Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2386-2395.DOI: 10.16085/j.issn.1000-6613.2024-0102
• Clean and efficient utilization of fossil energy • Previous Articles
GUI Xin1(), CHEN Huiyong1, BAI Boyang2, JIA Yongliang1, MA Xiaoxun1(
)
Received:
2024-01-14
Revised:
2024-03-17
Online:
2024-06-15
Published:
2024-05-15
Contact:
MA Xiaoxun
桂鑫1(), 陈汇勇1, 白柏杨2, 贾永梁1, 马晓迅1(
)
通讯作者:
马晓迅
作者简介:
桂鑫(1998—),女,硕士研究生,研究方向为煤焦油催化加氢。E-mail:18834162858@163.com。
基金资助:
CLC Number:
GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395.
桂鑫, 陈汇勇, 白柏杨, 贾永梁, 马晓迅. Mo掺杂改性NiC/Al-MCM-41的芘催化加氢性能[J]. 化工进展, 2024, 43(5): 2386-2395.
样品 | 比表面积(BET) /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
Al-MCM-41 | 897.1 | 1.5 | 5.8 |
NiC/Al-MCM-41 | 281.5 | 0.7 | 7.9 |
NiMoC/Al-MCM-41 | 152.2 | 0.5 | 8.4 |
样品 | 比表面积(BET) /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
Al-MCM-41 | 897.1 | 1.5 | 5.8 |
NiC/Al-MCM-41 | 281.5 | 0.7 | 7.9 |
NiMoC/Al-MCM-41 | 152.2 | 0.5 | 8.4 |
样品 | 比表面积(BET) /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
NiMoC/Al-MCM-41 | 152.2 | 0.5 | 8.4 |
失活的NiMoC/Al-MCM-41 | 69.3 | 0.2 | 2.6 |
样品 | 比表面积(BET) /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
---|---|---|---|
NiMoC/Al-MCM-41 | 152.2 | 0.5 | 8.4 |
失活的NiMoC/Al-MCM-41 | 69.3 | 0.2 | 2.6 |
1 | 古丽娜尔·图尔逊, 李国峰. 煤焦油中芳烃化合物催化加氢机理研究进展[J]. 合成材料老化与应用, 2021, 50(3): 141-143. |
GULNAR Tursen, LI Guofeng. Research progress in catalytic hydrogenation of aromatic compounds in coal tar[J]. Synthetic Materials Aging and Application, 2021, 50(3): 141-143. | |
2 | FU Wenqian, ZHANG Lei, WU Dongfang, et al. Mesoporous zeolite-supported metal sulfide catalysts with high activities in the deep hydrogenation of phenanthrene[J]. Journal of Catalysis, 2015, 330: 423-433. |
3 | 马雪飞, 李宗鸿, 肖植煌, 等. 有机液体储运氢技术经济分析与比较[J]. 现代化工, 2022, 42(6): 202-205, 210. |
MA Xuefei, LI Zonghong, XIAO Zhihuang, et al. Techno-economic analysis and comparison of liquid organic hydrogen carrier system[J]. Modern Chemical Industry, 2022, 42(6): 202-205, 210. | |
4 | LIU Daocheng, CHEN Yu, JING Jieying, et al. Synthesis of Ni/NiAlO x catalysts for hydrogenation saturation of phenanthrene[J]. Frontiers in Chemistry, 2021, 9: 757908. |
5 | ZHANG Minghui, SONG Qingyun, HE Zexing, et al. Tuning the mesopore-acid-metal balance in Pd/HY for efficient deep hydrogenation saturation of naphthalene[J]. International Journal of Hydrogen Energy, 2022, 47(48): 20881-20893. |
6 | WANG Enhua, HU Di, XIAO Chengkun, et al. Highly dispersed Pt on core-shell micro-mesoporous composites assembled by mordenite nanocrystals for selective hydrogenation of polycyclic aromatics[J]. Fuel, 2023, 331: 125852. |
7 | JACQUIN Mélanie, JONES Deborah J, Jacques ROZIÈRE, et al. Novel supported Rh, Pt, Ir and Ru mesoporous aluminosilicates as catalysts for the hydrogenation of naphthalene[J]. Applied Catalysis A: General, 2003, 251(1): 131-141. |
8 | HAO Jing, ZHANG Guofeng, ZHENG Yiteng, et al. Controlled synthesis of Ni3C/nitrogen-doped carbon nanoflakes for efficient oxygen evolution[J]. Electrochimica Acta, 2019, 320: 134631. |
9 | WANG Hao, CAO Yingjie, ZOU Guifu, et al. High-performance hydrogen evolution electrocatalyst derived from Ni3C nanoparticles embedded in a porous carbon network[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 60-64. |
10 | ANDRÉ Rémi F, MEYNIEL Léna, CARENCO Sophie. Nickel carbide (Ni3C) nanoparticles for catalytic hydrogenation of model compounds in solvent[J]. Catalysis Science & Technology, 2022, 12(14): 4572-4583. |
11 | XIONG Kun, LI Li, ZHANG Li, et al. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance[J]. Journal of Materials Chemistry A, 2015, 3(5): 1863-1867. |
12 | OUYANG Ting, YE Yaqian, WU Chunyan, et al. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting[J]. Angewandte Chemie International Edition, 2019, 58(15): 4923-4928. |
13 | SHEN Zhibing, FU Rao, ZHANG Shangli, et al. Selective hydrogenation of polycyclic aromatics to monocyclic aromatics over NiMoC/Hβ catalysts in a methane and hydrogen environment[J]. China Petroleum Processing and Petrochemical Technology, 2023, 25(2): 92-100. |
14 | JIANG Chenguang, WANG Yonggang, ZHANG Haiyong, et al. Effect of PDADMAC with different molecular weight regulating Hβ Properties on hydrogenation performance of NiMoC/Hβ catalysts[J]. Fuel Processing Technology, 2021, 213: 106704. |
15 | CHEN Wenbin, Francoise MAUGÉ, VAN GESTEL Jacob, et al. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts[J]. Journal of Catalysis, 2013, 304: 47-62. |
16 | ITO Koki, KOGASAKA Yoshifumi, KUROKAWA Hideki, et al. Preliminary study on mechanism of naphthalene hydrogenation to form decalins via tetralin over Pt/TiO2 [J]. Fuel Processing Technology, 2002, 79(1): 77-80. |
17 | JIANG Chenguang, WANG Yonggang, ZHANG Haiyong, et al. Effect of initial Si/Al ratios on the performance of low crystallinity Hβ-x zeolite supported NiMo carbide catalysts for aromatics hydrogenation[J]. Catalysis Science & Technology, 2019, 9(18): 5031-5044. |
18 | USMAN Muhammad, LI Dan, RAZZAQ Rauf, et al. Novel MoP/HY catalyst for the selective conversion of naphthalene to tetralin[J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 21-26. |
19 | TAGHVAEI Hamed, MOADDELI Ali, Ali KHALAFF-NEZHAD, et al. Catalytic hydrodeoxygenation of lignin pyrolytic-oil over Ni catalysts supported on spherical Al-MCM-41 nanoparticles: Effect of Si/Al ratio and Ni loading[J]. Fuel, 2021, 293: 120493. |
20 | KORRE Styliani C, KLEIN Michael T, QUANN Richard J. Polynuclear aromatic hydrocarbons hydrogenation. 1. Experimental reaction pathways and kinetics[J]. Industrial & Engineering Chemistry Research, 1995, 34(1): 101-117. |
21 | MENG Fanyu, ZHANG Shule, ZHANG Mingjia, et al. The mechanism of Ce-MCM-41 catalyzed peroxone reaction into ·OH and ·O 2 - radicals for enhanced NO oxidation[J]. Molecular Catalysis, 2022, 518: 112110. |
22 | QIN Jing, LI Baoshan, ZHANG Wen, et al. Synthesis, characterization and catalytic performance of well-ordered mesoporous Ni-MCM-41 with high nickel content[J]. Microporous and Mesoporous Materials, 2015, 208: 181-187. |
23 | HAN Guihong, ZHAO Jing, YANG Ze, et al. Facile hydrothermal synthesis and enhanced electrochemical properties of a layered NiSiO/RGO nanocomposite with an interesting dandelion-like structure[J]. Dalton Transactions, 2021, 50(39): 13756-13767. |
24 | HUANG Ting, SHEN Tao, GONG Mingxing, et al. Ultrafine Ni-B nanoparticles for efficient hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2019, 40(12): 1867-1873. |
25 | JIANG Jing, LIU Qiuxia, ZENG Chunmei, et al. Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. Journal of Materials Chemistry A, 2017, 5(32): 16929-16935. |
26 | HUANG Xiaoyu, ZHANG Wei, PENG Yaowei, et al. A multifunctional layered nickel silicate nanogenerator of synchronous oxygen self-supply and superoxide radical generation for hypoxic tumor therapy[J]. ACS Nano, 2022, 16(1): 974-983. |
27 | WANG Pengyan, QIN Rui, JI Pengxia, et al. Synergistic coupling of Ni nanoparticles with Ni3C nanosheets for highly efficient overall water splitting[J]. Small, 2020, 16(37): 2001642. |
28 | DOUKKALI M EI, PAUL S, DUMEIGNIL F. New insights in single-step hydrodeoxygenation of glycerol to propylene by coupling rational catalyst design with systematic analysis[J]. Applied Catalysis B: Environmental, 2023, 324: 122280. |
29 | SU Xiaoping, AN Pu, GAO Junwen, et al. Selective catalytic hydrogenation of naphthalene to tetralin over a Ni-Mo/Al2O3 catalyst[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2566-2576. |
30 | HUANG Guan, SUN Zhichao, YU Zhiquan, et al. Supported Ni2P catalysts derived from nickel phyllosilicate with enhanced hydrodesulfurization performance[J]. Journal of Catalysis, 2023, 419: 37-48. |
31 | El‑AHWANY Omnia M, AWADALLAH Ahmed E, ABDEL-AZIM Samira M, et al. Chemical vapor deposition synthesis of high-quality Ni3C/GNPs composite material: Effect of growth time on the yield, morphology and adsorption behavior of metal ions[J]. Chemical Papers, 2022, 76(3): 1579-1592. |
32 | 王悦燚, 王婧, 贾永梁, 等. 硫化钼催化剂用于催化多环芳烃芘的加氢反应[J]. 煤炭转化, 2023, 46(6): 1-11. |
WANG Yueyi, WANG Jing, JIA Yongliang, et al. Molybdenum sulfide catalyst for hydrogenation of PAHs pyrene[J]. Coal Conversion, 2023, 46(6): 1-11. | |
33 | LI Kang, ZHU Jianfeng, XU Zhanwei, et al. Tremella-like Mo and N codoped graphitic nanosheets by in situ carbonization of phthalocyanine for potassium-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30583-30593. |
34 | LU Xinyu, GUO Haoquan, CHEN Jiajia, et al. Selective catalytic transfer hydrogenation of lignin to alkyl guaiacols over NiMo/Al-MCM-41[J]. ChemSusChem, 2022, 15(7): e202200099. |
35 | 陈秀莹, 谢慧琳, 胡文斌, 等. MCM-41负载Pt-Al催化剂的制备及其表征[J]. 化工学报, 2018, 69(S1): 72-79. |
CHEN Xiuying, XIE Huilin, HU Wenbin, et al. Preparation and characterization of MCM-41 supported Pt-Al catalysts[J]. CIESC Journal, 2018, 69(S1): 72-79. | |
36 | GUO Haoquan, ZHAO Jiwu, CHEN Yu, et al. Mechanistic insights into hydrodeoxygenation of lignin derivatives over Ni single atoms supported on Mo2C[J]. ACS Catalysis, 2024, 14(2): 703-717. |
37 | CHEN Changzhou, LIU Peng, XIA Haihong, et al. Catalytic conversion of lignin to liquid fuels with an improved H/Ceff value over bimetallic NiMo-MOF-derived catalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13937-13952. |
38 | CHEN Tingsheng, YANG Wenyi, DU Zhenyi, et al. Effects of mesopore introduction on the stability of zeolites for 4-iso-propylphenol dealkylation[J]. Catalysis Today, 2021, 371: 40-49. |
[1] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[2] | WANG Bing, WANG Lei, HUANG Xinru, YUAN Hongpeng, LAI Xiaojuan, LI Peng. Synthesis and performance test of an acid and alkali resistant high strength resin [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1992-2000. |
[3] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
[4] | WANG Hongyan, MA Ziran, LI Ge, MA Jing, ZHAO Chunlin, ZHOU Jiali, WANG Lei, PENG Shengpan. Research progress in synergistic catalytic elimination of multiple pollutants in flue gas of coal combustion coupled with renewable fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1783-1795. |
[5] | CHEN Jiayi, GAO Weitao, YIN Yanan, WANG Cheng, OUYANG Hongwu, MAO Zongqiang. Preparation of PEMFC catalysts by electrodeposition [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1796-1809. |
[6] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[7] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
[8] | GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850. |
[9] | GAO Fei, LIU Zhisong, PAN Keke, LIU Minmin, DAI Bin, DAN Jianming, YU Feng. Vermiculite-supported FeCe bimetallic catalyst for selective catalytic reduction of NO with CO [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1851-1862. |
[10] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[11] |
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai.
Research progress in the catalytic hydrodealkylation of C |
[12] | GU Xingpeng, MA Hongqin, LIU Jiahao. Modification of Rainey nickel with phosphorus quantum dots and its catalytic hydrodesulfurization performances [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1293-1301. |
[13] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[14] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[15] | LI Weijie, KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping. Selective hydrogenation of methyl 3-hydroxypropionate over zirconium-modified Cu/SiO2 catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1328-1341. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 429
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |