Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 215-231.DOI: 10.16085/j.issn.1000-6613.2023-1595
• Column: Chemical process intensification • Previous Articles
LI Wenpeng1(), LIU Qing1, YANG Zhirong1(), GAO Zhanpeng1, WANG Jingtao1, ZHOU Mingliang2, ZHANG Jinli3()
Received:
2023-09-08
Revised:
2023-11-04
Online:
2024-02-05
Published:
2024-01-20
Contact:
YANG Zhirong, ZHANG Jinli
李文鹏1(), 刘晴1, 杨志荣1(), 高展鹏1, 王景涛1, 周鸣亮2, 张金利3()
通讯作者:
杨志荣,张金利
作者简介:
李文鹏(1990—),男,直聘副教授,硕士生导师,研究方向为连续流反应与先进分离技术。E-mail:liwenpeng@zzu.edu.cn。
基金资助:
CLC Number:
LI Wenpeng, LIU Qing, YANG Zhirong, GAO Zhanpeng, WANG Jingtao, ZHOU Mingliang, ZHANG Jinli. Advances in efficient preparation of graphene by liquid-phase exfoliation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 215-231.
李文鹏, 刘晴, 杨志荣, 高展鹏, 王景涛, 周鸣亮, 张金利. 液相剥离法高效制备石墨烯的研究进展[J]. 化工进展, 2024, 43(1): 215-231.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1595
年份 | 插层方法 | 插层剂 | 插层效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2023 | 化学氧化插层 | 浓硫酸(H2SO4)、过硫酸钾(K2S2O8) | 层间距明显变大,呈手风琴状结构 | — | — | [ |
2023 | 电化学插层 | 硫酸铵 | 石墨层间距离迅速扩大 | 4~6层 | 1~10 | [ |
2022 | 化学氧化插层 | 过氧化氢、过氧乙酸(PAA) | 石墨层片迅速膨胀剥落 | 5~8层 | — | [ |
2022 | 电化学插层 | 六氟磷酸锂 | — | 单层;<1 | 约1 | [ |
多层;<4 | ||||||
2021 | 电化学插层 | 硫酸、磷酸 | 石墨晶粒尺寸急剧减小 | 3~7层 | — | [ |
2020 | 电化学插层 | 高铼酸 | — | — | — | [ |
2020 | 溶剂插层 | 钠萘、N,N-二甲基乙酰胺(DMAC) | — | — | — | [ |
2019 | 电化学插层 | 季铵盐、高氯酸盐 | 短时间内剧烈膨胀 | 1~3层 | 1~5 | [ |
2019 | 溶剂插层 | 碳酸氢铵 | 层与层之间的距离变大 | — | — | [ |
2018 | 溶剂插层 | 氨溶液 | 大大提高石墨烯的剥离效果 | 2.3 | 约3 | [ |
2018 | 溶剂插层 | 尿素(Urea) | 增加石墨层间的间距 | 1 | >2 | [ |
2018 | 化学氧化插层 | 浓硫酸、高锰酸钾 | 石墨颗粒减少 | 约1.2 | — | [ |
2017 | 干球磨插层 | 碳酸氢铵 | — | 5~8层 | 0.4~0.8 | [ |
2017 | 电化学插层 | 四氟硼酸四丁铵 | 石墨显著膨胀 | 4~6层 | 0.4~1.5 | [ |
年份 | 插层方法 | 插层剂 | 插层效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2023 | 化学氧化插层 | 浓硫酸(H2SO4)、过硫酸钾(K2S2O8) | 层间距明显变大,呈手风琴状结构 | — | — | [ |
2023 | 电化学插层 | 硫酸铵 | 石墨层间距离迅速扩大 | 4~6层 | 1~10 | [ |
2022 | 化学氧化插层 | 过氧化氢、过氧乙酸(PAA) | 石墨层片迅速膨胀剥落 | 5~8层 | — | [ |
2022 | 电化学插层 | 六氟磷酸锂 | — | 单层;<1 | 约1 | [ |
多层;<4 | ||||||
2021 | 电化学插层 | 硫酸、磷酸 | 石墨晶粒尺寸急剧减小 | 3~7层 | — | [ |
2020 | 电化学插层 | 高铼酸 | — | — | — | [ |
2020 | 溶剂插层 | 钠萘、N,N-二甲基乙酰胺(DMAC) | — | — | — | [ |
2019 | 电化学插层 | 季铵盐、高氯酸盐 | 短时间内剧烈膨胀 | 1~3层 | 1~5 | [ |
2019 | 溶剂插层 | 碳酸氢铵 | 层与层之间的距离变大 | — | — | [ |
2018 | 溶剂插层 | 氨溶液 | 大大提高石墨烯的剥离效果 | 2.3 | 约3 | [ |
2018 | 溶剂插层 | 尿素(Urea) | 增加石墨层间的间距 | 1 | >2 | [ |
2018 | 化学氧化插层 | 浓硫酸、高锰酸钾 | 石墨颗粒减少 | 约1.2 | — | [ |
2017 | 干球磨插层 | 碳酸氢铵 | — | 5~8层 | 0.4~0.8 | [ |
2017 | 电化学插层 | 四氟硼酸四丁铵 | 石墨显著膨胀 | 4~6层 | 0.4~1.5 | [ |
年份 | 原料 | 膨胀预处理条件 | 膨胀方法 | 膨胀效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2023 | 片状石墨(FG) | 不同比例的FG∶H2SO4∶K2S2O8 | 微波辅助氧化5min,800W 功率下微波辐照40s | 膨胀体积(EV)值至455mL/g | — | — | [ |
2023 | 废石墨(SG) | 硫磷酸和高锰酸钾氧化膨胀 | 80℃干燥6h,900℃马弗炉15s | 层间距由0.338nm 增加到0.392nm | — | — | [ |
2022 | 天然石墨 | 石墨粉与浓硫酸氧化,KMnO4和 过氧化氢混合物 | 800~900℃与水混合1∶3压缩、1200W、30kHz超声 | — | 7~10层 | — | [ |
2022 | FG | FG与27mL PAA和3mL过氧化氢 混合,室温静置10h | 50℃下真空干燥12h,700W微波照射30s | 层间距在0.332~0.335nm内 | 5~8层 | — | [ |
2020 | 六方石墨 | 硝酸、硫酸处理12h | 950℃处理 | — | 3~5层 | — | [ |
2019 | 高定向裂解石墨 | 季铵盐、高氯酸盐电化学插层 | 800℃处理数秒 | 膨胀1000倍 | 1~3层 | 1~5 | [ |
2019 | 插层石墨 | 商业购买 | 800℃处理180s | — | — | — | [ |
2019 | 天然石墨 | 石墨、高锰酸钾、高氯酸、乙酸酐质量比1∶0.5∶1∶0.4混合10s | 720W、2.45GHz微波处理40s | 膨胀至300mL/g | — | — | [ |
2018 | 可膨胀石墨 | — | 750W微波处理1min | — | 3.6 | — | [ |
2018 | 普通石墨 | — | 微波处理10s,冷却20s, 循环处理30min | 层间距增至0.3378nm | 2.3 | 约3 | [ |
2017 | 天然石墨 | 硫酸、过硫酸铵超声混合5min, 再加入石墨搅拌30s | 室温静置12h | 膨胀225倍 | — | — | [ |
2016 | EG | 石墨、甲苯质量比2∶1超声5min | 600W微波照射10min、冷却 | — | 3~12层 | 约10 | [ |
2016 | 六方石墨 | 75℃真空干燥2h后加入饱和硫酸、硝酸处理12h | 800℃处理数秒 | — | <5 | — | [ |
年份 | 原料 | 膨胀预处理条件 | 膨胀方法 | 膨胀效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2023 | 片状石墨(FG) | 不同比例的FG∶H2SO4∶K2S2O8 | 微波辅助氧化5min,800W 功率下微波辐照40s | 膨胀体积(EV)值至455mL/g | — | — | [ |
2023 | 废石墨(SG) | 硫磷酸和高锰酸钾氧化膨胀 | 80℃干燥6h,900℃马弗炉15s | 层间距由0.338nm 增加到0.392nm | — | — | [ |
2022 | 天然石墨 | 石墨粉与浓硫酸氧化,KMnO4和 过氧化氢混合物 | 800~900℃与水混合1∶3压缩、1200W、30kHz超声 | — | 7~10层 | — | [ |
2022 | FG | FG与27mL PAA和3mL过氧化氢 混合,室温静置10h | 50℃下真空干燥12h,700W微波照射30s | 层间距在0.332~0.335nm内 | 5~8层 | — | [ |
2020 | 六方石墨 | 硝酸、硫酸处理12h | 950℃处理 | — | 3~5层 | — | [ |
2019 | 高定向裂解石墨 | 季铵盐、高氯酸盐电化学插层 | 800℃处理数秒 | 膨胀1000倍 | 1~3层 | 1~5 | [ |
2019 | 插层石墨 | 商业购买 | 800℃处理180s | — | — | — | [ |
2019 | 天然石墨 | 石墨、高锰酸钾、高氯酸、乙酸酐质量比1∶0.5∶1∶0.4混合10s | 720W、2.45GHz微波处理40s | 膨胀至300mL/g | — | — | [ |
2018 | 可膨胀石墨 | — | 750W微波处理1min | — | 3.6 | — | [ |
2018 | 普通石墨 | — | 微波处理10s,冷却20s, 循环处理30min | 层间距增至0.3378nm | 2.3 | 约3 | [ |
2017 | 天然石墨 | 硫酸、过硫酸铵超声混合5min, 再加入石墨搅拌30s | 室温静置12h | 膨胀225倍 | — | — | [ |
2016 | EG | 石墨、甲苯质量比2∶1超声5min | 600W微波照射10min、冷却 | — | 3~12层 | 约10 | [ |
2016 | 六方石墨 | 75℃真空干燥2h后加入饱和硫酸、硝酸处理12h | 800℃处理数秒 | — | <5 | — | [ |
年份 | 剥离方法 | DSA | DSA用量/mg·mL-1 | 剥离浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2021 | 超声 | MCC | 石墨质量的一半 | 8.54 | 约6 | 约0.15 | [ |
2019 | 微通道 | 十二烷基硫酸钠(SDS) | 4 | 1.19 | 0.8~1.2 | 约0.54 | [ |
2019 | 微通道 | F127 | 4 | 1.52 | 0.8~1.2 | 约0.58 | [ |
2019 | 微通道 | TW80 | 4 | 1.71 | 0.8~1.2 | 约0.67 | [ |
2019 | 微通道 | SMA | 10 | 0.522 | 5层 | 0.5~0.9 | [ |
2019 | 微通道 | SC | 1 | 0.5 | 0.52~0.92 | 0.3 | [ |
2018 | 超声 | 羧甲基纤维素(CMC) | 2 | 0.1 | — | <1 | [ |
2018 | 高剪切 | NaOH | 0.4 | 50 | <1 | 0.5~5 | [ |
2017 | 高剪切 | SC | 4 | 1.1 | 5层 | 约0.5 | [ |
2017 | 高剪切 | PVP | 20 | 0.7 | 5层 | 约0.5 | [ |
2017 | 超声 | PTCA | 0.6 | 0.8 | 1.5~3 | 约5 | [ |
年份 | 剥离方法 | DSA | DSA用量/mg·mL-1 | 剥离浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2021 | 超声 | MCC | 石墨质量的一半 | 8.54 | 约6 | 约0.15 | [ |
2019 | 微通道 | 十二烷基硫酸钠(SDS) | 4 | 1.19 | 0.8~1.2 | 约0.54 | [ |
2019 | 微通道 | F127 | 4 | 1.52 | 0.8~1.2 | 约0.58 | [ |
2019 | 微通道 | TW80 | 4 | 1.71 | 0.8~1.2 | 约0.67 | [ |
2019 | 微通道 | SMA | 10 | 0.522 | 5层 | 0.5~0.9 | [ |
2019 | 微通道 | SC | 1 | 0.5 | 0.52~0.92 | 0.3 | [ |
2018 | 超声 | 羧甲基纤维素(CMC) | 2 | 0.1 | — | <1 | [ |
2018 | 高剪切 | NaOH | 0.4 | 50 | <1 | 0.5~5 | [ |
2017 | 高剪切 | SC | 4 | 1.1 | 5层 | 约0.5 | [ |
2017 | 高剪切 | PVP | 20 | 0.7 | 5层 | 约0.5 | [ |
2017 | 超声 | PTCA | 0.6 | 0.8 | 1.5~3 | 约5 | [ |
年份 | 剥离方法 | 溶剂 | 沸点/℃ | 黏度/mPa·s | 表面张力/mN·m-1 | 分散浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||||
2020 | 超声 | TCM | 61.2 | 0.539 | 26.5 | 0.12 | 约2 | 约0.5 | [ |
2020 | 超声 | DMF | 153.0 | 0.815 | 35.9 | 0.0781 | — | 3~5 | [ |
2019 | 高剪切 | PG | 184.8 | 40.7 | 36.0 | 高于同条件NMP | — | — | [ |
2019 | 球磨 | THF | 68.3 | 0.456 | 26.7 | 0.6 | 0.6~1 | — | [ |
2019 | 球磨 | 丙酮(PK) | 56.5 | 0.306 | 22.7 | 0.32 | 0.6~1 | — | [ |
2019 | 球磨 | IPA | 82.5 | 2.05 | 21.0 | 极低 | 0.6~1 | — | [ |
2018 | 微通道 | NMP | 202.0 | 1.89 | 40.8 | 0.65 | 0.7 | — | [ |
2018 | 超声 | 甲苯(MB) | 110.6 | 0.554 | 27.9 | 0.33 | <10 | 2~10 | [ |
2017 | 超声 | DMSO | 189.0 | 1.98 | 43.2 | 0.065 | 约6.55 | 约0.5 | [ |
2016 | 超声 | 环己酮(CYC) | 155.8 | 2.02 | 34.4 | 0.141 | 1.2 | — | [ |
2016 | 超声 | THF | 68.3 | 0.456 | 26.7 | 0.02 | 1.2 | — | [ |
年份 | 剥离方法 | 溶剂 | 沸点/℃ | 黏度/mPa·s | 表面张力/mN·m-1 | 分散浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||||
2020 | 超声 | TCM | 61.2 | 0.539 | 26.5 | 0.12 | 约2 | 约0.5 | [ |
2020 | 超声 | DMF | 153.0 | 0.815 | 35.9 | 0.0781 | — | 3~5 | [ |
2019 | 高剪切 | PG | 184.8 | 40.7 | 36.0 | 高于同条件NMP | — | — | [ |
2019 | 球磨 | THF | 68.3 | 0.456 | 26.7 | 0.6 | 0.6~1 | — | [ |
2019 | 球磨 | 丙酮(PK) | 56.5 | 0.306 | 22.7 | 0.32 | 0.6~1 | — | [ |
2019 | 球磨 | IPA | 82.5 | 2.05 | 21.0 | 极低 | 0.6~1 | — | [ |
2018 | 微通道 | NMP | 202.0 | 1.89 | 40.8 | 0.65 | 0.7 | — | [ |
2018 | 超声 | 甲苯(MB) | 110.6 | 0.554 | 27.9 | 0.33 | <10 | 2~10 | [ |
2017 | 超声 | DMSO | 189.0 | 1.98 | 43.2 | 0.065 | 约6.55 | 约0.5 | [ |
2016 | 超声 | 环己酮(CYC) | 155.8 | 2.02 | 34.4 | 0.141 | 1.2 | — | [ |
2016 | 超声 | THF | 68.3 | 0.456 | 26.7 | 0.02 | 1.2 | — | [ |
年份 | 剥离方法 | 分散剂组成 | 浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2020 | 高剪切 | 环氧树脂(EP)∶PK=1∶3(质量比) | 0.17mg/g | — | — | [ |
2019 | 超声 | 水∶NMP=1∶4(质量比) | 0.43 | 2~4 | — | [ |
2019 | 超声 | 1mg/mL的腺嘌呤桥接芳苯二腈(AAPN)/NMP | 0.07 | — | — | [ |
2018 | 微通道 | 水∶NMP=1∶4(质量比) | 0.4 | 2.3 | 1.9 | [ |
2018 | 超声 | 水∶TMU=3∶7(体积比) | 0.992 | — | — | [ |
2018 | 微通道 | IPA∶水=2∶3(体积比) | 1 | 约0.9 | — | [ |
2017 | 微通道 | 0.5mg/mL的NaOH/NMP | 0.47 | — | 约0.6 | [ |
2017 | 超声 | 2mg/mL的蒽(Anthr)/苄腈(BZN) | 0.03 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/NMP | 0.04 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/邻二氯苯(ODCB) | 0.04 | — | — | [ |
2017 | 高剪切 | 1mmol/L的四丁基季铵盐(Bu4N+)/NMP | 1 | 4~6层 | 0.4~1.5 | [ |
2016 | 超声 | 16.2mmol/L的偶氮苯(Azobenzene)/NMP | 0.11 | — | — | [ |
年份 | 剥离方法 | 分散剂组成 | 浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2020 | 高剪切 | 环氧树脂(EP)∶PK=1∶3(质量比) | 0.17mg/g | — | — | [ |
2019 | 超声 | 水∶NMP=1∶4(质量比) | 0.43 | 2~4 | — | [ |
2019 | 超声 | 1mg/mL的腺嘌呤桥接芳苯二腈(AAPN)/NMP | 0.07 | — | — | [ |
2018 | 微通道 | 水∶NMP=1∶4(质量比) | 0.4 | 2.3 | 1.9 | [ |
2018 | 超声 | 水∶TMU=3∶7(体积比) | 0.992 | — | — | [ |
2018 | 微通道 | IPA∶水=2∶3(体积比) | 1 | 约0.9 | — | [ |
2017 | 微通道 | 0.5mg/mL的NaOH/NMP | 0.47 | — | 约0.6 | [ |
2017 | 超声 | 2mg/mL的蒽(Anthr)/苄腈(BZN) | 0.03 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/NMP | 0.04 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/邻二氯苯(ODCB) | 0.04 | — | — | [ |
2017 | 高剪切 | 1mmol/L的四丁基季铵盐(Bu4N+)/NMP | 1 | 4~6层 | 0.4~1.5 | [ |
2016 | 超声 | 16.2mmol/L的偶氮苯(Azobenzene)/NMP | 0.11 | — | — | [ |
年份 | 超声剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 方法 | 时间/h | 浓度/mg·mL-1 | 体积/mL | 浓度/mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速/103r·min-1 | 时间/min | ||
2021 | Water-MCC | 浴式 | 5 | 97.5 | — | 8.54 | 约6 | 约0.15 | 0.53 | 1.5 | 15 | [ |
2020 | TMC-HBPE | 浴式 | — | 10 | 80 | 0.12 | 约2 | 约0.5 | — | 4 | 45 | [ |
2018 | Water-TA | 浴式 | 1 | 50 | 50 | 1.25 | 0.75~1.85 | 0.8~6.5 | 0.31 | 3 | 60 | [ |
2018 | Ethanol-Water | 尖端 | 1~3 | — | — | — | — | 1~3 | 0.1~0.3 | 1 | 30 | [ |
2017 | DMSO | 浴式 | 12 | 10 | — | 0.065 | 6.55 | 约0.5 | — | 3.5 | — | [ |
2017 | Water-PTCA | 浴式 | 12 | 5 | 400 | 0.3~0.8 | 1.5~3 | 约5 | 0.38~0.45 | — | — | [ |
2016 | NMP-azobenzene | 尖端 | 3 | 100 | 10 | 0.11 | — | 约0.2 | — | 10 | 60 | [ |
2015 | NMP | 尖端 | 1/6 | 50 | 100 | 1.8 | 约4.53层 | 约0.92 | 0.2~0.4 | 1.5 | 45 | [ |
2010 | NMP | 浴式 | 460 | 3.3 | 700 | 1.2 | — | — | — | — | — | [ |
年份 | 超声剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 方法 | 时间/h | 浓度/mg·mL-1 | 体积/mL | 浓度/mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速/103r·min-1 | 时间/min | ||
2021 | Water-MCC | 浴式 | 5 | 97.5 | — | 8.54 | 约6 | 约0.15 | 0.53 | 1.5 | 15 | [ |
2020 | TMC-HBPE | 浴式 | — | 10 | 80 | 0.12 | 约2 | 约0.5 | — | 4 | 45 | [ |
2018 | Water-TA | 浴式 | 1 | 50 | 50 | 1.25 | 0.75~1.85 | 0.8~6.5 | 0.31 | 3 | 60 | [ |
2018 | Ethanol-Water | 尖端 | 1~3 | — | — | — | — | 1~3 | 0.1~0.3 | 1 | 30 | [ |
2017 | DMSO | 浴式 | 12 | 10 | — | 0.065 | 6.55 | 约0.5 | — | 3.5 | — | [ |
2017 | Water-PTCA | 浴式 | 12 | 5 | 400 | 0.3~0.8 | 1.5~3 | 约5 | 0.38~0.45 | — | — | [ |
2016 | NMP-azobenzene | 尖端 | 3 | 100 | 10 | 0.11 | — | 约0.2 | — | 10 | 60 | [ |
2015 | NMP | 尖端 | 1/6 | 50 | 100 | 1.8 | 约4.53层 | 约0.92 | 0.2~0.4 | 1.5 | 45 | [ |
2010 | NMP | 浴式 | 460 | 3.3 | 700 | 1.2 | — | — | — | — | — | [ |
年份 | 高剪切剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 转速 /103r·min-1 | 时间/h | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2021 | 水-SC | 16.5 | 2 | 100 | — | 3 | 3 | 5层 | — | — | 1.5 | 60 | [ |
2019 | 水-氧化石墨 | 4 | 6 | 37.5 | 0.4 | 3.96 | — | 0.89 | 5~10 | 0.95 | 3 | 15 | [ |
2018 | 水-NaOH | 20 | 1 | 50 | 2 | 50 | 82.5 | — | — | 0.23 | 10 | 10 | [ |
2017 | 水-PVP | 20 | 2 | 40 | 0.5 | 1.1 | — | 5层 | 0.5 | 0.1~0.3 | 4.7 | 60 | [ |
2014 | NMP | 4.5 | 1~3 | 50 | 4.5 | — | 3 | 5~8层 | 0.3~0.8 | — | 420g | 150 | [ |
2014 | NMP | 3 | 约4 | 100 | 300 | 0.07 | — | — | — | 0.18 | — | — | [ |
2014 | 水-IPA | — | 1 | 10 | — | 0.27 | — | 2 | 1 | 0.14~0.18 | 0.45 | 45 | [ |
2013 | NMP | 6 | 1 | 1 | 0.1 | 0.211 | 16 | 4~6层 | 0.4~1.5 | 0.14~0.34 | 750g | 20 | [ |
年份 | 高剪切剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 转速 /103r·min-1 | 时间/h | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2021 | 水-SC | 16.5 | 2 | 100 | — | 3 | 3 | 5层 | — | — | 1.5 | 60 | [ |
2019 | 水-氧化石墨 | 4 | 6 | 37.5 | 0.4 | 3.96 | — | 0.89 | 5~10 | 0.95 | 3 | 15 | [ |
2018 | 水-NaOH | 20 | 1 | 50 | 2 | 50 | 82.5 | — | — | 0.23 | 10 | 10 | [ |
2017 | 水-PVP | 20 | 2 | 40 | 0.5 | 1.1 | — | 5层 | 0.5 | 0.1~0.3 | 4.7 | 60 | [ |
2014 | NMP | 4.5 | 1~3 | 50 | 4.5 | — | 3 | 5~8层 | 0.3~0.8 | — | 420g | 150 | [ |
2014 | NMP | 3 | 约4 | 100 | 300 | 0.07 | — | — | — | 0.18 | — | — | [ |
2014 | 水-IPA | — | 1 | 10 | — | 0.27 | — | 2 | 1 | 0.14~0.18 | 0.45 | 45 | [ |
2013 | NMP | 6 | 1 | 1 | 0.1 | 0.211 | 16 | 4~6层 | 0.4~1.5 | 0.14~0.34 | 750g | 20 | [ |
年份 | 微通道 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 通道宽度 /μm | 通道形式 | 压力 /MPa | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2019 | 水-TW80 | 约100 | Y型 | 100 | 10 | 0.5 | 1.71 | 0.8~1.2 | 0.4~1.1 | 0.07~0.56 | 3 | 30 | [ |
2019 | 水-SMA | — | Y型 | 120 | 15 | 0.5 | 0.522 | 5层 | 0.5~0.9 | 0.38 | 3 | 30 | [ |
2019 | 水-SC | 132 | — | — | 50 | 0.4 | 0.11 | — | 0.3 | — | 2 | 60 | [ |
2018 | NMP | — | 针阀型 | 20 | 10 | — | 0.4 | 2.3 | 1.9 | 0.1 | 0.5 | 60 | [ |
2017 | 水-SC | 87 | Z型 | 209 | 10 | — | 0.31 | 2~4 | 1.43 | 1.4 | 1 | — | [ |
2017 | DMF | — | Nanovater L-ED | 30~35 | 5 | 0.1 | 0.94 | — | — | 0.34 | 1.5 | 45 | [ |
2017 | 水-CMC | 约100 | Z型 | 207 | 100 | — | 100 | 19 | 约1.1 | 3.2 | — | — | [ |
2016 | 水-聚乙烯醇 (PVA) | 10 | 15MR, APV Gaulin | 50 | 40 | 1 | 7 | — | 1.4 | 0.21 | 1.5 | 45 | [ |
年份 | 微通道 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 通道宽度 /μm | 通道形式 | 压力 /MPa | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2019 | 水-TW80 | 约100 | Y型 | 100 | 10 | 0.5 | 1.71 | 0.8~1.2 | 0.4~1.1 | 0.07~0.56 | 3 | 30 | [ |
2019 | 水-SMA | — | Y型 | 120 | 15 | 0.5 | 0.522 | 5层 | 0.5~0.9 | 0.38 | 3 | 30 | [ |
2019 | 水-SC | 132 | — | — | 50 | 0.4 | 0.11 | — | 0.3 | — | 2 | 60 | [ |
2018 | NMP | — | 针阀型 | 20 | 10 | — | 0.4 | 2.3 | 1.9 | 0.1 | 0.5 | 60 | [ |
2017 | 水-SC | 87 | Z型 | 209 | 10 | — | 0.31 | 2~4 | 1.43 | 1.4 | 1 | — | [ |
2017 | DMF | — | Nanovater L-ED | 30~35 | 5 | 0.1 | 0.94 | — | — | 0.34 | 1.5 | 45 | [ |
2017 | 水-CMC | 约100 | Z型 | 207 | 100 | — | 100 | 19 | 约1.1 | 3.2 | — | — | [ |
2016 | 水-聚乙烯醇 (PVA) | 10 | 15MR, APV Gaulin | 50 | 40 | 1 | 7 | — | 1.4 | 0.21 | 1.5 | 45 | [ |
年份 | 设备 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 设备类型 | 转速 /103r·min-1 | 时间 /h | 浓度 /mg·mL-1 | 处理 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间/min | ||
2021 | 可口可乐 | 旋片 | — | 8 | 110 | 0.4 | 2 | 1.6 | — | — | 0.39 | 5 | 5 | [ |
2020 | DMF | 旋片 | 6 | 1 | 3 | 0.5 | — | — | 0.4~1 | — | 0.505 | — | — | [ |
2017 | 动物血清溶液 | 旋片 | 17 | 1 | 100 | 0.2 | 5 | 5 | 3~4层 | 0.5 | 0.32 | 1.5 | 45 | [ |
2016 | NMP | 泰勒流 | 1.5 | 1 | 50 | 0.2 | 0.65 | 1.1 | 0.16 | 0.5~1.5 | 0.14 | 1 | 30 | [ |
2016 | DMF | 旋片 | 5 | 8 | 3 | 0.4 | 0.22 | 7.3 | 1.5 | — | 0.12 | 0.5 | 45 | [ |
2014 | NMP | 旋转管 | 7 | 0.5 | — | 0.001 | — | — | 约1 | 约1 | — | — | — | [ |
2012 | Water-SDBS | 超重力 | 1 | 8 | 10 | 0.3 | 0.31 | — | 2.98 | 0.2~2.6 | 0.17 | 4 | 2 | [ |
年份 | 设备 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 设备类型 | 转速 /103r·min-1 | 时间 /h | 浓度 /mg·mL-1 | 处理 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间/min | ||
2021 | 可口可乐 | 旋片 | — | 8 | 110 | 0.4 | 2 | 1.6 | — | — | 0.39 | 5 | 5 | [ |
2020 | DMF | 旋片 | 6 | 1 | 3 | 0.5 | — | — | 0.4~1 | — | 0.505 | — | — | [ |
2017 | 动物血清溶液 | 旋片 | 17 | 1 | 100 | 0.2 | 5 | 5 | 3~4层 | 0.5 | 0.32 | 1.5 | 45 | [ |
2016 | NMP | 泰勒流 | 1.5 | 1 | 50 | 0.2 | 0.65 | 1.1 | 0.16 | 0.5~1.5 | 0.14 | 1 | 30 | [ |
2016 | DMF | 旋片 | 5 | 8 | 3 | 0.4 | 0.22 | 7.3 | 1.5 | — | 0.12 | 0.5 | 45 | [ |
2014 | NMP | 旋转管 | 7 | 0.5 | — | 0.001 | — | — | 约1 | 约1 | — | — | — | [ |
2012 | Water-SDBS | 超重力 | 1 | 8 | 10 | 0.3 | 0.31 | — | 2.98 | 0.2~2.6 | 0.17 | 4 | 2 | [ |
1 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
2 | LEE Changgu, WEI Xiaoding, KYSAR Jeffrey W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
3 | BALANDIN A A, GHOSH S, BAO Wenzhong, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. |
4 | BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9/10): 351-355. |
5 | PUAH Perng Yang, YUSOFF Umul Hanim, LEE Ping Chin, et al. Surface characterization, biocompatibility and osteogenic differentiation of drop-casted multilayer graphene oxide film towards human wharton’s jelly derived mesenchymal stem cells[J]. Materials Technology, 2020, 35(4): 238-247. |
6 | MALLICK Madhusmita, ARUNACHALAM N. Electrophoretic deposited graphene based functional coatings for biocompatibility improvement of Nitinol[J]. Thin Solid Films, 2019, 692: 137616. |
7 | HAN X, CHEN Y, ZHU H, et al. Scalable, printable, surfactant-free graphene ink directly from graphite[J]. Nanotechnology, 2013, 24(20): 205304. |
8 | YAN Yinglin, LIN Jiaming, CHEN Shiyu, et al. Investigation on the electrochemical properties of antimony tin oxide nanoparticle-modified graphene aerogel as cathode matrix in lithium-sulfur battery[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 7027-7033. |
9 | 张利辉, 徐宇兴, 刘振法, 等. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019, 38(2): 949-955. |
ZHANG Lihui, XU Yuxing, LIU Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 949-955. | |
10 | LI Chuanchuan, ZHU Lin, QI Siyun, et al. Ultrahigh-areal-capacity battery anodes enabled by free-standing vanadium Nitride@N-doped carbon/graphene architecture[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49607-49616. |
11 | ZHENG Yanmei, LIU Yuanyuan, GUO Xinli, et al. S, Na co-doped graphitic carbon nitride/reduced graphene oxide hollow mesoporous spheres for photoelectrochemical catalysis application[J]. ACS Applied Nano Materials, 2020, 3(8): 7982-7991. |
12 | SHI Heng, HE Yi, LI Yubin, et al. Mixed-dimensional assembled superhydrophilic graphene-based aerogel with enhanced mass/charge transportation for efficient photoredox catalysis[J]. Separation and Purification Technology, 2020, 252: 117454. |
13 | 陈思, 胡腾飞, 于永波, 等. 硫掺杂石墨烯电催化降解有机染料甲基橙[J]. 化工进展, 2021, 40(1): 550-558. |
CHEN Si, HU Tengfei, YU Yongbo, et al. Electrocatalytic degradation of organic dye methyl orange by sulfur-doped graphene[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 550-558. | |
14 | MANNA Kausik, WANG Long, Kenneth J LOH, et al. Printed strain sensors using graphene nanosheets prepared by water-assisted liquid phase exfoliation[J]. Advanced Materials Interfaces, 2019, 6(9): 1900034. |
15 | MIAO Dandan, LI Jianjun, YANG Ran, et al. Supersensitive electrochemical sensor for the fast determination of rutin in pharmaceuticals and biological samples based on poly(diallyldimethylammonium chloride)-functionalized graphene[J]. Journal of Electroanalytical Chemistry, 2014, 732: 17-24. |
16 | YU Yong, WU Laosheng. Application of graphene for the analysis of pharmaceuticals and personal care products in wastewater[J]. Analytical and Bioanalytical Chemistry, 2013, 405(14): 4913-4919. |
17 | KUMAR Neeraj, SALEHIYAN Reza, CHAUKE Vongani, et al. Top-down synthesis of graphene: A comprehensive review[J]. FlatChem, 2021, 27: 100224. |
18 | AMIRI Ahmad, NARAGHI Mohammad, AHMADI Goodarz, et al. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges[J]. FlatChem, 2018, 8: 40-71. |
19 | XU Yanyan, CAO Huizhe, XUE Yanqin, et al. Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges[J]. Nanomaterials, 2018, 8(11): 942. |
20 | YOON Gabin, SEO Dong-Hwa, KU Kyojin, et al. Factors affecting the exfoliation of graphite intercalation compounds for graphene synthesis[J]. Chemistry of Materials, 2015, 27(6): 2067-2073. |
21 | WEI Qun, XU Lei, TANG Zhimeng, et al. High-performance expanded graphite from flake graphite by microwave-assisted chemical intercalation process[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 562-572. |
22 | HYO-GUK U, HONG J-C, KIM S-I, et al. Fabrication of low defect multi-layer graphene using electrochemical intercalation of graphite electrode and its application for graphene/Al nanocomposites[J]. Chemical Physics Letters, 2023, 825: 140592. |
23 | YU M, ZHU Y R, LIN R P, et al. Study on preparation of few layers graphene in the C2H4O3-based system under the assist of microwave irradiation and its capacitive performance[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(12): 9785-9797. |
24 | YANG Ruijie, MEI Liang, ZHANG Qingyong, et al. High-yield production of mono-or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method[J]. Nature Protocols, 2022, 17(2): 358-377. |
25 | MOMODU Damilola, MADITO Moshawe J, SINGH Ashutosh, et al. Mixed-acid intercalation for synthesis of a high conductivity electrochemically exfoliated graphene[J]. Carbon, 2021, 171: 130-141. |
26 | Bartosz GURZĘDA, BUCHWALD Tomasz, KRAWCZYK Piotr. Thermal exfoliation of electrochemically synthesized graphite intercalation compound with perrhenic acid[J]. Journal of Solid State Electrochemistry, 2020, 24(6): 1363-1370. |
27 | Heather AU, RUBIO Noelia, BUCKLEY David J, et al. Thermal decomposition of ternary sodium graphite intercalation compounds[J]. Chemistry: A European Journal, 2020, 26(29): 6545-6553. |
28 | ZHANG Yuan, XU Youlong. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene[J]. Advanced Functional Materials, 2019, 29(37): 1902171. |
29 | YU Zhenzhu, Fei NAN, SU Lu, et al. Effect of ammonium bicarbonate on intercalation and exfoliation of graphite materials[J]. Journal of Nanomaterials, 2019, 2019: 1-8. |
30 | JIANG Feng, YU Yun, FENG Aihu, et al. Effects of ammonia on graphene preparation via microwave assisted intercalation exfoliation method[J]. Ceramics International, 2018, 44(11): 12763-12766. |
31 | HOU Dandan, LIU Qinfu, WANG Xianshuai, et al. Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene[J]. Chemical Physics Letters, 2018, 700: 108-113. |
32 | CHONG Kai Yin, CHIA Chin Hua, CHOOK Soon Wei, et al. Simplified production of graphene oxide assisted by high shear exfoliation of graphite with controlled oxidation[J]. New Journal of Chemistry, 2018, 42(6): 4507-4512. |
33 | LIN Juxiang, HUANG Yajing, WANG Shi, et al. Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9341-9346. |
34 | BJERGLUND Emil Tveden, KRISTENSEN Michael Ellevang Pagh, STAMBULA Samantha, et al. Efficient graphene production by combined bipolar electrochemical intercalation and high-shear exfoliation[J]. ACS Omega, 2017, 2(10): 6492-6499. |
35 | 杨锐捷, 曾志远. 原子薄层材料的插层剥离制备[J]. 科学通报, 2023, 68(11): 1281-1283. |
YANG Ruijie, ZENG Zhiyuan. Synthesis of atomically thin materials via an intercalation-based exfoliation strategy[J]. Chinese Science Bulletin, 2023, 68(11): 1281-1283. | |
36 | GONG Haiqiang, XIAO Hougui, YE Long, et al. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method[J]. Waste Management, 2023, 171: 292-302. |
37 | STRATIVNOV E, KHOVAVKO A, GUACHAO N. Obtaining of globular graphene based on thermally expanded graphite[J]. Applied Nanoscience, 2022, 12(10): 2791-2811. |
38 | LIU Ting, ZHANG Ruijun, ZHANG Xuesha, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119: 544-547. |
39 | Ömer GÜLER, Ali SÖNMEZ. The effect of liquid media on the efficiency of graphene production by liquid-phase exfoliation from micromechanically pre-exfoliated graphite[J]. Journal of Electronic Materials, 2020, 49(9): 5335-5345. |
40 | LIONETTO Francesca, Roberto LÓPEZ-MUÑOZ, Carlos ESPINOZA-GONZÁLEZ, et al. A study on exfoliation of expanded graphite stacks in candelilla wax[J]. Materials, 2019, 12(16): 2530. |
41 | HOANG Ngoc Bich, NGUYEN Thi Thuong, NGUYEN Tien Sy, et al. The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution[J]. Cogent Engineering, 2019, 6(1): 1584939. |
42 | ZDRAZIL L, ZAHRADNICEK R, MOHAN R, et al. Preparation of graphene quantum dots through liquid phase exfoliation method[J]. Journal of Luminescence, 2018, 204: 203-208. |
43 | PIRZADO Azhar, DALMAS Guillaume, Lam NGUYEN-DINH, et al. The electrical property of large few layer graphene flakes obtained by microwaves assisted exfoliation of expanded graphite[J]. Current Microwave Chemistry, 2016, 3(2): 139-144. |
44 | GÜLER Ö, GÜLER S H, SELEN V, et al. Production of graphene layer by liquid-phase exfoliation with low sonication power and sonication time from synthesized expanded graphite[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2016, 24(2): 123-127. |
45 | HERNANDEZ Yenny, NICOLOSI Valeria, LOTYA Mustafa, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. |
46 | PATON K R, VARRLA E, BACKES C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624-630. |
47 | COLEMAN J N. Liquid-phase exfoliation of nanotubes and graphene[J]. Advanced Functional Materials, 2009, 19(23): 3680-3695. |
48 | COLEMAN J N. Liquid exfoliation of defect-free graphene[J]. Accounts of Chemical Research, 2013, 46(1): 14-22. |
49 | NARAYAN Rekha, KIM Sang Ouk. Surfactant mediated liquid phase exfoliation of graphene[J]. Nano Convergence, 2015, 2(1): 1-19. |
50 | YI Min, SHEN Zhigang, LIANG Shuaishuai, et al. Water can stably disperse liquid-exfoliated graphene[J]. Chemical Communications, 2013, 49(94): 11059-11061. |
51 | WANG Yuzhou, CHEN Tian, LIU Haihui, et al. Direct liquid phase exfoliation of graphite to produce few-layer graphene by microfluidization[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(4): 2078-2086. |
52 | YU Pengxiang, WANG Xiao, ZHANG Kangmin, et al. Aqueous cellulose solution assisted direct exfoliation of graphite to high concentration graphene dispersion[J]. Materials Letters, 2021, 285: 129081. |
53 | DONG Lei, CHEN Zhongxin, ZHAO Xiaoxu, et al. A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water[J]. Nature Communications, 2018, 9: 76. |
54 | WANG Yuzhou, ZHANG Xianye, LIU Haihui, et al. SMA-assisted exfoliation of graphite by microfluidization for efficient and large-scale production of high-quality graphene[J]. Nanomaterials, 2019, 9(12): 1653. |
55 | QIU Xiaoyu, BOUCHIAT Vincent, COLOMBET Damien, et al. Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip’[J]. RSC Advances, 2019, 9(6): 3232-3238. |
56 | SINAR D, KNOPF G K. Cyclic liquid-phase exfoliation of electrically conductive graphene-derivative inks[J]. IEEE Transactions on Nanotechnology, 2018, 17(5): 1020-1028. |
57 | PHIRI J, GANE P, MALONEY T C. High-concentration shear-exfoliated colloidal dispersion of surfactant-polymer-stabilized few-layer graphene sheets[J]. Journal of Materials Science, 2017, 52(13): 8321-8337. |
58 | NARAYAN Rekha, Joonwon LIM, JEON Taewoo, et al. Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents[J]. Carbon, 2017, 119: 555-568. |
59 | SALAVAGIONE H J, SHERWOOD J, DE BRUYN M, et al. Identification of high performance solvents for the sustainable processing of graphene[J]. Green Chemistry, 2017, 19(11): 2550-2560. |
60 | LIN Zaw, KARTHIK Paneer Selvam, HADA Masaki, et al. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication[J]. Nanomaterials, 2017, 7(6): 125. |
61 | ARAO Yoshihiko, MIZUNO Yoshinori, ARAKI Kunihiro, et al. Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow[J]. Carbon, 2016, 102: 330-338. |
62 | KHAN Umar, Arlene O’NEILL, LOTYA Mustafa, et al. High-concentration solvent exfoliation of graphene[J]. Small, 2010, 6(7): 864-871. |
63 | KHAN Umar, Arlene O’NEILL, PORWAL Harshit, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475. |
64 | COOPER A J, WILSON N R, KINLOCH I A, et al. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations[J]. Carbon, 2014, 66: 340-350. |
65 | LI Liangchuan, ZHOU Ming, JIN Long, et al. Research progress of the liquid-phase exfoliation and stable dispersion mechanism and method of graphene[J]. Frontiers in Materials, 2019, 6: 325. |
66 | Ömer GÜLER, Mükremin TEKELI, Mustafa TAŞKıN, et al. The production of graphene by direct liquid phase exfoliation of graphite at moderate sonication power by using low boiling liquid media: The effect of liquid media on yield and optimization[J]. Ceramics International, 2021, 47(1): 521-533. |
67 | KONIOS D, STYLIANAKIS M M, STRATAKIS E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of Colloid and Interface Science, 2014, 430: 108-112. |
68 | LIU Lei, SHEN Zhigang, ZHANG Xiaojing, et al. Low-temperature treatment for preservation and separation of graphene dispersions[J]. Journal of Materials Science, 2018, 53(19): 13875-13885. |
69 | TRAN Tuan Sang, PARK Seung Jun, YOO Sung Sic, et al. High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow[J]. RSC Advances, 2016, 6(15): 12003-12008. |
70 | WAN Qiang, WANG Huiyong, LI Shuangyu, et al. Efficient liquid-phase exfoliation of few-layer graphene in aqueous 1, 1, 3, 3-tetramethylurea solution[J]. Journal of Colloid and Interface Science, 2018, 526: 167-173. |
71 | O’NEILL A, KHAN U, NIRMALRAJ P N, et al. Graphene dispersion and exfoliation in low boiling point solvents[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5422-5428. |
72 | DIASIO Matthew A, GREEN David L. The effect of solvent viscosity on production of few-layer graphene from liquid-phase exfoliation of graphite[J]. MRS Advances, 2019, 4(3): 241-247. |
73 | HAN Bo, SONG Jinwei, HU Te, et al. High thermal conductivity in polydimethylsiloxane composite with vertically oriented graphene nanosheets by liquid-phase exfoliation[J]. Chemical Physics Letters, 2020, 743: 137156. |
74 | ELUMALAI Satheeshkumar, BATHIR JABER Simahudeen, CHANDRASEKARAN Suryanarayanan, et al. An experimental and steered molecular dynamics simulation approach to histidine assisted liquid-phase exfoliation of graphite into few-layer graphene[J]. Physical Chemistry Chemical Physics, 2020, 22(18): 9910-9914. |
75 | ARAO Yoshihiko, KUWAHARA Riichi, OHNO Kaoru, et al. Mass production of low-boiling point solvent- and water-soluble graphene by simple salt-assisted ball milling[J]. Nanoscale Advances, 2019, 1(12): 4955-4964. |
76 | IGUCHI Hiroki, MIYAHARA Koki, HIGASHI Chisato, et al. Preparation of uncurled and planar multilayered graphene using polythiophene derivatives via liquid-phase exfoliation of graphite[J]. FlatChem, 2018, 8: 31-39. |
77 | SHAH Syed Sajid ALI, NASIR Habib. Liquid-phase exfoliation of few-layer graphene and effect of sonication time on concentration of produced few layer graphene[J]. Nano Hybrids and Composites, 2017, 14: 17-24. |
78 | CIESIELSKI Artur, Paolo SAMORÌ. Supramolecular approaches to graphene: From self-assembly to molecule-assisted liquid-phase exfoliation[J]. Advanced Materials, 2016, 28(29): 6030-6051. |
79 | NODA Kyohei, IGARASHI Yasuhiko, IMAI Hiroaki, et al. Yield-prediction models for efficient exfoliation of soft layered materials into nanosheets[J]. Chemical Communications, 2021, 57(48): 5921-5924. |
80 | ORAWIEC Marcin, BELTON Daniel, TELFORD Richard, et al. Application of semi-in situ liquid exfoliation of graphite to the scalable production of graphene-epoxy nanocomposites[J]. Polymer Composites, 2020, 41(11): 4933-4944. |
81 | LIU Yao, LI Renke, LIANG Bo, et al. Bio-adenine-bridged molecular design approach toward non-covalent functionalized graphene by liquid-phase exfoliation[J]. Journal of Materials Science, 2020, 55(1): 140-150. |
82 | ZHANG Zhiliang, JIN Hailun, WU Chenyu, et al. Efficient production of high-quality few-layer graphene using a simple hydrodynamic-assisted exfoliation method[J]. Nanoscale Research Letters, 2018, 13(1): 416. |
83 | Mori Fumiya, Kubouchi Masatoshi, Arao Yoshihiko. Effect of graphite structures on the productivity and quality of few-layer graphene in liquid-phase exfoliation[J]. Journal of Materials Science, 2018, 53(18): 12807-12815. |
84 | WANG Yuzhou, CHEN Tian, GAO Xuefeng, et al. Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization[J]. Materials Express, 2017, 7(6): 491-499. |
85 | Singh Randhir, Chandra Charu Tripathi. Enhancing liquid-phase exfoliation of graphene with addition of anthracene in organic solvents[J]. Arabian Journal for Science and Engineering, 2017, 42(6): 2417-2424. |
86 | ARAO Yoshihiko, MORI Fumiya, KUBOUCHI Masatoshi. Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation[J]. Carbon, 2017, 118: 18-24. |
87 | RAVULA S, BAKER S N, KAMATH G, et al. Ionic liquid-assisted exfoliation and dispersion: Stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions[J]. Nanoscale, 2015, 7(10): 4338-4353. |
88 | Bordes Emilie, Morcos Bishoy, Bourgogne David, et al. Dispersion and stabilization of exfoliated graphene in ionic liquids[J]. Frontiers in Chemistry, 2019, 7: 223. |
89 | LIU Chengbao, QIU Shihui, DU Peng, et al. An ionic liquid-graphene oxide hybrid nanomaterial: Synthesis and anticorrosive applications[J]. Nanoscale, 2018, 10(17): 8115-8124. |
90 | SUN Zhenyu, FAN Qun, ZHANG Mingli, et al. Supercritical fluid-facilitated exfoliation and processing of 2D materials[J]. Advanced Science, 2019, 6(18): 1901084. |
91 | PADMAJAN SASIKALA Suchithra, POULIN Philippe, AYMONIER Cyril. Prospects of supercritical fluids in realizing graphene-based functional materials[J]. Advanced Materials, 2016, 28(14): 2663-2691. |
92 | HADI Alireza, Javad KARIMI-SABET, MOOSAVIAN Seyed Mohammad ALI, et al. Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach[J]. The Journal of Supercritical Fluids, 2016, 107: 92-105. |
93 | GAO Hanyang, ZHU Kunxu, HU Guoxin, et al. Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium[J]. Chemical Engineering Journal, 2017, 308: 872-879. |
94 | LUND Sara, KAUPPILA Jussi, Saara SIRKIÄ, et al. Fast high-shear exfoliation of natural flake graphite with temperature control and high yield[J]. Carbon, 2021, 174: 123-131. |
95 | WEI Ying, SUN Zhenyu. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6): 311-321. |
96 | Khanam Zeba, LIU Jianghe, SONG Shenhua. High-concentration graphene dispersions prepared via exfoliation of graphite in PVA/H2O green solvent system using high-shear forces[J]. Journal of Nanoparticle Research, 2021, 23(8): 170. |
97 | HUSSEIN Arab H, DONG Zhizhong, Jennifer LYNCH-BRANZOI, et al. Graphene-reinforced polymer matrix composites fabricated by in situ shear exfoliation of graphite in polymer solution: Processing, rheology, microstructure, and properties[J]. Nanotechnology, 2021, 32(17): 175703. |
98 | YI Min, SHEN Zhigang. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. |
99 | ZHAO Shuai, XIE Shicheng, ZHAO Zheng, et al. Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7652-7661. |
100 | CAI Xinzhi, JIANG Zeyi, ZHANG Xinru, et al. Effects of tip sonication parameters on liquid phase exfoliation of graphite into graphene nanoplatelets[J]. Nanoscale Research Letters, 2018, 13(1): 241. |
101 | Markus DÖBBELIN, CIESIELSKI Artur, HAAR Sébastien, et al. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites[J]. Nature Communications, 2016, 7: 11090. |
102 | ARAO Yoshihiko, KUBOUCHI Masatoshi. High-rate production of few-layer graphene by high-power probe sonication[J]. Carbon, 2015, 95: 802-808. |
103 | PARVIZ Dorsa, IRIN Fahmida, SHAH Smit A, et al. Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene[J]. Advanced Materials, 2016, 28(40): 8796-8818. |
104 | CONTRERAS-PEREDA N, HAYATI P, SUÁREZ-GARCÍA S, et al. Delamination of 2D coordination polymers: The role of solvent and ultrasound[J]. Ultrasonics Sonochemistry, 2019, 55: 186-195. |
105 | 廖启江, 秦宏云, 周鸣亮, 等. 高剪切混合器研究与应用进展[J]. 化工进展, 2019, 38(3): 1160-1175. |
LIAO Qijiang, QIN Hongyun, ZHOU Mingliang, et al. Progress of researches and applications for high shear mixers[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1160-1175. | |
106 | LIU Lei, SHEN Zhigang, YI Min, et al. A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces[J]. RSC Advances, 2014, 4(69): 36464-36470. |
107 | GAI Yanzhe, WANG Wucong, XIAO Ding, et al. Exfoliation of graphite into graphene by a rotor-stator in supercritical CO2: Experiment and simulation[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8220-8229. |
108 | AMRI Amun, BERTILSYA HENDRI Yola, YIN Chunyang, et al. Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solution[J]. Chemical Engineering Science, 2021, 245: 116848. |
109 | TIAN Jie, GUO Li, YIN Xianglu, et al. The liquid-phase preparation of graphene by shear exfoliation with graphite oxide as a dispersant[J]. Materials Chemistry and Physics, 2019, 223: 1-8. |
110 | PATON K R, ANDERSON J, POLLARD A J, et al. Production of few-layer graphene by microfluidization[J]. Materials Research Express, 2017, 4(2): 025604. |
111 | KARAGIANNIDIS P G, HODGE S A, LOMBARDI L, et al. Microfluidization of graphite and formulation of graphene-based conductive inks[J]. ACS Nano, 2017, 11(3): 2742-2755. |
112 | 赵玉潮, 陈光文. 微化工系统的并行放大研究进展[J]. 中国科学: 化学, 2015, 45(1): 16-23. |
ZHAO Yuchao, CHEN Guangwen. Progress in research on numbering-up of microchemical system[J]. Scientia Sinica Chimica, 2015, 45(1): 16-23. | |
113 | 张毅. 超重力法液相直接剥离法制备石墨烯[D]. 北京: 北京化工大学, 2016. |
ZHANG Yi. Perparation graphene by liquid direction exfoliation in a rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
114 | 张毅, 毋伟, 郭丽, 等. 超重力液相剥离法制备石墨烯[C]//2015年中国化工学会年会论文集, 2015: 1780-1784. |
ZHANG Yi, WU Wei, GUO Li, et al. Preparation of graphene by high gravity liquid-phase exfoliation[C]//Proceedings of the Annual Meeting of Chemical Industry Society of China in 2015, 2015: 1780-1784. | |
115 | SHEN Song, GAO Fei, ZHAO Yibo, et al. Preparation of high quality graphene using high gravity technology[J]. Chemical Engineering and Processing: Process Intensification, 2016, 106: 59-66. |
116 | CHEN Xianjue, DOBSON J F, RASTON C L. Vortex fluidic exfoliation of graphite and boron nitride[J]. Chemical Communications, 2012, 48(31): 3703-3705. |
117 | YI Min, SHEN Zhigang. Kitchen blender for producing high-quality few-layer graphene[J]. Carbon, 2014, 78: 622-626. |
118 | Eswaraiah V, PATON K R, Backes Claudia, et al. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender[J]. Nanoscale, 2014, 6(20): 11810-11819. |
119 | ALHARBI T M D, HARVEY D, ALSULAMI I K, et al. Shear stress mediated scrolling of graphene oxide[J]. Carbon, 2018, 137: 419-424. |
120 | ALHARBI T M D, ALGHAMDI A R M, VIMALANATHAN K, et al. Continuous flow photolytic reduction of graphene oxide[J]. Chemical Communications, 2019, 55(76): 11438-11441. |
121 | AL-ANTAKI A H M, LUO Xuan, ALHARBI T M D, et al. Inverted vortex fluidic exfoliation and scrolling of hexagonal-boron nitride[J]. RSC Advances, 2019, 9(38): 22074-22079. |
122 | ISMAIL Z, IDRIS W F W, ABDULLAH A H. From shear exfoliation of graphite in Coca-Cola® to few-layer graphene for smart ink[J]. Ceramics International, 2021, 47(16): 23309-23317. |
123 | GHOLIZADEH Armin, BABAEI Amir, ZIARATBAN Majid, et al. Facile synthesis of nanographene by a high-yield and scalable method[J]. Ceramics International, 2020, 46(14): 22861-22868. |
124 | PATTAMMATTEL Ajith, PANDE Paritosh, KUTTAPPAN Deepa, et al. Controlling the graphene-bio interface: Dispersions in animal sera for enhanced stability and reduced toxicity[J]. Langmuir, 2017, 33(49): 14184-14194. |
125 | NACKEN T J, DAMM C, WALTER J, et al. Delamination of graphite in a high pressure homogenizer[J]. RSC Advances, 2015, 5(71): 57328-57338. |
126 | BICCAI Sonia, BARWICH Sebastian, BOLAND Daniel, et al. Exfoliation of 2D materials by high shear mixing[J]. 2D Materials, 2018, 6(1): 015008. |
[1] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[2] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[3] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[4] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[5] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[7] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[8] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[9] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[10] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
[11] | YANG Zhuang, LI Runhua, QIANG Zengshou, WANG Yajun, YAO Wenqing. Photocatalytic degradation of waste refrigerant R134a [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2109-2114. |
[12] | LUO Xiaoping, FAN Peng, ZHOU Jianyang, WANG Mengyuan. Boiling curve and onset of nucleate boiling of microchannels with corrugated walls [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1228-1239. |
[13] | HUANG Qizhong, LIU Bing, MA Hongpeng, LYU Wenjie. Methanol to olefin wastewater treatment based on a novel microchannel separation technology [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 669-676. |
[14] | LUO Xiaoping, ZHOU Jiayu, LI Guizhong. Analysis and visualization of flow boiling pressure drop in microchannels with phase separation structure [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6157-6170. |
[15] | MA Yue, WANG Qinyan, JIN Yang. Esterification of free fatty acids in a twist plug-in microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6191-6196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |