1 |
FORSTER Piers M, SMITH Christopher J, WALSH Tristram, et al. Indicators of global climate change 2022: Annual update of large-scale indicators of the state of the climate system and human influence[J]. Earth System Science Data, 2023, 15(6): 2295-2327.
|
2 |
CHENG Lijing, ABRAHAM John, TRENBERTH Kevin E, et al. Another year of record heat for the oceans[J]. Advances in Atmospheric Sciences, 2023, 40(6): 963-974.
|
3 |
LAN Xin, TANS Pieter, KIRK Thoning. Trends in globally-averaged CO2 determined from NOAA Global Monitoring Laboratory measurements[EB/OL]. (2023-11-30) [2023-12-10]. .
|
4 |
LIN Qingyang, ZHANG Xiao, WANG Tao, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32.
|
5 |
DE Sudipta, DOKANIA Abhay, RAMIREZ Adrian, et al. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization[J]. ACS Catalysis, 2020, 10(23): 14147-14185.
|
6 |
KUMARAVEL Vignesh, BARTLETT John, PILLAI Suresh C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products[J]. ACS Energy Letters, 2020, 5(2): 486-519.
|
7 |
GAO Peng, ZHANG Lina, LI Shenggang, et al. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels[J]. ACS Central Science, 2020, 6(10): 1657-1670.
|
8 |
KALIYAPERUMAL Alamelu, GUPTA Pooja, PRASAD Yadavalli Satya Sivaram, et al. Recent progress and perspective of the electrochemical conversion of carbon dioxide to alcohols[J]. ACS Engineering Au, 2023, 3(6): 403-425.
|
9 |
GANJI Parameswaram, CHOWDARI Ramesh Kumar, LIKOZAR Blaž. Photocatalytic reduction of carbon dioxide to methanol: Carbonaceous materials, kinetics, industrial feasibility, and future directions[J]. Energy & Fuels, 2023, 37(11): 7577-7602.
|
10 |
MINYUKOVA Tatyana P, DOKUCHITS Eugene V. Hydrogen for CO2 processing in heterogeneous catalytic reactions[J]. International Journal of Hydrogen Energy, 2023, 48(59): 22462-22483.
|
11 |
SHIH Choon Fong, ZHANG Tao, LI Jinghai, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949.
|
12 |
DANG Shanshan, YANG Haiyan, GAO Peng, et al. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation[J]. Catalysis Today, 2019, 330: 61-75.
|
13 |
ZHONG Jiawei, YANG Xiaofeng, WU Zhilian, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413.
|
14 |
ROY Soumyabrata, CHEREVOTAN Arjun, PETER Sebastian C. Thermochemical CO2 hydrogenation to single carbon products: Scientific and technological challenges[J]. ACS Energy Letters, 2018, 3(8): 1938-1966.
|
15 |
BAI Shaotao, DE SMET Gilles, LIAO Yuhe, et al. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions[J]. Chemical Society Reviews, 2021, 50(7): 4259-4298.
|
16 |
MURTHY Pradeep S, LIANG Weibin, JIANG Yijiao, et al. Cu-based nanocatalysts for CO2 hydrogenation to methanol[J]. Energy & Fuels, 2021, 35(10): 8558-8584.
|
17 |
VIEIRA Luiz H, RASTEIRO Letícia F, SANTANA Cássia S, et al. Noble metals in recent developments of heterogeneous catalysts for CO2 conversion processes[J]. ChemCatChem, 2023, 15(14): e202300493.
|
18 |
LIANG Binglian, MA Junguo, SU Xiong, et al. Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 9030-9037.
|
19 |
WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290.
|
20 |
YANG Chengsheng, PEI Chunlei, LUO Ran, et al. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol[J]. Journal of the American Chemical Society, 2020, 142(46): 19523-19531.
|
21 |
MARTIN Oliver, MARTÍN Antonio J, MONDELLI Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265.
|
22 |
LI Huazheng, QIU Chenglong, REN Shoujie, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels[J]. Science, 2020, 367(6478): 667-671.
|
23 |
SONOWAL Karanika, NANDAL Neha, BASYACH Purashri, et al. Photocatalytic reduction of CO2 to methanol using Zr(Ⅳ)-based MOF composite with g-C3N4 quantum dots under visible light irradiation[J]. Journal of CO2 Utilization, 2022, 57: 101905.
|
24 |
WANG Fei, WEI Min, EVANS David G, et al. CeO2-based heterogeneous catalysts toward catalytic conversion of CO2 [J]. Journal of Materials Chemistry A, 2016, 4(16): 5773-5783.
|
25 |
CHANG Kuan, ZHANG Haochen, CHENG Mu-jeng, et al. Application of ceria in CO2 conversion catalysis[J]. ACS Catalysis, 2020, 10(1): 613-631.
|
26 |
ZHANG Sai, TIAN Zhimin, MA Yuanyuan, et al. Adsorption of molecules on defective CeO2 for advanced catalysis[J]. ACS Catalysis, 2023, 13(7): 4629-4645.
|
27 |
GRACIANI Jesús, MUDIYANSELAGE Kumudu, XU Fang, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 [J]. Science, 2014, 345(6196): 546-550.
|
28 |
HUANG Weixin, GAO Yuxian. Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals[J]. Catalysis Science & Technology, 2014, 4(11): 3772-3784.
|
29 |
TROVARELLI Alessandro, LLORCA Jordi. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis?[J]. ACS Catalysis, 2017, 7(7): 4716-4735.
|
30 |
MA Yuanyuan, GAO Wei, ZHANG Zhiyun, et al. Regulating the surface of nanoceria and its applications in heterogeneous catalysis[J]. Surface Science Reports, 2018, 73(1): 1-36.
|
31 |
LI Ping, CHEN Xiaoyin, LI Yongdan, et al. A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control[J]. Catalysis Today, 2019, 327: 90-115.
|
32 |
HUANG Xiubing, ZHANG Kaiyue, PENG Baoxiang, et al. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis[J]. ACS Catalysis, 2021, 11(15): 9618-9678.
|
33 |
VIVIER Laurence, DUPREZ Daniel. Ceria-based solid catalysts for organic chemistry[J]. ChemSusChem, 2010, 3(6): 654-678.
|
34 |
LI Ge, WANG Ping, HE Miao, et al. Cerium-based nanomaterials for photo/electrocatalysis[J]. Science China Chemistry, 2023, 66(8): 2204-2220.
|
35 |
CAI Jun, LI Danyang, JIANG Lei, et al. Review on CeO2-based photocatalysts for photocatalytic reduction of CO2: Progresses and perspectives[J]. Energy & Fuels, 2023, 37(7): 4878-4897.
|
36 |
WANG Jianda, XIAO Xiao, LIU Yong, et al. The application of CeO2-based materials in electrocatalysis[J]. Journal of Materials Chemistry A, 2019, 7(30): 17675-17702.
|
37 |
YU Jun, DU Xinjuan, LIU Hongzhi, et al. Mini review on active sites in Ce-based electrocatalysts for alkaline water splitting[J]. Energy & Fuels, 2021, 35(23): 19000-19011.
|
38 |
MONTINI Tiziano, MELCHIONNA Michele, MONAI Matteo, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041.
|
39 |
SINGH Rajan, PANDEY Vaibhav, PANT Kamal Kishore. Promotional role of oxygen vacancy defects and Cu-Ce interfacial sites on the activity of Cu/CeO2 catalyst for CO2 hydrogenation to methanol[J]. ChemCatChem, 2022, 14(24): e202201053.
|
40 |
GAO Peng, LI Feng, ZHAO Ning, et al. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2013, 468: 442-452.
|
41 |
SINGH Rajan, TRIPATHI Komal, PANT Kamal Kishore. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation[J]. Fuel, 2021, 303: 121289.
|
42 |
WANG Weiwei, QU Zhenping, SONG Lixin, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction[J]. Journal of Energy Chemistry, 2020, 40: 22-30.
|
43 |
FAN Liping, ZHANG Jing, MA Kexin, et al. Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate[J]. Journal of Catalysis, 2021, 397: 116-127.
|
44 |
XIE Yu, CHEN Jianjun, WU Xi, et al. Frustrated Lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts[J]. ACS Catalysis, 2022, 12(17): 10587-10602.
|
45 |
ZHANG Sai, XIA Zhaoming, ZOU Yong, et al. Interfacial frustrated Lewis pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates[J]. Journal of the American Chemical Society, 2019, 141(29): 11353-11357.
|
46 |
LIU Bin, LI Congming, ZHANG Guoqiang, et al. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods[J]. ACS Catalysis, 2018, 8(11): 10446-10456.
|
47 |
ZHANG Wei, MA Xuelu, XIAO Hai, et al. Mechanistic investigations on thermal hydrogenation of CO2 to methanol by nanostructured CeO2(100): The crystal-plane effect on catalytic reactivity[J]. The Journal of Physical Chemistry C, 2019, 123(18): 11763-11771.
|
48 |
KUMARI Neetu, HAIDER M ALI, AGARWAL Manish, et al. Role of reduced CeO2(110) surface for CO2 reduction to CO and methanol[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16626-16635.
|
49 |
SCHMITT Rafael, NENNING Andreas, KRAYNIS Olga, et al. A review of defect structure and chemistry in ceria and its solid solutions[J]. Chemical Society Reviews, 2020, 49(2): 554-592.
|
50 |
GUO Chen, WEI Shuxian, ZHOU Sainan, et al. Initial reduction of CO2 on Pd-, Ru-, and Cu-doped CeO2(111) surfaces: Effects of surface modification on catalytic activity and selectivity[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26107-26117.
|
51 |
Marçal CAPDEVILA-CORTADA, Gianvito VILÉ, TESCHNER Detre, et al. Reactivity descriptors for ceria in catalysis[J]. Applied Catalysis B: Environmental, 2016, 197: 299-312.
|
52 |
ZHANG Yang, ZHAO Shuna, FENG Jing, et al. Unraveling the physical chemistry and materials science of CeO2-based nanostructures[J]. Chem., 2021, 7(8): 2022-2059.
|
53 |
JIANG Feng, WANG Shanshan, LIU Bing, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis, 2020, 10(19): 11493-11509.
|
54 |
OUYANG Bi, TAN Weiling, LIU Bing. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation[J]. Catalysis Communications, 2017, 95: 36-39.
|
55 |
WEI Yuechang, ZHANG Yilin, ZHANG Peng, et al. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts[J]. Environmental Science & Technology, 2020, 54(3): 2002-2011.
|
56 |
WANG Zheng, HUANG Zhenpeng, BROSNAHAN John T, et al. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion[J]. Environmental Science & Technology, 2019, 53(9): 5349-5358.
|
57 |
WERNER Kristin, WENG Xuefei, CALAZA Florencia, et al. Toward an understanding of selective alkyne hydrogenation on ceria: On the impact of O vacancies on H2 interaction with CeO2(111)[J]. Journal of the American Chemical Society, 2017, 139(48): 17608-17616.
|
58 |
WANG Zhiqiang, CHU Deren, ZHOU Hui, et al. Role of low-coordinated Ce in hydride formation and selective hydrogenation reactions on CeO2 surfaces[J]. ACS Catalysis, 2022, 12(1): 624-632.
|
59 |
WANG Zhiqiang, LIU Huihui, WU Xinping, et al. Hydride generation on the Cu-doped CeO2(111) surface and its role in CO2 hydrogenation reactions[J]. Catalysts, 2022, 12(9): 963.
|
60 |
LEE Jaeha, TIEU Peter, FINZEL Jordan, et al. How Pt influences H2 reactions on high surface-area Pt/CeO2 powder catalyst surfaces[J]. JACS Au, 2023, 3(8): 2299-2313.
|
61 |
AZHARI Noerma J, ERIKA Denanti, MARDIANA St, et al. Methanol synthesis from CO2: A mechanistic overview[J]. Results in Engineering, 2022, 16: 100711.
|
62 |
ZHAO Yafan, YANG Yong, MIMS Charles, et al. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O[J]. Journal of Catalysis, 2011, 281(2): 199-211.
|
63 |
LIU Lingna, YAO Hedan, JIANG Zhao, et al. Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface[J]. Applied Surface Science, 2018, 451: 333-345.
|
64 |
NIE Xiaowa, JIANG Xiao, WANG Haozhi, et al. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol[J]. ACS Catalysis, 2018, 8(6): 4873-4892.
|
65 |
WU Wenlong, WANG Yanan, LUO Lei, et al. CO2 hydrogenation over copper/ZnO single-atom catalysts: Water-promoted transient synthesis of methanol[J]. Angewandte Chemie, 2022, 134(48): e202213024.
|
66 |
JIANG Lei, LI Kongzhai, PORTER William N, et al. Role of H2O in catalytic conversion of C1 molecules[J]. Journal of the American Chemical Society, 2024, 146(5): 2857-2875.
|
67 |
WANG Hao, ZHANG Guangcheng, FAN Guoli, et al. Fabrication of Zr-Ce oxide solid solution surrounded Cu-based catalyst assisted by a microliquid film reactor for efficient CO2 hydrogenation to produce methanol[J]. Industrial & Engineering Chemistry Research, 2021, 60(45): 16188-16200.
|
68 |
NIE Mengdong, CUI Aixin, WU Man, et al. CuO/LaCeO x catalysts with enhanced metal-support interactions for CO2 methanolization[J]. Journal of CO2 Utilization, 2023, 75: 102579.
|
69 |
MALIK Ali Shan, ZAMAN Sharif F, AL-ZAHRANI Abdulrahim A, et al. Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Applied Catalysis A: General, 2018, 560: 42-53.
|
70 |
REZVANI Azita, ABDEL-MAGEED Ali M, ISHIDA Tamao, et al. CO2 reduction to methanol on Au/CeO2 catalysts: Mechanistic insights from activation/deactivation and SSITKA measurements[J]. ACS Catalysis, 2020, 10(6): 3580-3594.
|
71 |
TAN Qingqing, SHI Zhisheng, WU Dongfang. CO2 hydrogenation over differently morphological CeO2-supported Cu-Ni catalysts[J]. International Journal of Energy Research, 2019, 43(10): 5392-5404.
|
72 |
PASUPULETY Nagaraju, DRISS Hafedh, RAFIQUI Mohammed Raoof A, et al. Methanol synthesis using CO2 and H2 on nano silver-ceria zirconia catalysts: Influence of preparation method[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(6): 3197-3204.
|
73 |
CHENG Zhuo, SHERMAN Brent J, Cynthia S LO. Carbon dioxide activation and dissociation on ceria(110): A density functional theory study[J]. The Journal of Chemical Physics, 2013, 138(1): 014702.
|
74 |
MURAVEV Valery, PARASTAEV Alexander, VAN DEN BOSCH Yannis, et al. Size of cerium dioxide support nanocrystals dictates reactivity of highly dispersed palladium catalysts[J]. Science, 2023, 380(6650): 1174-1179.
|
75 |
CHOI Eun Jeong, LEE Yong Hee, LEE Dae-Won, et al. Hydrogenation of CO2 to methanol over Pd-Cu/CeO2 catalysts[J]. Molecular Catalysis, 2017, 434: 146-153.
|
76 |
OJELADE Opeyemi A, ZAMAN Sharif F, DAOUS Muhammad A, et al. Optimizing Pd: Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2019, 584: 117185.
|
77 |
TAN Qingqing, SHI Zhisheng, WU Dongfang. CO2 hydrogenation to methanol over a highly active Cu-Ni/CeO2-nanotube catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10148-10158.
|
78 |
WU Congyi, CHENG Danyang, WANG Meng, et al. Understanding and application of strong metal-support interactions in conversion of CO2 to methanol: A review[J]. Energy & Fuels, 2021, 35(23): 19012-19023.
|
79 |
ZHU Jiadong, SU Yaqiong, CHAI Jiachun, et al. Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2 [J]. ACS Catalysis, 2020, 10(19): 11532-11544.
|
80 |
VOURROS A, GARAGOUNIS I, KYRIAKOU V, et al. Carbon dioxide hydrogenation over supported Au nanoparticles: Effect of the support[J]. Journal of CO2 Utilization, 2017, 19: 247-256.
|
81 |
RASTEIRO Letícia F, DE SOUSA Rafael A, VIEIRA Luiz H, et al. Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: An experimental and DFT study[J]. Applied Catalysis B: Environmental, 2022, 302: 120842.
|
82 |
YANG Xiaofang, KATTEL Shyam, SENANAYAKE Sanjaya D, et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeO x /TiO2 interface[J]. Journal of the American Chemical Society, 2015, 137(32): 10104-10107.
|
83 |
ABDEL-MAGEED Ali M, KLYUSHIN Alexander, REZVANI Azita, et al. Negative charging of Au nanoparticles during methanol synthesis from CO2/H2 on a Au/ZnO catalyst: Insights from operando IR and near-ambient-pressure XPS and XAS measurements[J]. Angewandte Chemie International Edition, 2019, 58(30): 10325-10329.
|
84 |
CHANG Shuai, NA Wei, ZHANG Jiaqi, et al. Effect of the Zn/Ce ratio in Cu/ZnO-CeO2 catalysts on CO2 hydrogenation for methanol synthesis[J]. New Journal of Chemistry, 2021, 45(48): 22814-22823.
|
85 |
LI Shaozhong, GUO Limin, ISHIHARA Tatsumi. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst[J]. Catalysis Today, 2020, 339: 352-361.
|
86 |
ZHANG Jingpeng, SUN Xiaohang, WU Congyi, et al. Engineering Cu+/CeZrO x interfaces to promote CO2 hydrogenation to methanol[J]. Journal of Energy Chemistry, 2023, 77: 45-53.
|
87 |
SHI Zhisheng, TAN Qingqing, WU Dongfang. Ternary copper-cerium-zirconium mixed metal oxide catalyst for direct CO2 hydrogenation to methanol[J]. Materials Chemistry and Physics, 2018, 219: 263-272.
|
88 |
ZABILSKIY Maxim, MA Kaibo, BECK Arik, et al. Methanol synthesis over Cu/CeO2-ZrO2 catalysts: The key role of multiple active components[J]. Catalysis Science & Technology, 2021, 11(1): 349-358.
|
89 |
WANG Weiwei, QU Zhenping, SONG Lixin, et al. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1- x Zr x O2 catalyst for CO2 hydrogenation to CH3OH[J]. Journal of Energy Chemistry, 2020, 47: 18-28.
|
90 |
NIE Mengdong, GUO Tuo, QIANG Fangyuan, et al. Effect of Mn content in CuO/MnCeO x catalysts on CO2 hydrogenation for methanol synthesis[J]. Reaction Chemistry & Engineering, 2023, 8(6): 1383-1394.
|
91 |
YAN Yong, WONG Roong Jien, MA Zhirui, et al. CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts[J]. Applied Catalysis B: Environmental, 2022, 306: 121098.
|
92 |
LI Shaozhong, WANG Yu, YANG Bin, et al. A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2019, 571: 51-60.
|
93 |
ATTADA Yerrayya, VELISOJU Vijay Kumar, MOHAMED Hend Omar, et al. Dual experimental and computational approach to elucidate the effect of Ga on Cu/CeO2-ZrO2 catalyst for CO2 hydrogenation[J]. Journal of CO2 Utilization, 2022, 65: 102251.
|
94 |
MA Nana, CHENG Weiyi, WEI Changgeng, et al. Mechanism of methanol synthesis from CO2 on Cu/CeO2 and Cu/W-CeO2: A DFT investigation into the nature of W-doping[J]. Journal of Materials Chemistry A, 2024, 12(4): 2323-2334.
|
95 |
RODRIGUEZ José A, LIU Ping, GRACIANI Jesús, et al. Inverse oxide/metal catalysts in fundamental studies and practical applications: A perspective of recent developments[J]. The Journal of Physical Chemistry Letters, 2016, 7(13): 2627-2639.
|
96 |
SENANAYAKE Sanjaya D, STACCHIOLA Dario, RODRIGUEZ Jose A. Unique properties of ceria nanoparticles supported on metals: Novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction[J]. Accounts of Chemical Research, 2013, 46(8): 1702-1711.
|
97 |
KAPIAMBA Kashala Fabrice, OTOR Hope O, VIAMAJALA Sridhar, et al. Inverse oxide/metal catalysts for CO2 hydrogenation to methanol[J]. Energy & Fuels, 2022, 36(19): 11691-11711.
|
98 |
SENANAYAKE Sanjaya D, RAMÍREZ Pedro J, WALUYO Iradwikanari, et al. Hydrogenation of CO2 to methanol on CeO x /Cu(111) and ZnO/Cu(111) catalysts: Role of the metal-oxide interface and importance of Ce3+ sites[J]. The Journal of Physical Chemistry C, 2016, 120(3): 1778-1784.
|
99 |
MONCADA Jorge, CHEN Xiaobo, DENG Kaixi, et al. Structural and chemical evolution of an inverse CeO x /Cu catalyst under CO2 hydrogenation: Tunning oxide morphology to improve activity and selectivity[J]. ACS Catalysis, 2023, 13(23): 15248-15258.
|
100 |
LOU Yang, JIANG Feng, ZHU Wen, et al. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol[J]. Applied Catalysis B: Environmental, 2021, 291: 120122.
|
101 |
ZHENG Ke, LI Yufeng, LIU Bing, et al. Ti-doped CeO2 stabilized single-atom rhodium catalyst for selective and stable CO2 hydrogenation to ethanol[J]. Angewandte Chemie International Edition, 2022, 61(44): e202210991.
|
102 |
CHEN Jie, ZHA Yajun, LIU Bing, et al. Rationally designed water enriched nano reactor for stable CO2 hydrogenation with near 100% ethanol selectivity over diatomic palladium active sites[J]. ACS Catalysis, 2023, 13(10): 7110-7121.
|