Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1328-1341.DOI: 10.16085/j.issn.1000-6613.2023-0477
• Industrial catalysis • Previous Articles
LI Weijie(), KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping()
Received:
2023-03-28
Revised:
2023-06-05
Online:
2024-04-11
Published:
2024-03-10
Contact:
ZHU Hongping
李伟杰(), 康金灿, 张传明, 林丽娜, 李昌鑫, 朱红平()
通讯作者:
朱红平
作者简介:
李伟杰(1998—),男,硕士研究生,研究方向为多相催化。E-mail:weijieli@stu.xmu.edu.cn。
基金资助:
CLC Number:
LI Weijie, KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping. Selective hydrogenation of methyl 3-hydroxypropionate over zirconium-modified Cu/SiO2 catalysts[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1328-1341.
李伟杰, 康金灿, 张传明, 林丽娜, 李昌鑫, 朱红平. 锆改性Cu/SiO2催化剂催化3-羟基丙酸甲酯选择性加氢[J]. 化工进展, 2024, 43(3): 1328-1341.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0477
催化剂 | Cu质量分数/% | Zr质量分数/% | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | Cu粒径①/nm | Cu粒径②/nm |
---|---|---|---|---|---|---|---|
30Cu/SiO2 | 31.0 | 0 | 295.3 | 6.0 | 0.43 | 5.5 | 5.4 |
30Cu-0.1Zr/SiO2 | 31.0 | 0.10 | 311.5 | 5.7 | 0.45 | 5.8 | 5.8 |
30Cu-0.25Zr/SiO2 | 29.9 | 0.24 | 336.3 | 5.4 | 0.46 | 5.7 | 5.6 |
30Cu-0.5Zr/SiO2 | 30.9 | 0.50 | 358.6 | 5.1 | 0.46 | 5.2 | 4.9 |
30Cu-1Zr/SiO2 | 29.6 | 0.97 | 341.6 | 5.3 | 0.45 | 5.5 | 5.4 |
30Cu-2Zr/SiO2 | 29.5 | 1.89 | 326.7 | 5.7 | 0.46 | 5.8 | 6.1 |
30Cu/ZrO2③ | 29.3 | 50.2 | 19.5 | 21.0 | 0.10 | 18.7 | — |
ZrO2 | 0 | 75.1 | 5.8 | 9.4 | 0.02 | — | — |
催化剂 | Cu质量分数/% | Zr质量分数/% | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 | Cu粒径①/nm | Cu粒径②/nm |
---|---|---|---|---|---|---|---|
30Cu/SiO2 | 31.0 | 0 | 295.3 | 6.0 | 0.43 | 5.5 | 5.4 |
30Cu-0.1Zr/SiO2 | 31.0 | 0.10 | 311.5 | 5.7 | 0.45 | 5.8 | 5.8 |
30Cu-0.25Zr/SiO2 | 29.9 | 0.24 | 336.3 | 5.4 | 0.46 | 5.7 | 5.6 |
30Cu-0.5Zr/SiO2 | 30.9 | 0.50 | 358.6 | 5.1 | 0.46 | 5.2 | 4.9 |
30Cu-1Zr/SiO2 | 29.6 | 0.97 | 341.6 | 5.3 | 0.45 | 5.5 | 5.4 |
30Cu-2Zr/SiO2 | 29.5 | 1.89 | 326.7 | 5.7 | 0.46 | 5.8 | 6.1 |
30Cu/ZrO2③ | 29.3 | 50.2 | 19.5 | 21.0 | 0.10 | 18.7 | — |
ZrO2 | 0 | 75.1 | 5.8 | 9.4 | 0.02 | — | — |
催化剂 | XPS结合能/eV | XAES动能/eV | |||
---|---|---|---|---|---|
Cu2p1/2 | Cu2p3/2 | Cu+ | Cu0 | ||
30Cu | 952.3 | 932.2 | 914.0 | 918.0 | 38.2 |
30Cu-0.1Zr | 952.3 | 932.2 | 914.0 | 918.0 | 41.2 |
30Cu-0.25Zr | 952.5 | 932.4 | 914.0 | 918.0 | 42.2 |
30Cu-0.5Zr | 952.6 | 932.5 | 914.0 | 918.0 | 49.2 |
30Cu-1Zr | 952.5 | 932.5 | 914.0 | 918.0 | 45.2 |
30Cu-2Zr | 952.6 | 932.7 | 914.0 | 918.0 | 44.9 |
30Cu/ZrO2 | 953.0 | 933.0 | 914.0 | 918.0 | 44.7 |
催化剂 | XPS结合能/eV | XAES动能/eV | |||
---|---|---|---|---|---|
Cu2p1/2 | Cu2p3/2 | Cu+ | Cu0 | ||
30Cu | 952.3 | 932.2 | 914.0 | 918.0 | 38.2 |
30Cu-0.1Zr | 952.3 | 932.2 | 914.0 | 918.0 | 41.2 |
30Cu-0.25Zr | 952.5 | 932.4 | 914.0 | 918.0 | 42.2 |
30Cu-0.5Zr | 952.6 | 932.5 | 914.0 | 918.0 | 49.2 |
30Cu-1Zr | 952.5 | 932.5 | 914.0 | 918.0 | 45.2 |
30Cu-2Zr | 952.6 | 932.7 | 914.0 | 918.0 | 44.9 |
30Cu/ZrO2 | 953.0 | 933.0 | 914.0 | 918.0 | 44.7 |
1 | 杨金纯, 郭盈. PTT纤维的研究现状与应用前景[J]. 天津纺织科技, 2004, 42(4): 6-10. |
YANG Jinchun, GUO Ying. PTT fibers’ present situation of research and prospect of applications[J]. Tianjin Textile Science & Technology, 2004, 42(4): 6-10. | |
2 | LEE Byeong No, CHEN Byung Soon. Process for preparing 1,3-alkanediol from epoxide derivative: EP1122235[P]. 2002-12-11. |
3 | 朱红平, 赵金波, 洪永顺, 等. 一种有机金属催化剂及使用其制备3-羟基丙酸酯的方法: CN114345414A[P]. 2022-04-15. |
ZHU Hongping, ZHAO Jinbo, HONG Yongshun, et al. A method for preparing 3-hydroxypropionic ester using an organometallic catalyst: CN114345414A[P]. 2022-04-15. | |
4 | 赖恩义, 周雨婷, 李伟杰, 等. 3-羟基丙酸甲酯加氢合成1,3-丙二醇反应的热力学计算[J]. 厦门大学学报(自然科学版), 2023, 62(1): 31-38. |
LAI Enyi, ZHOU Yuting, LI Weijie, et al. Thermodynamic calculation of the synthesis of 1,3-propanediol by hydrogenation of methyl 3-hydroxypropionate[J]. Journal of Xiamen University (Natural Science), 2023, 62(1): 31-38. | |
5 | GONG Jinlong, YUE Hairong, ZHAO Yujun, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society, 2012, 134(34): 13922-13925. |
6 | ZHENG Jianwei, HUANG Lele, CUI Cunhao, et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2 [J]. Science, 2022, 376(6590): 288-292. |
7 | YANG Wenting, LI Antai, YANG Youwei, et al. Low-temperature hydrogenation of methyl acetate to ethanol over a Manganese-modified Cu/SiO2 catalyst[J]. Industrial & Engineering Chemistry Research, 2022, 61(32): 11718-11726. |
8 | FORSCHNER T C, WEIDER P R, SLAUGH L H, et al. Process for preparing 1,3-propanediol from methyl 3 -hydroxypropionate: US6191321[P]. 2001-02-20. |
9 | FORSCHNER T C, POWELL J B, SLAUGH L H, et al. Process for preparing 1,3-propanediol from methyl 3 -hydroxypropionate: WO0018712[P]. 2000-04-06. |
10 | 李秉鲁, 张银珠, 李正浩, 等. 由3-羟基酯制备1,3 -链烷二醇的方法: CN1355160A[P]. 2002-06-26. |
LEE Byeong No, JANG Eun Joo, LEE Jung Ho. Method for preparation of 1,3-alkamediol by 3-carboxy ester: CN1355160A[P]. 2002-06-26. | |
11 | LEE Byeong No, LEE Jung Ho, JANG Eun Joo, et al. Process for preparing 1,3-alkandiols from 3-hydroxyesters, EP 1211234[P]. 2002-06-05. |
12 | 冯看卡. 3-羟基丙酸甲酯加氢制1,3-丙二醇研究[D]. 青岛: 青岛科技大学, 2008. |
FENG Kanka. Study on the hydrogenation of methyl 3-hydroxypropionate to 1,3-propanediol[D]. Qingdao: Qingdao University of Science & Technology, 2008. | |
13 | YING Yuzhou, FENG Kanka, Zhiguo LYU, et al. Study on nano copper-based catalysts for the hydrogenation of methyl 3-hydroxypropionate to 1,3-propanediol[J]. Surface Review and Letters, 2009, 16(3): 343-349. |
14 | 巩亚. 3-羟基丙酸甲酯催化加氢制备1,3-丙二醇研究[D]. 上海: 复旦大学, 2012. |
GONG Ya. Study on catalytic hydrogenation of methyl 3-hydroxypropionate to 1,3-propanediol[D]. Shanghai: Fudan University, 2012. | |
15 | 赖恩义. 掺杂负载型金属催化剂及其3-HMP催化加氢性能研究[D]. 厦门: 厦门大学, 2021. |
LAI Enyi. Study on catalytic hydrogenation of methyl 3-hydroxypropionate over dopping supported metal catalysts[D]. Xiamen: Xiamen University, 2021. | |
16 | REN Zhiheng, YOUNIS M N, ZHAO Hui, et al. Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1612-1622. |
17 | ZHAO Yujun, SHAN Bin, WANG Yue, et al. An effective CuZn-SiO2 bimetallic catalyst prepared by hydrolysis precipitation method for the hydrogenation of methyl acetate to ethanol[J]. Industrial & Engineering Chemistry Research, 2018, 57(13): 4526-4534. |
18 | YU Xue, ZHU Wanchun, GAO Shuang, et al. Transformation of ethanol to ethyl acetate over Cu/SiO2 catalysts modified by ZrO2 [J]. Chemical Research in Chinese Universities, 2013, 29(5): 986-990. |
19 | WANG Denghao, ZHANG Chuancai, ZHU Mingyuan, et al. Highly active and stable ZrO2-SiO2-supported Cu-catalysts for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. ChemistrySelect, 2017, 2(17): 4823-4829. |
20 | ZHAO Yujun, ZHANG Huanhuan, XU Yuxi, et al. Interface tuning of Cu+/Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst[J]. Journal of Energy Chemistry, 2020, 49: 248-256. |
21 | 徐晨阳, 常苏杰, 吴涛, 等. Cu-xZrO2/SiO2改性催化剂对醋酸甲酯制乙醇性能的影响[J]. 天然气化工(C1化学与化工), 2020, 45(5): 47-52. |
XU Chenyang, CHANG Sujie, WU Tao, et al. Effect of Cu-xZrO2/SiO2 modified catalyst on the performance of methyl acetate to ethanol[J]. Natural Gas Chemical Industry, 2020, 45(5): 47-52. | |
22 | LI Feng, LU Chunshan, LI Xiaonian. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters, 2014, 25(11): 1461-1465. |
23 | YIN Anyuan, GUO Xiuying, DAI Weilin, et al. Highly active and selective copper-containing HMS catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Applied Catalysis A: General, 2008, 349(1/2): 91-99. |
24 | ZHAO Yujun, ZHANG Yaqing, WANG Yue, et al. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation[J]. Applied Catalysis A: General, 2017, 539: 59-69. |
25 | HUANG Zhiwei, CUI Fang, XUE Jingjing, et al. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16104-16113. |
26 | VAN DER GRIFT C J G, ELBERSE P A, MULDER A, et al. Preparation of silica-supported copper-catalysts by means of deposition-precipitation[J]. Applied Catalysis, 1990, 59(1): 275-289. |
27 | 李竹霞, 钱志刚, 赵秀阁, 等. 草酸二甲酯加氢Cu/SiO2催化剂前体的研究[J]. 华东理工大学学报(自然科学版), 2004, 30(6): 613-617. |
LI Zhuxia, QIAN Zhigang, ZHAO Xiuge, et al. Research on the precursor of catalyst Cu/SiO2 for hydrogenation of dimethyl oxalate[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2004, 30(6): 613-617. | |
28 | TOUPANCE T, KERMAREC M, LOUIS C. Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments[J]. The Journal of Physical Chemistry B, 2000, 104(5): 965-972. |
29 | VAN DER GRIFT C J G, WIELERS A F H, JOGH B P J, et al. Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles[J]. Journal of Catalysis, 1991, 131(1): 178-189. |
30 | JIANG Jiawei, TU Cheng-Chieh, CHEN Chaohuang, et al. Highly selective silica-supported copper catalysts derived from copper phyllosilicates in the hydrogenation of adipic acid to 1,6-hexanediol[J]. ChemCatChem, 2018, 10(23): 5449-5458. |
31 | 杨文龙, 赵玉军, 王胜平, 等. 铜硅催化剂中层状硅酸铜的形成过程[J]. 化学工业与工程, 2016, 33(1): 1-5. |
YANG Wenlong, ZHAO Yujun, WANG Shengping, et al. Formation of copper phyllosilicate in silica supported copper catalyst[J]. Chemical Industry and Engineering, 2016, 33(1): 1-5. | |
32 | 谢璇. 醋酸甲酯加氢制乙醇的研究[D]. 上海: 上海师范大学, 2013. |
XIE Xuan. Study on hydrogenation of methyl acetate to ethanol[D]. Shanghai: Shanghai Normal University, 2013. | |
33 | SHU Guoqiang, MA Kui, TANG Siyang, et al. Highly selective hydrogenation of diesters to ethylene glycol and ethanol on aluminum-promoted CuAl/SiO2 catalysts[J]. Catalysis Today, 2019, 368, 173-180. |
34 | KIM Dohyung, RESASCO J, YU Yi, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles[J]. Nature Communications, 2014, 5(1): 4948. |
35 | ZHAO Yujun, LI Siming, WANG Yue, et al. Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chemical Engineering Journal, 2017, 313: 759-768. |
36 | YAO Dawei, WANG Yue, LI Ying, et al. A high-performance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres[J]. ACS Catalysis, 2018, 8(2): 1218-1226. |
37 | WANG, Yue, LIAO Junyu, ZHANG Jian, et al. Hydrogenation of methyl acetate to ethanol by Cu/ZnO catalyst encapsulated in SBA-15[J]. AIChE Journal, 2017, 63(7): 2839-2849. |
38 | XU Yuxi, KONG Lingxin, HUANG Huijiang, et al. Promotional effect of indium on Cu/SiO2 catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Catalysis Science & Technology, 2021, 11(20): 6854-6865. |
39 | 刘淑芝, 徐培强, 李瑞达. 助剂La对Ni/γ-Al2O3催化剂加氢性能的影响[J]. 青岛科技大学学报(自然科学版), 2016, 37(4): 388-391. |
LIU Shuzhi, XU Peiqiang, LI Ruida. Effect of La on Ni/γ-Al2O3 catalyst in benzene hydrogenation[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2016, 37(4): 388-391. | |
40 | HUANG Ying, ARIGA H, ZHENG Xinlei, et al. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2013, 307: 74-83. |
41 | MARCHI A J, FIERRO J L G, SANTAMARÍA J, et al. Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: A study of the activity evolution and reactivation of the catalyst[J]. Applied Catalysis A: General, 1996, 142(2): 375-386. |
42 | CHEN Liangfeng, GUO Pingjun, QIAO Minghua, et al. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2008, 257(1): 172-180. |
43 | RESENDE K A, TELES C A, JACOBS Gary, et al. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance[J]. Applied Catalysis B: Environmental, 2018, 232: 213-231. |
44 | ZHENG Xinlei, LIN Haiqiang, ZHENG Jianwei, et al. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catalysis, 2013, 3(12): 2738-2749. |
45 | SHAO Yuewen, SUN Kai, LI Qingyin, et al. Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1,4-pentanediol[J]. Green Chemistry, 2019, 21(16): 4499-4511. |
46 | ZHU Yifeng, ZHU Yulei, DING Guoqiang, et al. Highly selective synthesis of ethylene glycol and ethanol via hydrogenation of dimethyl oxalate on Cu catalysts: Influence of support[J]. Applied Catalysis A: General, 2013, 468: 296-304. |
47 | CHEN Zhen, LIU Qian, GUO Lei, et al. The promoting mechanism of in situ Zr doping on the hydrothermal stability of Fe-SSZ-13 catalyst for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2021, 286: 119816. |
48 | BACHILLER-BAEZA B, RODRIGUEZ-RAMOS I, GUERRERO-RUIZ A. Interaction of carbon dioxide with the surface of zirconia polymorphs[J]. Langmuir, 1998, 14(13): 3556-3564. |
49 | ZHANG Yanfei, ZHONG Liangshu, WANG Hui, et al. Catalytic performance of spray-dried Cu/ZnO/Al2O3/ZrO2 catalysts for slurry methanol synthesis from CO2 hydrogenation[J]. Journal of CO2 Utilization, 2016, 15: 72-82. |
50 | PAVEL O D, TICHIT D, I-C MARCU. Acido-basic and catalytic properties of transition-metal containing Mg-Al hydrotalcites and their corresponding mixed oxides[J]. Applied Clay Science, 2012, 61: 52-58. |
51 | WU Xuemei, TAN Minghui, XU Bing, et al. Tuning the crystallite size of monoclinic ZrO2 to reveal critical roles of surface defects on m-ZrO2 catalyst for direct synthesis of isobutene from syngas[J]. Chinese Journal of Chemical Engineering, 2021, 35: 211-219. |
52 | LU Jinzhao, YANG Lijun, XU Bolian, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2): 613-621. |
53 | CUI Guoqing, MENG Xiaoyu, ZHANG Xi, et al. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites[J]. Applied Catalysis B: Environmental, 2019, 248: 394-404. |
54 | WANG Sheng, FANG Yue, HUANG Zhen, et al. The effects of the crystalline phase of zirconia on C—O activation and C—C coupling in converting syngas into aromatics[J]. Catalysts, 2020, 10(2): 262. |
55 | HUANG Jingjing, DING Tong, MA Kui, et al. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming[J]. ChemCatChem, 2018, 10(17): 3862-3871. |
56 | ZHU Yifeng, KONG Xiao, CAO Dongbo, et al. The rise of calcination temperature enhances the performance of Cu catalysts: Contributions of support[J]. ACS Catalysis, 2014, 4(10): 3675-3681. |
57 | XI Yushan, WANG Yue, YAO Dawei, et al. Impact of the oxygen vacancies on copper electronic state and activity of Cu-based catalysts in the hydrogenation of methyl acetate to ethanol[J]. ChemCatChem, 2019, 11(11): 2607-2614. |
58 | AI Peipei, TAN Minghui, YAMANE N, et al. Synergistic effect of a boron-doped carbon-nanotube-supported Cu catalyst for selective hydrogenation of dimethyl oxalate to ethanol[J]. Chemistry—A European Journal, 2017, 23(34): 8252-8261. |
59 | GONG Xiaoxiao, WANG Meiling, FANG Huihuang, et al. Copper nanoparticles socketed in situ into copper phyllosilicate nanotubes with enhanced performance for chemoselective hydrogenation of esters[J]. Chemical Communications, 2017, 53(51): 6933-6936. |
60 | YUE Hairong, ZHAO Yujun, ZHAO Shuo, et al. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J]. Nature Communications, 2013, 4(1): 2339. |
61 | WANG Zhiqiao, XU Zhongning, PENG Siyan, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catalysis, 2015, 5(7): 4255-4259. |
62 | MEYER C I, MARCHI A J, MONZON A, et al. Deactivation and regeneration of Cu/SiO2 catalyst in the hydrogenation of maleic anhydride. Kinetic modeling[J]. Applied Catalysis A: General, 2009, 367(1/2): 122-129. |
63 | ZHAO Yujun, KONG Lingxin, XU Yuxi, et al. Deactivation mechanism of Cu/SiO2 catalysts in the synthesis of ethylene glycol via methyl glycolate hydrogenation[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12381-12388. |
[1] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[2] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[3] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[4] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[5] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[6] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[7] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[8] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[9] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[10] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[11] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
[12] | LI Ling, MA Chaofeng, LU Chunshan, YU Wanjin, SHI Nengfu, JIN Jiamin, ZHANG Jianjun, LIU Wucan, LI Xiaonian. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. |
[13] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[14] | XIAO Yaoxin, ZHANG Jun, HU Sheng, SHAN Rui, YUAN Haoran, CHEN Yong. Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1341-1352. |
[15] | ZHANG Mengxu, WANG Hongqin, LI Jin, AN Nihong, DAI Yunsheng, QIAN Yin, SHEN Yafeng. Preparation of PtSn/MgAl2O4-sheet catalyst and its PDH reaction performance [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1365-1372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |