach to Au-modified Pt-Co/C toward efficient and durable cathode catalyst of PEMFCs[J]. The Journal of Physical Chemistry C, 2021, 125(43): 23821-23829. |
38 | PARK Y M, KIM H J. Dataset on electrochemical stability and activity of Au-decorated Pt surface for oxygen reduction reaction in acidic media[J]. Data in Brief, 2020, 28: 104897. |
39 | RONDIYA S R, JADHAV C D, CHAVAN P G, et al. Enhanced field emission properties of Au/SnSe nano-heterostructure: A combined experimental and theoretical investigation[J]. Scientific Reports, 2020, 10(1): 1-10. |
[1] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
[2] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[3] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
[4] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[5] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[6] | HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775. |
[7] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[8] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[9] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[10] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
[11] | DING Sijia, JIANG Shujiao, YANG Zhanlin, PENG Shaozhong, JIANG Qianmin. Design of heavy oil hydrodenitrogenation catalysts based on hydrogenation performance determined by structure of nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2436-2448. |
[12] | ZHANG Bao, WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang. Design and experiment of fuel cell systems for marine application [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2554-2567. |
[13] | DUAN Xiang, TIAN Ye, DONG Wenwei, SONG Song, LI Xingang. Research progress on reaction networks and catalytic reaction mechanisms of phthalic anhydride synthesis [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2587-2599. |
[14] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[15] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |