Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2714-2722.DOI: 10.16085/j.issn.1000-6613.2023-2064
• Carbon dioxide capture and utilization • Previous Articles
Received:
2023-11-18
Revised:
2024-02-21
Online:
2024-06-15
Published:
2024-05-15
Contact:
SHI Weidong
通讯作者:
施伟东
作者简介:
解仲凯(1996—),男,博士研究生,研究方向为光催化能源资源转化。E-mail:xzk0702@sina.com。
基金资助:
CLC Number:
XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722.
解仲凯, 施伟东. 电荷极化光催化剂光转化二氧化碳制多碳化学品的研究进展[J]. 化工进展, 2024, 43(5): 2714-2722.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2064
光催化剂 | 光催化测试条件 | 光源及光强 | C2化学品产率/μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
Au1/RP | 50mg光催化剂,0.5g KHCO3, 1~2mL 6mol/L的HCl | 300W氙灯,300mW·cm-2 | 1.32 (C2H6) | [ |
Bi19S27Cl3 | 10mg光催化剂,20mL水,0.4mg Na2S,2.9mg Na2SO3,CO2 | 420W氙灯,未提及光强 | 5.19 (CH3CH2OH) | [ |
Cu SAs/UiO-66-NH2 | 100mg光催化剂,50mL水,100µL TEOA,100kPa CO2 | 300W氙灯,未提及光强 | 4.22 (CH3CH2OH) | [ |
Co-doped NiS2 | 10mg光催化剂,10kPa CO2 | 300W氙灯,100mW·cm-2 | 2.3 (C2H4) | [ |
P/Cu SAs@CN | 0.5mg光催化剂,25mL水,3.0mL TEOA,65kPa CO2 | 300W氙灯,未提及光强 | 616.6 (C2H6) | [ |
CuACs/PCNs | 5mg光催化剂,45mL水,5mL TEOA,100kPa CO2,C30H24Cl2N6Ru·6H2O | 300W氙灯,未提及光强 | 10.2 (C2H4) | [ |
WO3-x -2 | 5mg光催化剂,0.2mL水,100kPa CO2 | 300W氙灯,未提及光强 | 61.6 (C2H4) | [ |
CuO X @p-ZnO | 5mg光催化剂,水,50kPa CO2 | 300W氙灯,100mW·cm-2 | 2.7 (C2H4) | [ |
In2.77S4(P6) | 3mg光催化剂,20mL水,100kPa CO2 | 300W氙灯,110mW·cm-2 | 67.65 (C2H4) | [ |
光催化剂 | 光催化测试条件 | 光源及光强 | C2化学品产率/μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
Au1/RP | 50mg光催化剂,0.5g KHCO3, 1~2mL 6mol/L的HCl | 300W氙灯,300mW·cm-2 | 1.32 (C2H6) | [ |
Bi19S27Cl3 | 10mg光催化剂,20mL水,0.4mg Na2S,2.9mg Na2SO3,CO2 | 420W氙灯,未提及光强 | 5.19 (CH3CH2OH) | [ |
Cu SAs/UiO-66-NH2 | 100mg光催化剂,50mL水,100µL TEOA,100kPa CO2 | 300W氙灯,未提及光强 | 4.22 (CH3CH2OH) | [ |
Co-doped NiS2 | 10mg光催化剂,10kPa CO2 | 300W氙灯,100mW·cm-2 | 2.3 (C2H4) | [ |
P/Cu SAs@CN | 0.5mg光催化剂,25mL水,3.0mL TEOA,65kPa CO2 | 300W氙灯,未提及光强 | 616.6 (C2H6) | [ |
CuACs/PCNs | 5mg光催化剂,45mL水,5mL TEOA,100kPa CO2,C30H24Cl2N6Ru·6H2O | 300W氙灯,未提及光强 | 10.2 (C2H4) | [ |
WO3-x -2 | 5mg光催化剂,0.2mL水,100kPa CO2 | 300W氙灯,未提及光强 | 61.6 (C2H4) | [ |
CuO X @p-ZnO | 5mg光催化剂,水,50kPa CO2 | 300W氙灯,100mW·cm-2 | 2.7 (C2H4) | [ |
In2.77S4(P6) | 3mg光催化剂,20mL水,100kPa CO2 | 300W氙灯,110mW·cm-2 | 67.65 (C2H4) | [ |
光催化剂 | 光催化测试条件 | 光源及光强 | C2化学品产率/μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
InCu/PCN | 50mg光催化剂,3mL水,21mL DMF,80kPa CO2 | 300W氙灯,1000mW·cm-2 | 28.5 (CH3CH2OH) | [ |
CuGaS2 | 5mg光催化剂,20mL水,100kPa CO2,pH=12 | 450W氙灯,未提及光强 | 20.6 (C2H4) | [ |
FeCoS2 | 10mg光催化剂,100kPa CO2 | 300W氙灯,100mW·cm-2 | 20.1 (C2H4) | [ |
VS-AgInP2S6 | 4~5mg光催化剂,0.4mL水,100kPa CO2 | 300W氙灯,未提及光强 | 44.3 (C2H4) | [ |
CuGaS2/Ga2S3 | 20mg光催化剂,3mL水,TEOA,70kPa CO2 | 300W氙灯,未提及光强 | 335.7 (C2H4) | [ |
Cu0.8Au0.2/TiO2 | 2.0mg光催化剂,0.15mL水,90kPa CO2 | 300W氙灯,500mW·cm-2 | 369.8 (C2H4) | [ |
Cu0.8Ag0.2/TiO2 | 2.0mg光催化剂,0.15mL水,90kPa CO2 | 300W氙灯,500mW·cm-2 | 1110.6 (C2H4) | [ |
Pt0.35%-Cu1.00%-BT | 40mg光催化剂,水,CO2 | 300W氙灯,100mW·cm-2 | 25 (C2H6) | [ |
CuPt/WO3 | 40mg光催化剂,20mL水,HCl,90kPa CO2 | 300W氙灯,未提及光强 | 19.41 (CH3COOH) | [ |
In2O3/Cu-O3 | 10mg光催化剂,10mL水,CO2 | 300W氙灯,未提及光强 | 20.7 (CH3CH2OH) | [ |
Cu δ+/CeO2-TiO2 | 10mg光催化剂,30mL水,100kPa CO2 | 300W氙灯,200mW·cm-2 | 4.51 (C2H4) | [ |
r-In2O3/InP | 50mg光催化剂,100mL水,80kPa CO2 | 300W氙灯,未提及光强 | 9.67 (CH3COOH) | [ |
Bi2S3@In2S3 | 5mg光催化剂,1mL水,100kPa CO2 | 300W氙灯,1150mW·cm-2 | 11.81 (C2H4) | [ |
光催化剂 | 光催化测试条件 | 光源及光强 | C2化学品产率/μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
InCu/PCN | 50mg光催化剂,3mL水,21mL DMF,80kPa CO2 | 300W氙灯,1000mW·cm-2 | 28.5 (CH3CH2OH) | [ |
CuGaS2 | 5mg光催化剂,20mL水,100kPa CO2,pH=12 | 450W氙灯,未提及光强 | 20.6 (C2H4) | [ |
FeCoS2 | 10mg光催化剂,100kPa CO2 | 300W氙灯,100mW·cm-2 | 20.1 (C2H4) | [ |
VS-AgInP2S6 | 4~5mg光催化剂,0.4mL水,100kPa CO2 | 300W氙灯,未提及光强 | 44.3 (C2H4) | [ |
CuGaS2/Ga2S3 | 20mg光催化剂,3mL水,TEOA,70kPa CO2 | 300W氙灯,未提及光强 | 335.7 (C2H4) | [ |
Cu0.8Au0.2/TiO2 | 2.0mg光催化剂,0.15mL水,90kPa CO2 | 300W氙灯,500mW·cm-2 | 369.8 (C2H4) | [ |
Cu0.8Ag0.2/TiO2 | 2.0mg光催化剂,0.15mL水,90kPa CO2 | 300W氙灯,500mW·cm-2 | 1110.6 (C2H4) | [ |
Pt0.35%-Cu1.00%-BT | 40mg光催化剂,水,CO2 | 300W氙灯,100mW·cm-2 | 25 (C2H6) | [ |
CuPt/WO3 | 40mg光催化剂,20mL水,HCl,90kPa CO2 | 300W氙灯,未提及光强 | 19.41 (CH3COOH) | [ |
In2O3/Cu-O3 | 10mg光催化剂,10mL水,CO2 | 300W氙灯,未提及光强 | 20.7 (CH3CH2OH) | [ |
Cu δ+/CeO2-TiO2 | 10mg光催化剂,30mL水,100kPa CO2 | 300W氙灯,200mW·cm-2 | 4.51 (C2H4) | [ |
r-In2O3/InP | 50mg光催化剂,100mL水,80kPa CO2 | 300W氙灯,未提及光强 | 9.67 (CH3COOH) | [ |
Bi2S3@In2S3 | 5mg光催化剂,1mL水,100kPa CO2 | 300W氙灯,1150mW·cm-2 | 11.81 (C2H4) | [ |
光催化剂 | 光催化测试条件 | 光源及光强 | C1化学品产率/μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
BP-Bi24O31Br10 | 30mg光催化剂,50mL水,80kPa CO2 | 300W氙灯,未提及光强 | 39.8 (CO) | [ |
VBiO-Bi24O31Br10 | 30mg光催化剂,50mL水,80kPa CO2 | 300W氙灯,300mW·cm-2 | 24.9 (CO) | [ |
VW-Bi2WO6 | 10mg光催化剂,1.7g NaHCO3,15mL 4mol/L的H2SO4 | 300W氙灯,未提及光强 | 30.62 (CO) | [ |
Cu1.95S1-x | 10mg光催化剂,10mL水,100kPa CO2 | 300W氙灯,未提及光强 | 13.63 (CH4) | [ |
Ni:CdS | 催化剂,5mL水,1mL三乙醇胺,100kPa CO2 | 300W氙灯,未提及光强 | 9.5 (CO) | [ |
Mn-CsPbBr3 | 2mg光催化剂,10mL水,100kPa CO2 | 300W氙灯,100mW·cm-2 | 45.4 (CO)/约3.5 (CH4) | [ |
Mo/TiO2 | 光催化剂,20uL水,20mL CO2 | 300W氙灯,未提及光强 | 8.2 (CO)/约9.8 (CH4) | [ |
Ni-BiOBr | 5mg光催化剂,1mL水,5mg [Ru(bpy)3]Cl2·6H2O,1mL三乙醇胺,4mL CH3CN,100kPa CO2 | 300W氙灯,未提及光强 | 378.7 (CO) μ | [ |
PtRu/TiO2 | 100mg光催化剂,2mL水,CO2 | 300W氙灯,80mW·cm-2 | 38.7 (CH4) | [ |
SnS2/Pt3Co | 20mg光催化剂,100mL水,140kPa CO2 | 300W氙灯,未提及光强 | 27.34 (CO)/约14.02 (CH4) | [ |
TiO2-AuCu-V | 15mg光催化剂,1mL水,150kPa CO2 | 300W氙灯,未提及光强 | 3.4 (CO)/约33.5 (CH4) | [ |
Pd7Cu1-TiO2 | 5mg光催化剂,1mL水,200kPa CO2 | 300W氙灯,未提及光强 | 19.6 (CH4) | [ |
TiO2-Pd | 15mg光催化剂,2mL水,150kPa CO2 | 300W氙灯,未提及光强 | 12.6 (CO)/约3.0 (CH4) | [ |
Au-TiO2 | 50mg光催化剂,0.084g NaHCO3,0.6mL 4mol/L的HCl | 300W氙灯,未提及光强 | 70.34 (CO)/约19.75 (CH4) | [ |
Ni/SOM-ZIF-8 | 3mg光催化剂,2mL水,10mg [Ru(bpy)3]Cl2·6H2O,2mL三乙醇胺,6mL CH3CN,100kPa CO2 | 300W氙灯,未提及光强 | 4.2 (CO) mmol/(g·h) | [ |
Co1/ZnO | 1mg光催化剂,4mL水,10mg [Ru(bpy)3]Cl2·6H2O,4mL三乙醇胺,16mL CH3CN,100kPa CO2 | 300W氙灯,未提及光强 | 22.5 (CO) mmol/(g·h) | [ |
光催化剂 | 光催化测试条件 | 光源及光强 | C1化学品产率/μmol·g-1·h-1 | 参考文献 |
---|---|---|---|---|
BP-Bi24O31Br10 | 30mg光催化剂,50mL水,80kPa CO2 | 300W氙灯,未提及光强 | 39.8 (CO) | [ |
VBiO-Bi24O31Br10 | 30mg光催化剂,50mL水,80kPa CO2 | 300W氙灯,300mW·cm-2 | 24.9 (CO) | [ |
VW-Bi2WO6 | 10mg光催化剂,1.7g NaHCO3,15mL 4mol/L的H2SO4 | 300W氙灯,未提及光强 | 30.62 (CO) | [ |
Cu1.95S1-x | 10mg光催化剂,10mL水,100kPa CO2 | 300W氙灯,未提及光强 | 13.63 (CH4) | [ |
Ni:CdS | 催化剂,5mL水,1mL三乙醇胺,100kPa CO2 | 300W氙灯,未提及光强 | 9.5 (CO) | [ |
Mn-CsPbBr3 | 2mg光催化剂,10mL水,100kPa CO2 | 300W氙灯,100mW·cm-2 | 45.4 (CO)/约3.5 (CH4) | [ |
Mo/TiO2 | 光催化剂,20uL水,20mL CO2 | 300W氙灯,未提及光强 | 8.2 (CO)/约9.8 (CH4) | [ |
Ni-BiOBr | 5mg光催化剂,1mL水,5mg [Ru(bpy)3]Cl2·6H2O,1mL三乙醇胺,4mL CH3CN,100kPa CO2 | 300W氙灯,未提及光强 | 378.7 (CO) μ | [ |
PtRu/TiO2 | 100mg光催化剂,2mL水,CO2 | 300W氙灯,80mW·cm-2 | 38.7 (CH4) | [ |
SnS2/Pt3Co | 20mg光催化剂,100mL水,140kPa CO2 | 300W氙灯,未提及光强 | 27.34 (CO)/约14.02 (CH4) | [ |
TiO2-AuCu-V | 15mg光催化剂,1mL水,150kPa CO2 | 300W氙灯,未提及光强 | 3.4 (CO)/约33.5 (CH4) | [ |
Pd7Cu1-TiO2 | 5mg光催化剂,1mL水,200kPa CO2 | 300W氙灯,未提及光强 | 19.6 (CH4) | [ |
TiO2-Pd | 15mg光催化剂,2mL水,150kPa CO2 | 300W氙灯,未提及光强 | 12.6 (CO)/约3.0 (CH4) | [ |
Au-TiO2 | 50mg光催化剂,0.084g NaHCO3,0.6mL 4mol/L的HCl | 300W氙灯,未提及光强 | 70.34 (CO)/约19.75 (CH4) | [ |
Ni/SOM-ZIF-8 | 3mg光催化剂,2mL水,10mg [Ru(bpy)3]Cl2·6H2O,2mL三乙醇胺,6mL CH3CN,100kPa CO2 | 300W氙灯,未提及光强 | 4.2 (CO) mmol/(g·h) | [ |
Co1/ZnO | 1mg光催化剂,4mL水,10mg [Ru(bpy)3]Cl2·6H2O,4mL三乙醇胺,16mL CH3CN,100kPa CO2 | 300W氙灯,未提及光强 | 22.5 (CO) mmol/(g·h) | [ |
4 | JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
5 | SHARMA Yogeshkumar, SINGH Bhaskar, UPADHYAY Siddhnath. Advancements in development and characterization of biodieset: A review[J]. Fuel, 2008, 87(12): 2355-2373. |
6 | KOSARI Mohammadreza, Alvin M H LIM, SHAO Yu, et al. Thermocatalytic CO2 conversion by siliceous matter: A review[J]. Journal of Materials Chemistry A, 2023, 11(4): 1593-1633. |
7 | LU Tianrui, XU Ting, ZHU Shaojun, et al. Electrocatalytic CO2 reduction to ethylene: From advanced catalyst design to industrial applications[J]. Advanced Materials, 2023, 35(52): e2310433. |
8 | SAKIMOTO Kelsey K, WONG Andrew Barnabas, YANG Peidong. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
9 | Inwhan ROH, YU Sunmoon, LIN Chung-Kuan, et al. Photoelectrochemical CO2 reduction toward multicarbon products with silicon nanowire photocathodes interfaced with copper nanoparticles[J]. Journal of the American Chemical Society, 2022, 144(18): 8002-8006. |
10 | Honghui OU, LI Guosheng, REN Wei, et al. Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO2 photoreduction to C2H6 [J]. Journal of the American Chemical Society, 2022, 144(48): 22075-22082. |
11 | XIONG Xuyang, MAO Chengliang, YANG Zhaojun, et al. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia[J]. Advanced Energy Materials, 2020, 10(46): 2002928. |
12 | XU Jiaqi, JU Zhengyu, ZHANG Wei, et al. Efficient infrared-light-driven CO2 reduction over ultrathin metallic Ni-doped CoS2 nanosheets[J]. Angewandte Chemie International Edition, 2021, 60(16): 8705-8709. |
13 | WANG Xianyi, WANG Yingshuo, GAO Meichao, et al. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO[J]. Applied Catalysis B: Environmental, 2020, 270: 118876. |
14 | WANG Ying, SHANG Xiaotong, SHEN Jinni, et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation[J]. Nature Communications, 2020, 11(1): 3043. |
15 | DOKANIA Abhay, RAMIREZ Adrian, BAVYKINA Anastasiya, et al. Heterogeneous catalysis for the valorization of CO2: Role of bifunctional processes in the production of chemicals[J]. ACS Energy Letters, 2019, 4(1): 167-176. |
16 | MENG Dongli, ZHANG Mengdi, SI Duanhui, et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts[J]. Angewandte Chemie International Edition, 2021, 60(48): 25485-25492. |
17 | Kousik DAS, Risov DAS, RIYAZ Mohd, et al. Intrinsic charge polarization in Bi19S27Cl3 nanorods promotes selective C-C coupling reaction during photoreduction of CO2 to ethanol[J]. Advanced Materials, 2023, 35(5): 2205994. |
18 | SHI Hainan, WANG Haozhi, ZHOU Yichen, et al. Atomically dispersed indium-copper dual-metal active sites promoting C-C coupling for CO2 photoreduction to ethanol[J]. Angewandte Chemie International Edition, 2022, 61(40): e202208904. |
19 | WANG Gang, HE Chunting, HUANG Rong, et al. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels[J]. Journal of the American Chemical Society, 2020, 142(45): 19339-19345. |
20 | ZHENG Tingting, JIANG Kun, Na TA, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3(1): 265-278. |
21 | FENG Manman, WU Xuemei, CHENG Huiyuan, et al. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction[J]. Journal of Materials Chemistry A, 2021, 9(42): 23817-23827. |
22 | CHAKRABORTY Subhajit, Risov DAS, RIYAZ Mohd, et al. Wurtzite CuGaS2 with an in-situ-formed CuO layer photocatalyzes CO2 conversion to ethylene with high selectivity[J]. Angewandte Chemie International Edition, 2023, 62(9): e202216613. |
23 | WU Yang, HU Qinyuan, CHEN Qingxia, et al. Fundamentals and challenges of engineering charge polarized active sites for CO2 photoreduction toward C2 products[J]. Accounts of Chemical Research, 2023, 56(18): 2500-2513. |
24 | ALBERO Josep, PENG Yong, GARCIA Hermenegildo. Photocatalytic CO2 reduction to C2+ products[J]. ACS Catalysis, 2020, 10(10): 5734-5749. |
25 | WU Yang, CHEN Qingxia, ZHU Juncheng, et al. Selective CO2-to-C2H4 photoconversion enabled by oxygen-mediated triatomic sites in partially oxidized bimetallic sulfide[J]. Angewandte Chemie International Edition, 2023, 62(15): 2301075. |
26 | SHAO Weiwei, LI Xiaodong, ZHU Juncheng, et al. Metal n +-metal δ + pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons[J]. Nano Research, 2022, 15(3): 1882-1891. |
27 | WANG Gang, CHEN Zhe, WANG Tao, et al. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution[J]. Angewandte Chemie International Edition, 2022, 61(40): e202210789. |
1 | PETER Sebastian C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis[J]. ACS Energy Letters, 2018, 3(7): 1557-1561. |
2 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
3 | ZHOU Yansong, WANG Zhitong, HUANG Lei, et al. Engineering 2D photocatalysts toward carbon dioxide reduction[J]. Advanced Energy Materials, 2021, 11(8): 2003159. |
28 | XIE Wenke, LI Kuangjun, LIU Xuanhe, et al. P-mediated Cu-N4 sites in carbon nitride realizing CO2 photoreduction to C2H4 with selectivity modulation[J]. Advanced Materials, 2023, 35(3): e2208132. |
29 | YU Hongjian, CHEN Fang, LI Xiaowei, et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction[J]. Nature Communications, 2021, 12(1): 4594. |
30 | CAO Yuehan, GUO Lan, DAN Meng, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction[J]. Nature Communications, 2021, 12(1): 1675. |
31 | GAO Wa, LI Shi, HE Huichao, et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas[J]. Nature Communications, 2021, 12(1): 4747. |
32 | WANG Junyan, YANG Chen, MAO Liang, et al. Regulating the metallic Cu-Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4 [J]. Advanced Functional Materials, 2023, 33(28): 2213901. |
33 | LU Changhai, LI Juan, YAN Jiahao, et al. Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene[J]. Applied Materials Today, 2020, 20: 100744. |
34 | YU Yangyang, DONG Xing’an, CHEN Peng, et al. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction[J]. ACS Nano, 2021, 15(9): 14453-14464. |
35 | YU Yangyang, HE Ye, YAN Ping, et al. Boosted C-C coupling with Cu-Ag alloy sub-nanoclusters for CO2-to-C2H4 photosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(44): e2307320120. |
36 | SORCAR Saurav, HWANG Yunju, LEE Jaewoong, et al. CO2, water, and sunlight to hydrocarbon fuels: A sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%[J]. Energy & Environmental Science, 2019, 12(9): 2685-2696. |
37 | ZENG Di, WANG Haipeng, ZHU Xiaodi, et al. Photocatalytic conversion of CO2 to acetic acid by CuPt/WO3: Chloride enhanced C-C coupling mechanism[J]. Applied Catalysis B: Environmental, 2023, 323: 122177. |
38 | GONG Shuaiqi, NI Baoxin, HE Xiaoyang, et al. Electronic modulation of a single-atom-based tandem catalyst boosts CO2 photoreduction to ethanol[J]. Energy & Environmental Science, 2023, 16(12): 5956-5969. |
39 | WANG Ting, CHEN Liang, CHEN Cong, et al. Engineering catalytic interfaces in Cu δ +/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene[J]. ACS Nano, 2022, 16(2): 2306-2318. |
40 | WANG Wei, DENG Chaoyuan, XIE Shijie, et al. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(Ⅰ)/copper(Ⅱ)[J]. Journal of the American Chemical Society, 2021, 143(7): 2984-2993. |
41 | GONG Shuaiqi, NIU Yanli, LIU Xuan, et al. Selective CO2 photoreduction to acetate at asymmetric ternary bridging sites[J]. ACS Nano, 2023, 17(5): 4922-4932. |
42 | Risov DAS, PAUL Ratul, PARUI Arko, et al. Engineering the charge density on an In2.77S4/porous organic polymer hybrid photocatalyst for CO2-to-ethylene conversion reaction[J]. Journal of the American Chemical Society, 2023, 145(1): 422-435. |
43 | YAN Ke, WU Donghai, WANG Ting, et al. Highly selective ethylene production from solar-driven CO2 reduction on the Bi2S3@In2S3 catalyst with In-SV-Bi active sites[J]. ACS Catalysis, 2023, 13(4): 2302-2312. |
44 | DI Jun, ZHU Xingwang, HAO Gazi, et al. Vacancy pair-induced charge rebalancing with surface and interfacial dual polarization for CO2 photoreduction[J]. ACS Catalysis, 2022, 12(24): 15728-15736. |
45 | DI Jun, CHEN Chao, ZHU Chao, et al. Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction[J]. Advanced Energy Materials, 2021, 11(41): 2102389. |
46 | WANG Yinghui, HU Jingcong, GE Teng, et al. Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: Strong local internal electric field and reformed basic sites boosting CO2 photoreduction[J]. Advanced Materials, 2023, 35(31): e2302538. |
47 | SHI Xian, DAI Weidong, DONG Xing’an, et al. Dual Cu and S vacancies boost CO2 photomethanation on Cu1.95S1- x : Vacancy-regulated selective photocatalysis[J]. Applied Catalysis B: Environmental, 2023, 339: 123147. |
48 | WANG Jin, XIA Tong, WANG Lei, et al. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution[J]. Angewandte Chemie International Edition, 2018, 57(50): 16447-16451. |
49 | LIN Cheng-Chieh, LIU Tingran, LIN Sin-Rong, et al. Spin-polarized photocatalytic CO2 reduction of Mn-doped perovskite nanoplates[J]. Journal of the American Chemical Society, 2022, 144(34): 15718-15726. |
50 | FENG Shuaijun, ZHAO Jie, BAI Yujie, et al. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping[J]. Journal of CO2 Utilization, 2020, 38: 1-9. |
51 | WANG Yiqiao, XIE Yu, YU Shuohan, et al. Ni doping in unit cell of BiOBr to increase dipole moment and induce spin polarization for promoting CO2 photoreduction via enhanced build-in electric field[J]. Applied Catalysis B: Environmental, 2023, 327: 122420. |
52 | WEI Yuechang, WU Xingxing, ZHAO Yilong, et al. Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: Synergistic effect of Pt-Ru[J]. Applied Catalysis B: Environmental, 2018, 236: 445-457. |
53 | YIN Shikang, LIU Yun, ZHOU Weiqiang, et al. Nanocluster-mediated electron-hole separation for efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2023, 477: 147292. |
54 | LIU Qian, CHEN Qin, LI Tianyu, et al. Vacancy engineering of AuCu cocatalysts for improving the photocatalytic conversion of CO2 to CH4 [J]. Journal of Materials Chemistry A, 2019, 7(47): 27007-27015. |
55 | LONG Ran, LI Yu, LIU Yan, et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4 [J]. Journal of the American Chemical Society, 2017, 139(12): 4486-4492. |
56 | ZHU Yuzhen, XU Zaixiang, JIANG Wenya, et al. Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO2 to fuels[J]. Journal of Materials Chemistry A, 2017, 5(6): 2619-2628. |
57 | WANG Rui, SHEN Jun, SUN Kouhua, et al. Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction[J]. Applied Surface Science, 2019, 493: 1142-1149. |
58 | LIU Zhiguo, CHEN Ziyu, LI Mingyang, et al. Construction of single Ni atom-immobilized ZIF-8 with ordered hierarchical pore structures for selective CO2 photoreduction[J]. ACS Catalysis, 2023, 13(10): 6630-6640. |
59 | MA Zhentao, WANG Qingyu, LIU Limin, et al. Low-coordination environment design of single Co atoms for efficient CO2 photoreduction[J]. Nano Research, 2024. 17(5): 3745-3751. |
[1] | JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369. |
[2] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
[3] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[4] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[5] | GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850. |
[6] | LIAO Changjian, ZHANG Kewei, WANG Jing, ZENG Xiangyu, JIN Ping, LIU Zhiyu. Progress on direct air capture of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2031-2048. |
[7] | WANG Kai, YE Dingding, ZHU Xun, YANG Yang, CHEN Rong, LIAO Qiang. Performance of electrochemical reduction of CO2 by superaerophilic copper foam electrode with nanowires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1232-1240. |
[8] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[9] | HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China's hydrogen industry [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. |
[10] | YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301. |
[11] | YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500. |
[12] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
[13] | CHENG Haolin, NIAN Yao, HAN You. Progress in the mechanism of CH4 and CO2co-conversion reactions [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 60-75. |
[14] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[15] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |