4 |
JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034.
|
5 |
SHARMA Yogeshkumar, SINGH Bhaskar, UPADHYAY Siddhnath. Advancements in development and characterization of biodieset: A review[J]. Fuel, 2008, 87(12): 2355-2373.
|
6 |
KOSARI Mohammadreza, Alvin M H LIM, SHAO Yu, et al. Thermocatalytic CO2 conversion by siliceous matter: A review[J]. Journal of Materials Chemistry A, 2023, 11(4): 1593-1633.
|
7 |
LU Tianrui, XU Ting, ZHU Shaojun, et al. Electrocatalytic CO2 reduction to ethylene: From advanced catalyst design to industrial applications[J]. Advanced Materials, 2023, 35(52): e2310433.
|
8 |
SAKIMOTO Kelsey K, WONG Andrew Barnabas, YANG Peidong. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77.
|
9 |
Inwhan ROH, YU Sunmoon, LIN Chung-Kuan, et al. Photoelectrochemical CO2 reduction toward multicarbon products with silicon nanowire photocathodes interfaced with copper nanoparticles[J]. Journal of the American Chemical Society, 2022, 144(18): 8002-8006.
|
10 |
Honghui OU, LI Guosheng, REN Wei, et al. Atomically dispersed Au-assisted C-C coupling on red phosphorus for CO2 photoreduction to C2H6 [J]. Journal of the American Chemical Society, 2022, 144(48): 22075-22082.
|
11 |
XIONG Xuyang, MAO Chengliang, YANG Zhaojun, et al. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia[J]. Advanced Energy Materials, 2020, 10(46): 2002928.
|
12 |
XU Jiaqi, JU Zhengyu, ZHANG Wei, et al. Efficient infrared-light-driven CO2 reduction over ultrathin metallic Ni-doped CoS2 nanosheets[J]. Angewandte Chemie International Edition, 2021, 60(16): 8705-8709.
|
13 |
WANG Xianyi, WANG Yingshuo, GAO Meichao, et al. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO[J]. Applied Catalysis B: Environmental, 2020, 270: 118876.
|
14 |
WANG Ying, SHANG Xiaotong, SHEN Jinni, et al. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation[J]. Nature Communications, 2020, 11(1): 3043.
|
15 |
DOKANIA Abhay, RAMIREZ Adrian, BAVYKINA Anastasiya, et al. Heterogeneous catalysis for the valorization of CO2: Role of bifunctional processes in the production of chemicals[J]. ACS Energy Letters, 2019, 4(1): 167-176.
|
16 |
MENG Dongli, ZHANG Mengdi, SI Duanhui, et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts[J]. Angewandte Chemie International Edition, 2021, 60(48): 25485-25492.
|
17 |
Kousik DAS, Risov DAS, RIYAZ Mohd, et al. Intrinsic charge polarization in Bi19S27Cl3 nanorods promotes selective C-C coupling reaction during photoreduction of CO2 to ethanol[J]. Advanced Materials, 2023, 35(5): 2205994.
|
18 |
SHI Hainan, WANG Haozhi, ZHOU Yichen, et al. Atomically dispersed indium-copper dual-metal active sites promoting C-C coupling for CO2 photoreduction to ethanol[J]. Angewandte Chemie International Edition, 2022, 61(40): e202208904.
|
19 |
WANG Gang, HE Chunting, HUANG Rong, et al. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels[J]. Journal of the American Chemical Society, 2020, 142(45): 19339-19345.
|
20 |
ZHENG Tingting, JIANG Kun, Na TA, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3(1): 265-278.
|
21 |
FENG Manman, WU Xuemei, CHENG Huiyuan, et al. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction[J]. Journal of Materials Chemistry A, 2021, 9(42): 23817-23827.
|
22 |
CHAKRABORTY Subhajit, Risov DAS, RIYAZ Mohd, et al. Wurtzite CuGaS2 with an in-situ-formed CuO layer photocatalyzes CO2 conversion to ethylene with high selectivity[J]. Angewandte Chemie International Edition, 2023, 62(9): e202216613.
|
23 |
WU Yang, HU Qinyuan, CHEN Qingxia, et al. Fundamentals and challenges of engineering charge polarized active sites for CO2 photoreduction toward C2 products[J]. Accounts of Chemical Research, 2023, 56(18): 2500-2513.
|
24 |
ALBERO Josep, PENG Yong, GARCIA Hermenegildo. Photocatalytic CO2 reduction to C2+ products[J]. ACS Catalysis, 2020, 10(10): 5734-5749.
|
25 |
WU Yang, CHEN Qingxia, ZHU Juncheng, et al. Selective CO2-to-C2H4 photoconversion enabled by oxygen-mediated triatomic sites in partially oxidized bimetallic sulfide[J]. Angewandte Chemie International Edition, 2023, 62(15): 2301075.
|
26 |
SHAO Weiwei, LI Xiaodong, ZHU Juncheng, et al. Metal n +-metal δ + pair sites steer C-C coupling for selective CO2 photoreduction to C2 hydrocarbons[J]. Nano Research, 2022, 15(3): 1882-1891.
|
27 |
WANG Gang, CHEN Zhe, WANG Tao, et al. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution[J]. Angewandte Chemie International Edition, 2022, 61(40): e202210789.
|
1 |
PETER Sebastian C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis[J]. ACS Energy Letters, 2018, 3(7): 1557-1561.
|
2 |
GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
|
3 |
ZHOU Yansong, WANG Zhitong, HUANG Lei, et al. Engineering 2D photocatalysts toward carbon dioxide reduction[J]. Advanced Energy Materials, 2021, 11(8): 2003159.
|
28 |
XIE Wenke, LI Kuangjun, LIU Xuanhe, et al. P-mediated Cu-N4 sites in carbon nitride realizing CO2 photoreduction to C2H4 with selectivity modulation[J]. Advanced Materials, 2023, 35(3): e2208132.
|
29 |
YU Hongjian, CHEN Fang, LI Xiaowei, et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction[J]. Nature Communications, 2021, 12(1): 4594.
|
30 |
CAO Yuehan, GUO Lan, DAN Meng, et al. Modulating electron density of vacancy site by single Au atom for effective CO2 photoreduction[J]. Nature Communications, 2021, 12(1): 1675.
|
31 |
GAO Wa, LI Shi, HE Huichao, et al. Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas[J]. Nature Communications, 2021, 12(1): 4747.
|
32 |
WANG Junyan, YANG Chen, MAO Liang, et al. Regulating the metallic Cu-Ga bond by S vacancy for improved photocatalytic CO2 reduction to C2H4 [J]. Advanced Functional Materials, 2023, 33(28): 2213901.
|
33 |
LU Changhai, LI Juan, YAN Jiahao, et al. Surface plasmon resonance and defects on tungsten oxides synergistically boost high-selective CO2 reduction for ethylene[J]. Applied Materials Today, 2020, 20: 100744.
|
34 |
YU Yangyang, DONG Xing’an, CHEN Peng, et al. Synergistic effect of Cu single atoms and Au-Cu alloy nanoparticles on TiO2 for efficient CO2 photoreduction[J]. ACS Nano, 2021, 15(9): 14453-14464.
|
35 |
YU Yangyang, HE Ye, YAN Ping, et al. Boosted C-C coupling with Cu-Ag alloy sub-nanoclusters for CO2-to-C2H4 photosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(44): e2307320120.
|
36 |
SORCAR Saurav, HWANG Yunju, LEE Jaewoong, et al. CO2, water, and sunlight to hydrocarbon fuels: A sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%[J]. Energy & Environmental Science, 2019, 12(9): 2685-2696.
|
37 |
ZENG Di, WANG Haipeng, ZHU Xiaodi, et al. Photocatalytic conversion of CO2 to acetic acid by CuPt/WO3: Chloride enhanced C-C coupling mechanism[J]. Applied Catalysis B: Environmental, 2023, 323: 122177.
|
38 |
GONG Shuaiqi, NI Baoxin, HE Xiaoyang, et al. Electronic modulation of a single-atom-based tandem catalyst boosts CO2 photoreduction to ethanol[J]. Energy & Environmental Science, 2023, 16(12): 5956-5969.
|
39 |
WANG Ting, CHEN Liang, CHEN Cong, et al. Engineering catalytic interfaces in Cu δ +/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene[J]. ACS Nano, 2022, 16(2): 2306-2318.
|
40 |
WANG Wei, DENG Chaoyuan, XIE Shijie, et al. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(Ⅰ)/copper(Ⅱ)[J]. Journal of the American Chemical Society, 2021, 143(7): 2984-2993.
|
41 |
GONG Shuaiqi, NIU Yanli, LIU Xuan, et al. Selective CO2 photoreduction to acetate at asymmetric ternary bridging sites[J]. ACS Nano, 2023, 17(5): 4922-4932.
|
42 |
Risov DAS, PAUL Ratul, PARUI Arko, et al. Engineering the charge density on an In2.77S4/porous organic polymer hybrid photocatalyst for CO2-to-ethylene conversion reaction[J]. Journal of the American Chemical Society, 2023, 145(1): 422-435.
|
43 |
YAN Ke, WU Donghai, WANG Ting, et al. Highly selective ethylene production from solar-driven CO2 reduction on the Bi2S3@In2S3 catalyst with In-SV-Bi active sites[J]. ACS Catalysis, 2023, 13(4): 2302-2312.
|
44 |
DI Jun, ZHU Xingwang, HAO Gazi, et al. Vacancy pair-induced charge rebalancing with surface and interfacial dual polarization for CO2 photoreduction[J]. ACS Catalysis, 2022, 12(24): 15728-15736.
|
45 |
DI Jun, CHEN Chao, ZHU Chao, et al. Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction[J]. Advanced Energy Materials, 2021, 11(41): 2102389.
|
46 |
WANG Yinghui, HU Jingcong, GE Teng, et al. Gradient cationic vacancies enabling inner-to-outer tandem homojunctions: Strong local internal electric field and reformed basic sites boosting CO2 photoreduction[J]. Advanced Materials, 2023, 35(31): e2302538.
|
47 |
SHI Xian, DAI Weidong, DONG Xing’an, et al. Dual Cu and S vacancies boost CO2 photomethanation on Cu1.95S1- x : Vacancy-regulated selective photocatalysis[J]. Applied Catalysis B: Environmental, 2023, 339: 123147.
|
48 |
WANG Jin, XIA Tong, WANG Lei, et al. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution[J]. Angewandte Chemie International Edition, 2018, 57(50): 16447-16451.
|
49 |
LIN Cheng-Chieh, LIU Tingran, LIN Sin-Rong, et al. Spin-polarized photocatalytic CO2 reduction of Mn-doped perovskite nanoplates[J]. Journal of the American Chemical Society, 2022, 144(34): 15718-15726.
|
50 |
FENG Shuaijun, ZHAO Jie, BAI Yujie, et al. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping[J]. Journal of CO2 Utilization, 2020, 38: 1-9.
|
51 |
WANG Yiqiao, XIE Yu, YU Shuohan, et al. Ni doping in unit cell of BiOBr to increase dipole moment and induce spin polarization for promoting CO2 photoreduction via enhanced build-in electric field[J]. Applied Catalysis B: Environmental, 2023, 327: 122420.
|
52 |
WEI Yuechang, WU Xingxing, ZHAO Yilong, et al. Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: Synergistic effect of Pt-Ru[J]. Applied Catalysis B: Environmental, 2018, 236: 445-457.
|
53 |
YIN Shikang, LIU Yun, ZHOU Weiqiang, et al. Nanocluster-mediated electron-hole separation for efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2023, 477: 147292.
|
54 |
LIU Qian, CHEN Qin, LI Tianyu, et al. Vacancy engineering of AuCu cocatalysts for improving the photocatalytic conversion of CO2 to CH4 [J]. Journal of Materials Chemistry A, 2019, 7(47): 27007-27015.
|
55 |
LONG Ran, LI Yu, LIU Yan, et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4 [J]. Journal of the American Chemical Society, 2017, 139(12): 4486-4492.
|
56 |
ZHU Yuzhen, XU Zaixiang, JIANG Wenya, et al. Engineering on the edge of Pd nanosheet cocatalysts for enhanced photocatalytic reduction of CO2 to fuels[J]. Journal of Materials Chemistry A, 2017, 5(6): 2619-2628.
|
57 |
WANG Rui, SHEN Jun, SUN Kouhua, et al. Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction[J]. Applied Surface Science, 2019, 493: 1142-1149.
|
58 |
LIU Zhiguo, CHEN Ziyu, LI Mingyang, et al. Construction of single Ni atom-immobilized ZIF-8 with ordered hierarchical pore structures for selective CO2 photoreduction[J]. ACS Catalysis, 2023, 13(10): 6630-6640.
|
59 |
MA Zhentao, WANG Qingyu, LIU Limin, et al. Low-coordination environment design of single Co atoms for efficient CO2 photoreduction[J]. Nano Research, 2024. 17(5): 3745-3751.
|