1 |
JIAO Kui, XUAN Jin, DU Qing, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
|
2 |
DEBE Mark K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
|
3 |
ZHANG Qingnuan, DONG Shuda, SHAO Pengpeng, et al. Covalent organic framework-based porous ionomers for high-performance fuel cells[J]. Science, 2022, 378(6616): 181-186.
|
4 |
高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
|
|
GAO Weitao, LEI Yijie, ZHANG Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
|
5 |
KALE Manoj B, BORSE Rahul Anil, GOMAA ABDELKADER MOHAMED Aya, et al. Electrocatalysts by electrodeposition: Recent advances, synthesis methods, and applications in energy conversion[J]. Advanced Functional Materials, 2021, 31(25): 2101313.
|
6 |
LI Ruopeng, LI Yun, YANG Peixia, et al. Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water[J]. Journal of Energy Chemistry, 2021, 57: 547-566.
|
7 |
吴尔卡, 薄拯, 胡丹, 等. 脉冲电沉积法应用于铂/垂直取向石墨烯直接甲醇燃料电池催化剂[J]. 化工新型材料, 2015, 43(2): 200-202.
|
|
WU Erka, BO Zheng, HU Dan, et al. Pulse electrodeposition of Pt on vertical oriented graphene as catalysts for DMFCs[J]. New Chemical Materials, 2015, 43(2): 200-202.
|
8 |
MIAO Ming, DUAN Haotian, LUO Jiayao, et al. Recent progress and prospect of electrodeposition-type catalysts in carbon dioxide reduction utilizations[J]. Materials Advances, 2022, 3(18): 6968-6987.
|
9 |
LIU Jie, ZHONG Cheng, DU Xintong, et al. Pulsed electrodeposition of Pt particles on indium tin oxide substrates and their electrocatalytic properties for methanol oxidation[J]. Electrochimica Acta, 2013, 100: 164-170.
|
10 |
史国玉, 王宗花, 夏建飞, 等. 电化学合成PtCo/石墨烯复合催化剂及对甲醇的电催化氧化[J]. 化学学报, 2013, 71(2): 227-233.
|
|
SHI Guoyu, WANG Zonghua, XIA Jianfei, et al. Electrochemical deposition of graphene supported PtCo composite catalysts for electrocatalytic methanol oxidation[J]. Acta Chimica Sinica, 2013, 71(2): 227-233.
|
11 |
SORSA Olli, ROMAR Henrik, LASSI Ulla, et al. Co-electrodeposited mesoporous PtM (M=Co, Ni, Cu) as an active catalyst for oxygen reduction reaction in a polymer electrolyte membrane fuel cell[J]. Electrochimica Acta, 2017, 230: 49-57.
|
12 |
HONG Shaojing, HOU Ming, ZHANG Hongjie, et al. A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition[J]. Electrochimica Acta, 2017, 245: 403-409.
|
13 |
SAEJENG Yupa, TANTAVICHET Nisit. Preparation of Pt-Co alloy catalysts by electrodeposition for oxygen reduction in PEMFC[J]. Journal of Applied Electrochemistry, 2009, 39(1): 123-134.
|
14 |
HUANG Baohua, ZHANG Xiaofeng, CAI Jiannan, et al. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR[J]. Journal of Applied Electrochemistry, 2019, 49(8): 767-777.
|
15 |
AL-HAKEMY Ahmed Zaki, NASSR Abu Bakr Ahmed Amine, NAGGAR Ahmed Hosny, et al. Electrodeposited cobalt oxide nanoparticles modified carbon nanotubes as a non-precious catalyst electrode for oxygen reduction reaction[J]. Journal of Applied Electrochemistry, 2017, 47(2): 183-195.
|
16 |
WEI Z D, CHAN S H, LI L L, et al. Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction[J]. Electrochimica Acta, 2005, 50(11): 2279-2287.
|
17 |
MIYAKE Masao, UEDA Takeshi, HIRATO Tetsuji. Potentiostatic electrodeposition of Pt nanoparticles on carbon black[J]. Journal of the Electrochemical Society, 2011, 158(9): D590.
|
18 |
DUARTE M M E, PILLA A S, SIEBEN J M, et al. Platinum particles electrodeposition on carbon substrates[J]. Electrochemistry Communications, 2006, 8(1): 159-164.
|
19 |
KIM Hansung, SUBRAMANIAN Nalini P, POPOV Branko N. Preparation of PEM fuel cell electrodes using pulse electrodeposition[J]. Journal of Power Sources, 2004, 138(1/2): 14-24.
|
20 |
CHEN Siguo, WEI Zidong, LI Hua, et al. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition[J]. Chemical Communications, 2010, 46: 8782-8784.
|
21 |
ZHAO Yue, FAN Louzhen, REN Jingling, et al. Electrodeposition of Pt-Ru and Pt-Ru-Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4544-4557.
|
22 |
CHEN Dan, LI Yuexia, LIAO Shijun, et al. Ultra-high-performance core-shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method[J]. Scientific Reports, 2015, 5: 11604.
|
23 |
WEI Z D, FENG Y C, LI L, et al. Electrochemically synthesized Cu/Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2008, 180(1): 84-91.
|
24 |
LIU F, LEE J Y, ZHOU W J. Multisegment PtRu nanorods: Electrocatalysts with adjustable bimetallic pair sites[J]. Advanced Functional Materials, 2005, 15(9): 1459-1464.
|
25 |
SERRÀ A, GÓMEZ E, VALLÉS E. Novel electrodeposition media to synthesize CoNi-Pt Core@Shell stable mesoporous nanorods with very high active surface for methanol electro-oxidation[J]. Electrochimica Acta, 2015, 174: 630-639.
|
26 |
LIU P, GUO X, HUANG H, et al. The growth of Zn-Sb nanowires by heat treatment of Zn-Sb nanoparticles obtained by electrodeposition[J]. Advanced Materials, 2006, 18(14): 1873-1876.
|
27 |
WANG Hong, XU Changwei, CHENG Faliang, et al. Pd/Pt core-shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells[J]. Electrochemistry Communications, 2008, 10(10): 1575-1578.
|
28 |
ZHANG Lili, WEI Meng, WANG Suqing, et al. Highly stable PtP alloy nanotube arrays as a catalyst for the oxygen reduction reaction in acidic medium[J]. Chemical Science, 2015, 6(5): 3211-3216.
|
29 |
LIU Bin, QU Shengxiang, KOU Yue, et al. In situ electrodeposition of cobalt sulfide nanosheet arrays on carbon cloth as a highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30433-30440.
|