Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 232-245.DOI: 10.16085/j.issn.1000-6613.2023-1677
• Column: Chemical process intensification • Previous Articles
WANG Yujie1(), ZHANG Yanmei2, LUAN Jinyi1(), ZHAO Zhiping2
Received:
2023-09-21
Revised:
2023-11-06
Online:
2024-02-05
Published:
2024-01-20
Contact:
LUAN Jinyi
通讯作者:
栾金义
作者简介:
王玉杰(1980—),女,博士,高级工程师,研究方向为气体膜分离、CO2的捕集及利用。E-mail:wangyuj.bihy@sinopec.com。
基金资助:
CLC Number:
WANG Yujie, ZHANG Yanmei, LUAN Jinyi, ZHAO Zhiping. Enzyme-catalyzed carbon sequestration processes and enhancement technologies[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 232-245.
王玉杰, 张艳梅, 栾金义, 赵之平. 酶催化固碳过程及其强化技术研究进展[J]. 化工进展, 2024, 43(1): 232-245.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1677
酶 | 产物 | 反应 | 优势 | 参考文献 |
---|---|---|---|---|
甲酸脱氢酶 | 甲酸盐(HCOO-) | 易获取增值产品、底物广泛 | [ | |
碳酸酐酶 | 碳酸氢盐( | 快速催化CO2水合反应、低能耗 | [ | |
重塑固氮酶 | 甲烷(CH4) | H2无抑制作用 | [ | |
一氧化碳脱氢酶 | 一氧化碳(CO) | 大气氛围下稳定、独特的催化活性中心、反应产物易转化为增值产品 | [ | |
多重脱氢酶 | 甲醇(CH3OH) | 易获取增值产品 | [ | |
丙酮酸脱羧酶 | 羧酸类化合物 | 对环境友好 | [ |
酶 | 产物 | 反应 | 优势 | 参考文献 |
---|---|---|---|---|
甲酸脱氢酶 | 甲酸盐(HCOO-) | 易获取增值产品、底物广泛 | [ | |
碳酸酐酶 | 碳酸氢盐( | 快速催化CO2水合反应、低能耗 | [ | |
重塑固氮酶 | 甲烷(CH4) | H2无抑制作用 | [ | |
一氧化碳脱氢酶 | 一氧化碳(CO) | 大气氛围下稳定、独特的催化活性中心、反应产物易转化为增值产品 | [ | |
多重脱氢酶 | 甲醇(CH3OH) | 易获取增值产品 | [ | |
丙酮酸脱羧酶 | 羧酸类化合物 | 对环境友好 | [ |
固定化方法 | 具体策略 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
吸附法 | 主要分为表面吸附和孔道吸附两类,通过弱相互作用力(如氢键、范德华力、亲疏水作用和静电作用等)实现酶的固定化 | 操作简单 载体种类广泛 酶构象变化小 | 酶与载体间的结合力较弱,易发生酶泄露 | [ |
共价结合法 | 改性载体表面的胺基、羟基、羧基或环氧基等官能团和酶的氨基酸残基之间可以形成共价键 | 酶与载体间作用力强,基本不发生酶泄露 | 操作相对复杂 易影响酶的构象 | [ |
包埋法 | 将载体与酶“一锅反应”,通过机械搅拌、加入交联剂等将酶包裹在凝胶等材料中 | 操作简单 不涉及酶的构象转变 | 酶被限制在载体中,存在扩散受限、传质受阻 | [ |
交联法 | 利用酶自身的双官能团结构或者加入一些交联剂(如戊二醛、甲苯二异氰酸酯等)连接起来形成酶聚集体 | 不需要载体 | 机械强度差 | [ |
原位合成法 | 将酶的溶液与合成MOF的前体溶液(金属和配体溶液)混合在一起,诱导MOF晶核生成、晶体生长,同时实现酶的包覆 | 酶的固定与载体的制备同时发生,结合牢固 | 易影响酶的构象 反应不易控制 | [ |
固定化方法 | 具体策略 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
吸附法 | 主要分为表面吸附和孔道吸附两类,通过弱相互作用力(如氢键、范德华力、亲疏水作用和静电作用等)实现酶的固定化 | 操作简单 载体种类广泛 酶构象变化小 | 酶与载体间的结合力较弱,易发生酶泄露 | [ |
共价结合法 | 改性载体表面的胺基、羟基、羧基或环氧基等官能团和酶的氨基酸残基之间可以形成共价键 | 酶与载体间作用力强,基本不发生酶泄露 | 操作相对复杂 易影响酶的构象 | [ |
包埋法 | 将载体与酶“一锅反应”,通过机械搅拌、加入交联剂等将酶包裹在凝胶等材料中 | 操作简单 不涉及酶的构象转变 | 酶被限制在载体中,存在扩散受限、传质受阻 | [ |
交联法 | 利用酶自身的双官能团结构或者加入一些交联剂(如戊二醛、甲苯二异氰酸酯等)连接起来形成酶聚集体 | 不需要载体 | 机械强度差 | [ |
原位合成法 | 将酶的溶液与合成MOF的前体溶液(金属和配体溶液)混合在一起,诱导MOF晶核生成、晶体生长,同时实现酶的包覆 | 酶的固定与载体的制备同时发生,结合牢固 | 易影响酶的构象 反应不易控制 | [ |
31 | HOU Jingwei, JI Chao, DONG Guangxi, et al. Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase[J]. Journal of Materials Chemistry A, 2015, 3(33): 17032-17041. |
32 | 孟令玎, 崇汝青, 孙菲雪, 等. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
MENG Lingding, CHONG Ruqing, SUN Feixue, et al. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica[J]. CIESC Journal, 2023, 74(8): 3472-3484. | |
33 | MONDAL M, KHANRA S, TIWARI O N, et al. Role of carbonic anhydrase on the way to biological carbon capture through microalgae—A mini review[J]. Environmental Progress & Sustainable Energy, 2016, 35(6): 1605-1615. |
34 | BOND G M, STRINGER J, BRANDVOLD D K, et al. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase[J]. Energy & Fuels, 2001, 15(2): 309-316. |
35 | SUPURAN C T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators[J]. Nature Reviews Drug Discovery, 2008, 7(2): 168-181. |
36 | LINDSKOG S, COLEMAN J E. The catalytic mechanism of carbonic anhydrase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(9): 2505-2508. |
37 | SILVERMAN D N, LINDSKOG S. The catalytic mechanism of carbonic anhydrase: Implications of a rate-limiting protolysis of water[J]. Accounts of Chemical Research, 1988, 21(1): 30-36. |
38 | WANG Yanzi, LI Manfeng, ZHAO Zhiping, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 116: 89-94. |
39 | SAKAKURA Toshiyasu, CHOI Jun-Chul, YASUDA Hiroyuki. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. |
40 | Sara NAVARRO-JAÉN, VIRGINIE Mirella, BONIN Julien, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nature Reviews Chemistry, 2021, 5(8): 564-579. |
41 | ZHANG Zhibo, Muschiol J, HUANG Yuhong, et al. Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol[J]. Green Chemistry, 2018, 20(18): 4339-4348. |
42 | SINGH Raushan Kumar, SINGH Ranjitha, SIVAKUMAR Dakshinamurthy, et al. Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction[J]. ACS Catalysis, 2018, 8(12): 11085-11093. |
43 | KUWABATA Susumu, TSUDA Ryo, YONEYAMA Hiroshi. Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts[J]. Journal of the American Chemical Society, 1994, 116(12): 5437-5443. |
44 | BASKAYA F S, ZHAO Xueyan, FLICKINGER M C, et al. Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol[J]. Applied Biochemistry and Biotechnology, 2010, 162(2): 391-398. |
45 | CALZADIAZ-RAMIREZ L, MEYER A S. Formate dehydrogenases for CO2 utilization[J]. Current Opinion in Biotechnology, 2022, 73: 95-100. |
46 | STRIPP S T, DUFFUS B R, VINCENT F, et al. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase[J]. Chemical Reviews, 2022, 122(14): 11900-11973. |
47 | 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展[J]. 化学学报, 2019, 77(11): 1099-1114. |
LIANG Shan, ZONG Minhua, LOU Wenyong. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide[J]. Acta Chimica Sinica, 2019, 77(11): 1099-1114. | |
48 | CHEN Han, HUANG Yu, SHA Chong, et al. Enzymatic carbon dioxide to formate: Mechanisms, challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113271. |
49 | MAIA L B, MOURA J J G, ISABEL M. Molybdenum and tungsten-dependent formate dehydrogenases[J]. Journal of Biological Inorganic Chemistry, 2015, 20(2): 287-309. |
50 | WANG Bingwen, Sandra ALBARRACÍN-SUAZO, Yomaira PAGÁN-TORRES, et al. Advances in methane conversion processes[J]. Catalysis Today, 2017, 285: 147-158. |
51 | ZHENG Yanning, HARRIS D F, YU Zheng, et al. A pathway for biological methane production using bacterial iron-only nitrogenase[J]. Nature Microbiology, 2018, 3(3): 281-286. |
52 | FIXEN K R, ZHENG Yanning, HARRIS D F, et al. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 10163-10167. |
53 | YANG Zhiyong, MOURE V R, DEAN D R, et al. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19644-19648. |
54 | DOBBEK Holger. A fuel-producing microbe[J]. Nature Chemical Biology, 2017, 13(2): 134-135. |
55 | WANG Ling, HE Zhangwei, GUO Zechong, et al. Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system[J]. Journal of Power Sources, 2019, 444: 227306. |
1 | SUN Hemin, WANG Anqian, ZHAI Jianqing, et al. Impacts of global warming of 1.5℃ and 2.0℃ on precipitation patterns in China by regional climate model (COSMO-CLM)[J]. Atmospheric Research, 2018, 203: 83-94. |
2 | XIAO Yuting, GUO Shien, TIAN Guohui, et al. Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions[J]. Science Bulletin, 2021, 66(3): 275-283. |
3 | JIA Zhichao, DANG Jianan, WEN Guobin, et al. Constructing nanocaged enzymes for synergistic catalysis of CO2 reduction[J]. Advanced Science, 2023, 10(20): e2300752. |
4 | LI Yangshuo, LI Fangfang, LAAKSONEN Aatto, et al. Electrochemical CO2 reduction with ionic liquids: Review and evaluation[J]. Industrial Chemistry & Materials, 2023, 1(3): 410-430. |
5 | SHI Jiafu, JIANG Yanjun, JIANG Zhongyi, et al. Enzymatic conversion of carbon dioxide[J]. Chemical Society Reviews, 2015, 44(17): 5981-6000. |
6 | KARMAKAR A, POMBEIRO A J L. Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications[J]. Coordination Chemistry Reviews, 2019, 395: 86-129. |
7 | SALEHIZADEH Hossein, YAN Ning, FARNOOD Ramin. Recent advances in microbial CO2 fixation and conversion to value-added products[J]. Chemical Engineering Journal, 2020, 390: 124584. |
8 | 刘文芳, 魏利娜. 碳酸酐酶固定化研究进展[J]. 分子催化, 2016, 30(2): 182-197. |
LIU Wenfang, WEI Lina. Research progress on carbonic anhydrase immobilization[J]. Journal of Molecular Catalysis (China), 2016, 30(2): 182-197. | |
9 | TONG Xiaodong, El-Zahab Bilal, ZHAO Xueyan, et al. Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle[J]. Biotechnology and Bioengineering, 2011, 108(2): 465-469. |
10 | JIANG Yanjun, SUN Qianyun, ZHANG Lei, et al. Capsules-in-bead scaffold: A rational architecture for spatially separated multienzyme cascade system[J]. Journal of Materials Chemistry, 2009, 19(47): 9068-9074. |
11 | WU Ranran, MA Chunling, ZHU Zhiguang. Enzymatic electrosynthesis as an emerging electrochemical synthesis platform[J]. Current Opinion in Electrochemistry, 2020, 19: 1-7. |
56 | XU Heng, WANG Kaijun, HOLMES D E. Bioelectrochemical removal of carbon dioxide (CO2): An innovative method for biogas upgrading[J]. Bioresource Technology, 2014, 173: 392-398. |
57 | YE Jie, YU Jing, ZHANG Yiyun, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B: Environmental, 2019, 257: 117916. |
58 | 蔡韬, 刘玉万, 朱蕾蕾, 等. 二氧化碳人工生物转化[J]. 生物工程学报, 2022, 38(11): 4101-4114. |
CAI Tao, LIU Yuwan, ZHU Leilei, et al. Artificial biotransformation of carbon dioxide[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4101-4114. | |
59 | SADEGHI Kambiz, JEON Yukwon, SEO Jongchul. Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling[J]. Progress in Materials Science, 2023, 135: 101103. |
60 | CAI Tao, SUN Hongbing, QIAO Jing, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
61 | MIYAZAKI Masaya, OGINO Kazuya, SHIBUE Mitsukuni, et al. A one-pot, two-step enzymatic synthesis of L-lactic acid from acetaldehyde[J]. Chemistry Letters, 2002, 31(7): 758-759. |
62 | MASAYA Miyazaki, MITSUKUNI Shibue, KAZUYA Ogino, et al. Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide[J]. Chemical Communications, 2001(18): 1800-1801. |
63 | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27(12): 1177-1180. |
64 | JI Xiaoyuan, SU Zhiguo, WANG Ping, et al. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes[J]. ACS Nano, 2015, 9(4): 4600-4610. |
65 | SONG Haiyan, MA Chunling, LIU Pi, et al. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration[J]. Journal of CO2 Utilization, 2019, 34: 568-575. |
66 | 詹悦, 王新, 宋雨轩, 等. 碳酸酐酶的固定化及其在二氧化碳转化中的应用[J]. 环境化学, 2023, 42(9): 3157-3166. |
12 | Aişe ÜNLÜ, DUMAN-ÖZDAMAR Zeynep Efsun, Buse ÇALOĞLU, et al. Enzymes for efficient CO2 conversion[J]. The Protein Journal, 2021, 40(4): 489-503. |
13 | ZHENG Yun, ZHANG Wenqiang, LI Yifeng, et al. Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies[J]. Nano Energy, 2017, 40: 512-539. |
14 | NETTO C G C M, NAKAMURA M, ANDRADE L H, et al. Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 84: 136-143. |
15 | 孟令玎, 毛梦雷, 廖奇勇, 等. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
MENG Lingding, MAO Menglei, LIAO Qiyong, et al. Recent advance in stability of carbonic anhydrase and formate dehydrogenase[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. | |
16 | Manuel GÖTZ, LEFEBVRE Jonathan, Friedemann MÖRS, et al. Renewable power-to-gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
17 | XU Songwei, LU Yang, LI Jian, et al. Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel[J]. Industrial & Engineering Chemistry Research, 2006, 45(13): 4567-4573. |
18 | OBERT R, DAVE B C. Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices[J]. Journal of the American Chemical Society, 1999, 121(51): 12192-12193. |
19 | Seung-Hyun JUN, YANG Jusang, JEON Hancheol, et al. Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth[J]. Environmental Science & Technology, 2020, 54(2): 1223-1231. |
20 | NICHOLS E M, GALLAGHER J J, LIU Chong, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466. |
21 | BURKART M D, HAZARI N, TWAY C L, et al. Opportunities and challenges for catalysis in carbon dioxide utilization[J]. ACS Catalysis, 2019, 9(9): 7937-7956. |
22 | WOOLERTON T W, SALLY S, ERWIN R, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light[J]. Journal of the American Chemical Society, 2010, 132(7): 2132-2133. |
23 | ALISON P, JAVIER S, VINCENT K A, et al. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase Ⅰ on an electrode[J]. Journal of the American Chemical Society, 2007, 129(34): 10328-10329. |
66 | ZHAN Yue, WANG Xin, SONG Yuxuan, et al. Immobilization of carbonic anhydrase and its application in carbon dioxide conversion[J]. Environmental Chemistry, 2023, 42(9): 3157-3166. |
67 | NELSON J M, GRIFFIN E G. Adsorption of invertase[J]. Journal of the American Chemical Society, 1916, 38(5): 1109-1115. |
68 | Cristhian MOLINA-FERNÁNDEZ, LUIS Patricia. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review[J]. Journal of CO2 Utilization, 2021, 47: 101475. |
69 | REN Sizhu, CHEN Ruixue, WU Zhangfei, et al. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion[J]. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111779. |
70 | SHAMNA I, JEONG S K, MARGANDAN B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-siloxane aerogel beads for biomimetic sequestration of CO2 [J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 288-295. |
71 | IMAM H T, MARR P C, MARR A C. Enzyme entrapment, biocatalyst immobilization without covalent attachment[J]. Green Chemistry, 2021, 23(14): 4980-5005. |
72 | CHEN Ning, CHANG Baogen, SHI Nian, et al. Cross-linked enzyme aggregates immobilization: Preparation, characterization, and applications[J]. Critical Reviews in Biotechnology, 2023, 43(3): 369-383. |
73 | CHAI Milton, RAZMJOU Amir, CHEN Vicki. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor[J]. Journal of Membrane Science, 2021, 623: 118986. |
74 | 陈海欣, 张赛男, 赵力民, 等. 固定化酶: 从策略到材料设计[J]. 生物加工过程, 2020, 18(1): 88-95. |
CHEN Haixin, ZHANG Sainan, ZHAO Limin, et al. Immobilized enzyme: From strategy to material design[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(1): 88-95. | |
75 | LIAO Yuan, Chun-Heng LOH, TIAN Miao, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications[J]. Progress in Polymer Science, 2018, 77: 69-94. |
76 | Ping-Chung KUO, LIN Zhixun, WU Tzi-Yi, et al. Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme[J]. RSC Advances, 2021, 11(17): 10010-10017. |
24 | APPEL A M, BERCAW J E, BOCARSLY A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8): 6621-6658. |
25 | DEKA Tanmay J, OSMAN Ahmed I, BARUAH Debendra C, et al. Methanol fuel production, utilization, and techno-economy: A review[J]. Environmental Chemistry Letters, 2022, 20(6): 3525-3554. |
26 | LUO J Q, MEYER A S, MATEIU R V, et al. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol[J]. New Biotechnology, 2015, 32(3): 319-327. |
27 | 葛喜珍, 赵有玺, 刘晓宇, 等. 生物固定CO2代谢途径及关键酶的研究进展[J]. 北京联合大学学报, 2013, 27(1): 63-68. |
GE Xizhen, ZHAO Youxi, LIU Xiaoyu, et al. Research advances in biological CO2 fixation pathways and key enzymes[J]. Journal of Beijing Union University, 2013, 27(1): 63-68. | |
28 | OSCAR A, NGUYEN L J, SAVILE C K, et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16436-16441. |
29 | FISHER Z, BOONE C D, BISWAS S M, et al. Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase Ⅱ[J]. Protein Engineering, Design and Selection, 2012, 25(7): 347-355. |
30 | ROJKOVA A M, GALKIN A G, KULAKOVA L B, et al. Bacterial formate dehydrogenase. Increasing the enzyme thermal stability by hydrophobization of alpha-helices[J]. FEBS Letters, 1999, 445(1): 183-188. |
77 | WU Lingtian, WU Shanshan, XU Zheng, et al. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization[J]. Biosensors and Bioelectronics, 2016, 80: 59-66. |
78 | AL-DHRUB A H A, SAHIN S, OZMEN I, et al. Immobilization and characterization of human carbonic anhydrase Ⅰ on amine functionalized magnetic nanoparticles[J]. Process Biochemistry, 2017, 57: 95-104. |
79 | RASOULI Hannaneh, ILIUTA Ion, BOUGIE Francis, et al. Enhanced CO2 capture in packed-bed column bioreactors with immobilized carbonic anhydrase[J]. Chemical Engineering Journal, 2022, 432: 134029. |
80 | 毛梦雷, 孟令玎, 高蕊, 等. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
MAO Menglei, MENG Lingding, GAO Rui, et al. Research progress on enzyme immobilization on porous framework materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. | |
81 | YAN Lihang, LIU Guanhua, LIU Jianqiao, et al. Hierarchically porous metal organic framework immobilized formate dehydrogenase for enzyme electrocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2022, 450: 138164. |
82 | REN Sizhu, FENG Yuxiao, WEN Huan, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration[J]. International Journal of Biological Macromolecules, 2018, 117: 189-198. |
83 | ILIUTA I, ILIUTA M C. Enhanced enzyme-based CO2 capture in countercurrent packed-bed column reactors[J]. Separation and Purification Technology, 2020, 248: 116908. |
84 | CHOOK Kay Yi, AROUA Mohamed Kheireddine, Lai Ti GEW. Enzyme biocatalysis for sustainability applications in reactors: A systematic review[J]. Industrial & Engineering Chemistry Research, 2023, 62(28): 10800-10812. |
85 | 朱昊, 徐刘佳, 郑明明, 等. 连续流酶反应器的应用研究进展[J]. 现代化工, 2021, 41(12): 17-21. |
ZHU Hao, XU Liujia, ZHENG Mingming, et al. Research progress in application of continuous flow enzyme reactor[J]. Modern Chemical Industry, 2021, 41(12): 17-21. | |
86 | PRAZERES D M F, CABRAL J M S. Enzymatic membrane bioreactors and their applications[J]. Enzyme and Microbial Technology, 1994, 16(9): 738-750. |
87 | SITANGGANG Azis Boing, DREWS Anja, KRAUME Matthias. Enzymatic membrane reactors: Designs, applications, limitations and outlook[J]. Chemical Engineering and Processing-Process Intensification, 2022, 180: 108729. |
88 | SONG Chunfeng, LIU Qingling, JI Na, et al. Alternative pathways for efficient CO2 capture by hybrid processes—A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 215-231. |
89 | LI Zonglin, SHEN Su, LI Zhimin. Towards the conversion of CO2 into optically pure N-carbamoyl-l-aspartate and orotate by an in vitro multi-enzyme cascade[J]. Green Chemistry, 2020, 22(17): 5798-5805. |
90 | GAO Song, MOHAMMAD Munirah, YANG Haocheng, et al. Janus reactors with highly efficient enzymatic CO2 nanocascade at air-liquid interface[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42806-42815. |
91 | 陈日志, 姜红, 范益群, 等. 膜分散技术及其强化反应过程的研究进展[J]. 化工进展, 2020, 39(12): 4812-4822. |
CHEN Rizhi, JIANG Hong, FAN Yiqun, et al. Perspective on membrane dispersion technology and its enhanced reaction processes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4812-4822. | |
92 | GOSSAYE T, NORDDAHL B. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors[J]. Bioprocess and Biosystems Engineering, 2016, 39(4): 613-626. |
93 | WANG Yanzi, ZHAO Zhiping, LI Manfeng, et al. Development of a hollow fiber membrane micro-reactor for biocatalytic production of formate from CO2 [J]. Journal of Membrane Science, 2016, 514: 44-52. |
94 | 刘文芳, 侯本象, 侯延慧, 等. 中空纤维膜固定化甲酸脱氢酶催化CO2合成甲酸[J]. 催化学报, 2012, 33(4): 730-735. |
LIU Wenfang, HOU Benxiang, HOU Yanhui, et al. Synthesis of formic acid from CO2 catalyzed by formate dehydrogenase immobilized on hollow fiber membrane[J]. Chinese Journal of Catalysis, 2012, 33(4): 730-735. | |
95 | BAO Lihong, TRACHTENBERG Michael C. Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline[J]. Journal of Membrane Science, 2006, 280(1/2): 330-334. |
96 | ILIUTA I, ILIUTA M C. Investigation of CO2 removal by immobilized carbonic anhydrase enzyme in a hollow-fiber membrane bioreactor[J]. AIChE Journal, 2017, 63(7): 2996-3007. |
97 | 薛培俭, 姜绍通, 李兴江, 等. 发酵秸秆糖产丁二酸放线杆菌的CO2固定关键酶特性分析[J]. 合肥工业大学学报(自然科学版), 2010, 33(7): 1066-1069. |
XUE Peijian, JIANG Shaotong, LI Xingjiang, et al. Character analysis of CO2-fixing key enzyme for Actinobacillus succinogenes producing succinic acid from crop straw hydrolate[J]. Journal of Hefei University of Technology (Natural Science), 2010, 33(7): 1066-1069. | |
98 | 宋艳艳, 孔维宝, 宋昊, 等. 磁性壳聚糖微球的制备及其用于甲酸脱氢酶的固定化[J]. 工业催化, 2012, 20(8): 20-25. |
SONG Yanyan, KONG Weibao, SONG Hao, et al. Preparation of magnetic chitosan microspheres and their application to immobilization of formate dehydrogenase[J]. Industrial Catalysis, 2012, 20(8): 20-25. | |
99 | CHEN Yijing, LI Peng, Hyunho NOH, et al. Stabilization of formate dehydrogenase in a metal-organic framework for bioelectrocatalytic reduction of CO2 [J]. Angewandte Chemie International Edition, 2019, 58(23): 7682-7686. |
100 | DUAN Linlin, LI Hui, ZHANG Yatao. Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability[J]. ACS Omega, 2018, 3(12): 18234-18241. |
101 | ZHU Chunying, GUO Hengjie, CHU Chunyan, et al. Gas-liquid distribution and mass transfer of CO2 absorption into sodium glycinate aqueous solution in parallel multi-channel microreactor[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119943. |
102 | ZHU Yilin, LI Weiyi, SUN Guanzhong, et al. Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor[J]. International Journal of Greenhouse Gas Control, 2016, 49: 290-296. |
103 | VÁZQUEZ G, CANCELA M A, VARELA R, et al. Influence of surfactants on absorption of CO2 in a stirred tank with and without bubbling[J]. Chemical Engineering Journal, 1997, 67(2): 131-137. |
104 | KIM Sungrye, KIM Min Koo, LEE Sang Hyun, et al. Conversion of CO2 to formate in an electroenzymatic cell using Candida boidinii formate dehydrogenase[J]. Journal of Molecular Catalysis B: Enzymatic, 2014, 102: 9-15. |
105 | Dennis HÜLSEWEDE, MEYER Lars-Erik, Jan VON LANGERMANN. Application of in situ product crystallization and related techniques in biocatalytic processes[J]. Chemistry-A European Journal, 2019, 25(19): 4871-4884. |
106 | REN Jie, YAO Peiyuan, YU Shanshan, et al. An unprecedented effective enzymatic carboxylation of phenols[J]. ACS Catalysis, 2016, 6(2): 564-567. |
107 | OHDE Daniel, THOMAS Benjamin, BUBENHEIM Paul, et al. Enhanced CO2 fixation in the biocatalytic carboxylation of resorcinol: Utilization of amines for amine scrubbing and in situ product precipitation[J]. Biochemical Engineering Journal, 2021, 166: 107825. |
108 | LARACHI F, LACROIX O, GRANDJEAN B P A. CO2 hydration by immobilized carbonic anhydrase in Robinson-Mahoney and packed-bed scrubbers—Role of mass transfer and inhibitor removal[J]. Chemical Engineering Science, 2012, 73: 99-115. |
109 | ILIUTA I, LARACHI F. New scrubber concept for catalytic CO2 hydration by immobilized carbonic anhydrase Ⅱ and in situ inhibitor removal in three-phase monolith slurry reactor[J]. Separation and Purification Technology, 2012, 86: 199-214. |
110 | GUO Shengyuan, ASSET Tristan, ATANASSOV Plamen. Catalytic hybrid electrocatalytic/biocatalytic cascades for carbon dioxide reduction and valorization[J]. ACS Catalysis, 2021, 11(9): 5172-5188. |
[1] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[2] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[3] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[4] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[5] | MAO Menglei, MENG Lingding, GAO Rui, MENG Zihui, LIU Wenfang. Research progress on enzyme immobilization on porous framework materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. |
[6] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[7] | MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. |
[8] | PU Fulong, WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan. Effect of lignin extracted by lactic acid-based deep eutectic solvent from rice straw on cellulase hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4937-4945. |
[9] | LIU Yali, ZHANG Hongwei, KANG Xiaorong. Effect and mechanisms of microplastics on anaerobic digestion of sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5037-5046. |
[10] | TANG Ting, ZHOU Wenfeng, WANG Zhi, ZHU Chenjie, XU Jingliang, ZHUANG Wei, YING Hanjie, OUYANG Pingkai. Advances of multienzymes co-immobilization technology for sugar catalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2636-2648. |
[11] | GAO Bo, FENG Xudong, LI Chun. Visual and high-throughput method for detecting the activity of aspartate transcarbamylase [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2054-2059. |
[12] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[13] | MAO Menglei, SUN Danyang, MENG Zihui, LIU Wenfang. Enzyme immobilization on graphene oxide and transition metal carbon/nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1941-1955. |
[14] | WANG Yanyun, HU Qiang, GONG Weihua, WANG Yan, WU Wei. Effects of alkaline combined with ultra-high pressure pretreatment on enzymatic hydrolysis efficiency of bamboo shell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1357-1363. |
[15] | XIANG Hongwei, YANG Yong, LI Yongwang. Transformation and development of coal chemical industry under the goal of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1399-1408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |