Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1318-1327.DOI: 10.16085/j.issn.1000-6613.2023-0448
• Industrial catalysis • Previous Articles
XIAO Yaoxin1,2(), ZHANG Jun2,3,4(), SHAN Rui2,3,4, YUAN Haoran2,3,4(), CHEN Yong1,2,3,4
Received:
2023-03-23
Revised:
2023-05-22
Online:
2024-04-11
Published:
2024-03-10
Contact:
YUAN Haoran
萧垚鑫1,2(), 张军2,3,4(), 单锐2,3,4, 袁浩然2,3,4(), 陈勇1,2,3,4
通讯作者:
袁浩然
作者简介:
萧垚鑫(1998—),男,硕士研究生,研究方向为生物质高值资源化利用。E-mail:xiao19980129@yahoo.com基金资助:
CLC Number:
XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327.
萧垚鑫, 张军, 单锐, 袁浩然, 陈勇. Pt/CaO材料催化糠醇加氢制备戊二醇[J]. 化工进展, 2024, 43(3): 1318-1327.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0448
样品 | 比表面积/m2·g-1 | 平均孔径/nm | 孔容/cm3·g-1 | 碱度/μmol·g-1 |
---|---|---|---|---|
Pt/CaO-400 | 48.47 | 23.70 | 0.29 | 37.59 |
Pt/CaO-500 | 93.62 | 19.75 | 0.46 | 50.14 |
Pt/CaO-600 | 76.72 | 17.46 | 0.33 | 55.45 |
Pt/CaO-700 | 5.70 | 19.48 | 0.002 | 63.45 |
样品 | 比表面积/m2·g-1 | 平均孔径/nm | 孔容/cm3·g-1 | 碱度/μmol·g-1 |
---|---|---|---|---|
Pt/CaO-400 | 48.47 | 23.70 | 0.29 | 37.59 |
Pt/CaO-500 | 93.62 | 19.75 | 0.46 | 50.14 |
Pt/CaO-600 | 76.72 | 17.46 | 0.33 | 55.45 |
Pt/CaO-700 | 5.70 | 19.48 | 0.002 | 63.45 |
1 | SHARMA H K, XU C B, QIN W S. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: An overview[J]. Waste and Biomass Valorization, 2019, 10(2): 235-251. |
2 | UBANDO A T, FELIX C B, CHEN W H. Biorefineries in circular bioeconomy: A comprehensive review[J]. Bioresource Technology, 2020, 299: 122585. |
3 | KUMAR B, BHARDWAJ N, AGRAWAL K, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept[J]. Fuel Process Technology, 2020, 199: 106244. |
4 | CHIO C L, SAIN M, QIN W S. Lignin utilization: A review of lignin depolymerization from various aspects[J]. Renewable & Sustainable Energy Reviews, 2019, 107: 232-249. |
5 | AN Z D, LI J. Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts[J]. Green Chemistry, 2022, 24(5): 1780-1808. |
6 | ZHANG X, XU S Q, LI Q F, et al. Recent advances in the conversion of furfural into bio-chemicals through chemo- and bio-catalysis[J]. RSC Advances, 2021, 11(43): 27042-27058. |
7 | 陆强, 朱锡锋, 李全新, 等. 生物质快速热解制备液体燃料[J]. 化学进展, 2007, 19(7/8): 1064-1071. |
LU Qiang, ZHU Xifeng, LI Quanxin, et al. Biomass fast pyrolysis for liquid fuels[J]. Progress in Chemistry, 2007, 19(7/8): 1064-1071. | |
8 | 张军, 李丹妮, 袁浩然, 等. 生物质基糠醛和5-羟甲基糠醛加氢转化研究进展[J]. 燃料化学学报, 2021, 49(12): 1752-1767. |
ZHANG Jun, LI Danni, YUAN Haoran, et al. Advances on the catalytic hydrogenation of biomass-derived furfural and 5-hydroxymethylfurfural[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1752-1767. | |
9 | ZHANG M, YANG J H. Selective hydrogenation of furfural: Pure silica supported metal catalysts[J]. ChemistrySelect, 2022, 7(9): e202200013. |
10 | YE L, HAN Y W, WANG X T, et al. Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection[J]. Molecular Catalysis, 2021, 515: 111899. |
11 | ZHAO L, SUN Z F, ZHANG C C, et al. Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives[J]. Bioresource Technology, 2022, 343: 126123. |
12 | 杨启悦, 吴巧妹, 邱佳容, 等. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759. |
YANG Qiyue, WU Qiaomei, QIU Jiarong, et al. Catalytic conversion of bio-based platform compounds to fufuryl alcohol[J]. Progress in Chemistry, 2022, 34(8): 1748-1759. | |
13 | 李梦雨, 杨鹏, 常春, 等. 糠醛渣高值化利用的研究进展[J]. 林产化学与工业, 2021, 41(6): 117-126. |
LI Mengyu, YANG Peng, CHANG Chun, et al. Research progress in high-value utilization of furfural residue[J]. Chemistry and Industry of Forest Products, 2021, 41(6): 117-126. | |
14 | BECERRA M L, PRIETO G A, RENDUELES M, et al. Biological transformations of furanic platform molecules to obtain biomass-derived furans: A review[J]. Biomass Conversion and Biorefinery. 2022, 12: 1-19. |
15 | 萧垚鑫, 张军, 胡升, 等. 甲醇供氢体系铜锌双金属催化糠醛加氢转化[J]. 化工进展, 2023, 42(3): 1341-1352. |
XIAO Yaoxin, ZHANG Jun, HU Sheng, et al. Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1341-1352. | |
16 | 高芳芳, 陈静, 黄志威, 等. 生物质基呋喃衍生物选择氢解制备戊二醇和己二醇研究进展[J]. 分子催化, 2018, 32(3): 276-293. |
GAO Fangfang, CHEN Jing, HUANG Zhiwei, et al. Recent advances in the selective hydrogenolysis of biomass-based furan derivatives to pentanediols and hexanediol[J]. Journal of Molecular Catalysis(China), 2018, 32(3): 276-293. | |
17 | MIZUGAKI T, YAMAKAWA T, NAGATSU Y, et al. Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2243-2247. |
18 | LIU H L, HUANG Z W, ZHAO F, et al. Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2-and 1,5-pentanediols over a non-precious Cu-Mg3AlO4.5 bifunctional catalyst[J]. Catalysis Science & Technology, 2016, 6(3): 668-671. |
19 | KOSO S, FURIKADO I, SHIMAO A, et al. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol[J]. Chemical Communications, 2009, (15): 2035-2037. |
20 | 樊冬娜, 刘晓然, 王喜成, 等. 生物基糠醛催化转化制备戊二醇的研究进展[J]. 化工进展, 2018, 37(3): 938-946. |
FAN Dongna, LIU Xiaoran, WANG Xucheng, et al. Catalytic conversion of biomass-derived furfural into pentanediols[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 938-946. | |
21 | 徐保明, 唐强, 罗岩, 等. 1,2-戊二醇的新合成方法及工艺优化研究[J]. 高校化学工程学报, 2014, 28(1): 92-97. |
XU Baoming, TANG Qiang, LUO Yan, et al. Study on the new synthetic method of 1,2-pentanediol and process optimization thereof[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(1): 92-97. | |
22 | MA R F, WU X P, TONG T, et al. The critical role of water in the ring opening of furfural alcohol to 1,2-pentanediol[J]. ACS Catalysis, 2017, 7(1): 333-337. |
23 | TAYLOR M J, DURNDELL L J, ISAACS M A, et al. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions[J]. Applied Catalysis B-Environmental, 2016, 180: 580-585. |
24 | 崔鸿劼. 碱金属盐修饰中高温CO2固体吸附材料的构效关系和吸附机理研究[D]. 上海: 华东理工大学, 2021. |
CUI Hongjie. Structure-perfomance relationship and sorption mechanisms of alkali metal salt-promoted solid sorbents for intermediate- and high-temperature CO2 capture[D]. Shanghai: East China University of Science and Technology, 2021. | |
25 | HARISH, KUMARI S, PARIHAR J, et al. Synthesis, characterization, and antibacterial activity of calcium hydroxide nanoparticles against gram-positive and gram-negative bacteria[J]. ChemistrySelect, 2022, 7(37): e202203094. |
26 | GRANADOS M L, POVES M D Z, ALONSO D M, et al. Biodiesel from sunflower oil by using activated calcium oxide[J]. Applied Catalysis B-Environmental, 2007, 73(3): 317-326. |
27 | LEE H, KIM W I, JUNG K D, et al. Effect of Cu promoter and alumina phases on Pt/Al2O3 for propane dehydrogenation[J]. Korean Journal of Chemical Engineering, 2017, 34(5): 1337-1345. |
28 | MEI Y, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. |
29 | CAO Y L, ZHANG H P, LIU K K, et al. Biowaste-derived bimetallic Ru-MoO x catalyst for the direct hydrogenation of furfural to tetrahydrofurfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12858-12866. |
30 | 冯占雄, 汪云, 马强, 等. 连续管道微波技术制备Pt/C催化剂及其氧还原性能[J].化工进展, 2022, 41(12): 6377-6384. |
FENG Zhanxiong, WANG Yun, MA Qiang, et al. Preparation of Pt/C catalyst by continuous pipeline microwave technology and its oxygen reduction performance[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6377-6384. | |
31 | 张敏, 冯彩霞, 金振声, 等. 空气气氛中Pt和TiO2间强相互作用的STS和XPS研究[J]. 催化学报, 2005(6): 508-512. |
ZHANG Min, FENG Caixia, JIN Zhensheng, et al. STS and XPS study of the strong interaction between pt and TiO2 under air atmosphere[J]. Chinese Journal Of Catalysis, 2005(6): 508-512. | |
32 | TANG Y, GU X, MENG M, et al. Direct Henry reactions with modified calcium oxide as solid catalyst[J]. Research on Chemical Intermediates, 2013, 39(8): 3715-3725. |
33 | NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. ACS Catalysis, 2013, 3(12): 2655-2668. |
34 | NAKAGAWA Y, TAKADA K, TAMURA M, et al. Total hydrogenation of furfural and 5-hydroxymethylfurfural over supported Pd-Ir alloy catalyst[J]. ACS Catalysis, 2014, 4(8): 2718-2726. |
35 | XU W J, WANG H F, LIU X H, et al. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chemical Communications, 2011, 47(13): 3924-3926. |
[1] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[2] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[3] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[4] | WANG Yujie, ZHANG Yanmei, LUAN Jinyi, ZHAO Zhiping. Enzyme-catalyzed carbon sequestration processes and enhancement technologies [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 232-245. |
[5] | YANG Xue, LIU Ke, ZHANG Chengxiang, LI Donglin, WANG Jiangqin, YANG Wanliang. Research progress of 2D layered materials for fuel oil oxidation desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 422-436. |
[6] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
[7] | ZHOU Mei, ZENG Haojie, LU Junning, PU Ting, LIU Baoyu. Progress in the synthesis of hierarchical zeolites for diffusion intensification [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 76-86. |
[8] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[9] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[10] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[11] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[12] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[13] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[14] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[15] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |