Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2554-2567.DOI: 10.16085/j.issn.1000-6613.2023-1931
• New and renewable energy • Previous Articles
ZHANG Bao(), WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang
Received:
2023-11-02
Revised:
2023-12-11
Online:
2024-06-15
Published:
2024-05-15
Contact:
ZHANG Bao
通讯作者:
张宝
作者简介:
张宝(1984—),男,博士研究生,研究方向为燃料电池系统及塑性加工工艺。E-mail:hit07s@163.com。
基金资助:
CLC Number:
ZHANG Bao, WANG Peng, AN Yongpan, LYU Ping, JIANG Jianliang. Design and experiment of fuel cell systems for marine application[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2554-2567.
张宝, 王鹏, 安勇攀, 吕平, 蒋建良. 船舶应用燃料电池系统的设计与试验[J]. 化工进展, 2024, 43(5): 2554-2567.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1931
双极板长度/mm | 双极板宽度/mm | 电堆节数/cells | 活性面积/cm2 | 额定电流/A | 环境温度/℃ | 工作温度/℃ | 供氢压力/kPa | 氢空压差/kPa |
---|---|---|---|---|---|---|---|---|
451 | 109 | 370 | 227 | 272 | -30~55 | -30~85 | 1000~1300 | 20±5 |
双极板长度/mm | 双极板宽度/mm | 电堆节数/cells | 活性面积/cm2 | 额定电流/A | 环境温度/℃ | 工作温度/℃ | 供氢压力/kPa | 氢空压差/kPa |
---|---|---|---|---|---|---|---|---|
451 | 109 | 370 | 227 | 272 | -30~55 | -30~85 | 1000~1300 | 20±5 |
子系统 | 参数 | 控制策略 |
---|---|---|
空气 | 入口压力 | 模糊控制 |
入口湿度 | 模糊控制 | |
氢气 | 入口压力 | 前馈+模糊PID |
排放流量 | 脉冲排放控制 | |
冷却 | 工作温度 | 前馈+模糊PID |
出入口冷却液温差 | 比例控制 | |
功率 | 输出电流 | 前馈+积分控制 |
吹扫电压 | 积分控制 |
子系统 | 参数 | 控制策略 |
---|---|---|
空气 | 入口压力 | 模糊控制 |
入口湿度 | 模糊控制 | |
氢气 | 入口压力 | 前馈+模糊PID |
排放流量 | 脉冲排放控制 | |
冷却 | 工作温度 | 前馈+模糊PID |
出入口冷却液温差 | 比例控制 | |
功率 | 输出电流 | 前馈+积分控制 |
吹扫电压 | 积分控制 |
性能参数 | 实测值 |
---|---|
额定功率/kW | 60 |
峰值功率/kW | 66 |
怠速功率/kW | 7 |
额定电流/A | 272 |
额定效率/% | 45 |
峰值效率/% | 62 |
性能参数 | 实测值 |
---|---|
额定功率/kW | 60 |
峰值功率/kW | 66 |
怠速功率/kW | 7 |
额定电流/A | 272 |
额定效率/% | 45 |
峰值效率/% | 62 |
工况号 | 功率 | 持续时间/s |
---|---|---|
1 | 怠速功率 | 540 |
2 | 额定功率 | 342 |
3 | 中间功率 | 918 |
工况号 | 功率 | 持续时间/s |
---|---|---|
1 | 怠速功率 | 540 |
2 | 额定功率 | 342 |
3 | 中间功率 | 918 |
工况号 | 电流密度 /mA·cm-2 | 电流 /A | 三通阀开度 /% | 空气计量比 | 空气流量 /g·s-1 | 空气入堆压力 /kPa | 氢气入堆压力 /kPa | 氢回流泵转速 /r·min-1 | 脉冲排放周期(开/关) /s | 冷却液温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | 22.7 | 30 | 3.4 | 10.2 | 108.6 | 128.6 | 3300 | 0.5/8 | 65 |
2 | 1200 | 272.4 | 80 | 2.1 | 75.1 | 186.8 | 206.8 | 4000 | 0.5/3 | 72 |
3 | 600 | 136.2 | 50 | 2.7 | 48 | 153.9 | 173.9 | 3600 | 0.5/8 | 70 |
工况号 | 电流密度 /mA·cm-2 | 电流 /A | 三通阀开度 /% | 空气计量比 | 空气流量 /g·s-1 | 空气入堆压力 /kPa | 氢气入堆压力 /kPa | 氢回流泵转速 /r·min-1 | 脉冲排放周期(开/关) /s | 冷却液温度 /℃ |
---|---|---|---|---|---|---|---|---|---|---|
1 | 100 | 22.7 | 30 | 3.4 | 10.2 | 108.6 | 128.6 | 3300 | 0.5/8 | 65 |
2 | 1200 | 272.4 | 80 | 2.1 | 75.1 | 186.8 | 206.8 | 4000 | 0.5/3 | 72 |
3 | 600 | 136.2 | 50 | 2.7 | 48 | 153.9 | 173.9 | 3600 | 0.5/8 | 70 |
序号 | 模式 |
---|---|
1 | A机模式 |
2 | B机模式 |
3 | A/B单机模式 |
4 | 双机模式 |
序号 | 模式 |
---|---|
1 | A机模式 |
2 | B机模式 |
3 | A/B单机模式 |
4 | 双机模式 |
1 | UNCTAD. Review of maritime transport 2021[R/OL]. (2021-11-18)[2023-09-11]. . |
2 | UNCTAD. Trade and development report 2021[R/OL]. (2021-10-28)[2023-09-11]. . |
3 | TRAN Tien Anh. Effect of ship loading on marine diesel engine fuel consumption for bulk carriers based on the fuzzy clustering method[J]. Ocean Engineering, 2020, 207: 107383. |
4 | SÜRER Meryem Gizem, ARAT Hüseyin Turan. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19865-19875. |
5 | INAL Omer Berkehan, DENIZ Cengiz. Assessment of fuel cell types for ships: Based on multi-criteria decision analysis[J]. Journal of Cleaner Production, 2020, 265: 121734. |
6 | DENIZ Cengiz, ZINCIR Burak. Environmental and economical assessment of alternative marine fuels[J]. Journal of Cleaner Production, 2016, 113: 438-449. |
7 | International Maritime Organization. Fourth greenhouse gas study 2020[R/OL]. (2021-03-24)[2023-09-11]. . |
8 | LACK Daniel A, CORBETT James J, ONASCH Timothy, et al. Particulate emissions from commercial shipping: Chemical, physical, and optical properties[J]. Journal of geophysical research, 2009, 114(D7). |
9 | Øyvind ENDRESEN, Eirik SØRGÅRD, SUNDET Jostein K, et al. Emission from international sea transportation and environmental impact[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D17). |
10 | International Maritime Organization. 2023 IMO strategy on reduction of GHG emissions from ships[EB/OL]. (2023-07-07)[2023-09-13]. . |
11 | DNV G L. Comparison of alternative marine fuels[R/OL]. (2019-07-05)[2023-09-13]. . |
12 | VAN DER MAAS T J. Assessment and comparison of alternative marine fuels[D]. Utrecht: Utrecht University, 2020. |
13 | VOGLER F, WÜRSIGG D. Fuel cell in maritime applications challenges, chances and experiences[C] // International Conference on Hydrogen Safety. Germany: IGEM, 2011. |
14 | XING Hui, STUART Charles, SPENCE Stephen, et al. Fuel cell power systems for maritime applications: Progress and perspectives[J]. Sustainability, 2021, 13(3): 1213. |
15 | ELKAFAS Ahmed G, RIVAROLO Massimo, GADDUCCI Eleonora, et al. Fuel cell systems for maritime: A review of research development, commercial products, applications, and perspectives[J]. Processes, 2022, 11(1): 97. |
16 | WEAVERGraham, BARRETT Steve. Marine applications of fuel cell technology[J]. Fuel Cells Bulletin, 2003, 2003(1): 11-12. |
17 | 王娜娜, 汪晓菲, 王硕. 船用燃料电池电力推进系统特性与展望[J]. 机电设备, 2022, 39(2): 39-43. |
WANG Nana, WANG Xiaofei, WANG Shuo. Characteristics and prospects of marine fuel cell electric propulsion system[J]. Mechanical and Electrical Equipment, 2022, 39(2): 39-43. | |
18 | 崔艳. 氢燃料电池动力技术在船舶上的应用[J]. 中国船检, 2023(1): 64-68. |
CUI Yan. Application of hydrogen fuel cell power technology in ships[J]. China Ship Survey, 2023(1): 64-68. | |
19 | Genevos. Genevos has been granted approval in principle (Aip) for its hydrogen power module (HPM) range, developed as a modular and drop-in zero emissions solution for the maritime industry [EB/OL]. (2022-01-20)[2023-09-13]. . |
20 | PowerCellution. PowerCellution marine system 200[EB/OL]. (2021-05-27)[2023-09-13]. . |
21 | SASANK B V, RAJALAKSHMI N, DHATHATHREYAN K S. Performance analysis of polymer electrolyte membrane (PEM) fuel cell stack operated under marine environmental conditions[J]. Journal of Marine Science and Technology, 2016, 21(3): 471-478. |
22 | WU Peng, BUCKNALL Richard.Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry[J]. International Journal of Hydrogen Energy, 2020, 45(4): 3193-3208. |
23 | WU Peng, PARTRIDGE Julius, BUCKNALL Richard. Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships[J]. Applied Energy, 2020, 275: 115258. |
24 | BASSAM A, PHILLIPS A, TURNOCK S, et al. Design, modelling and simulation of a hybrid fuel cell propulsion system for a domestic ferry[C]//Proceedings of the 13th International Symposium on PRActical Design of Ships and Other Floating Structures (PRADS’2016). Copenhagen: Technical University of Denmark, 2016: 545-553. |
25 | VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327: 345-364. |
26 | MCCONNELL Vicki P. Now, voyager? The increasing marine use of fuel cells[J]. Fuel Cells Bulletin, 2010, 2010(5): 12-17. |
27 | GADDUCCI E, LAMBERTI T, RIVAROLO M, et al. Experimental campaign and assessment of a complete 240-kW proton exchange membrane fuel cell power system for maritime applications[J]. International Journal of Hydrogen Energy, 2022, 47(53): 22545-22558. |
28 | RAFIEI Mehdi, BOUDJADAR Jalil, KHOOBAN Mohammad-Hassan. Energy management of a zero-emission ferry boat with a fuel-cell-based hybrid energy system: Feasibility assessment[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1739-1748. |
29 | 大连海事大学. 中国第一艘燃料电池游艇在大连海事大学研发成功[EB/OL]. (2021-1-9)[2023-11-17]. . |
Dalian Maritime University. China’s first fuel cell yacht was successfully developed at Dalian Maritime University[EB/OL]. (2021-01-09)[2023-11-17]. . | |
30 | 李俊, 付树木. 国内船用氢燃料电池实例解析[J]. 交通节能与环保, 2023, 19(4): 26-29. |
LI Jun, FU Shumu. Analysis of the marine hydrogen fuel cell in China[J]. Transport Energy Conservation & Environmental Protection, 2023, 19(4): 26-29 | |
31 | 彭元亭, 李红享, 王振. 船用燃料电池技术应用现状与发展前景[J]. 船电技术, 2022, 42(6): 41-44. |
PENG Yuanting, LI Hongxiang, WANG Zhen. Application situation and development prospect of marine fuel cell[J]. Marine Electric & Electronic Technology, 2022, 42(6): 41-44. | |
32 | 王振, 雷刚. 燃料电池和锂电池在船用领域的对比分析[J]. 船电技术, 2021, 41(2): 18-20, 26. |
WANG Zhen, LEI Gang. Comparative analyses of fuel cells and lithium battery in the field of marine[J]. Marine Electric & Electronic Technology, 2021, 41(2): 18-20, 26. | |
33 | 钱伟, 易荣, 谢晓峰. 船用燃料电池技术的现状和发展[J]. 广东化工, 2022, 49(23): 114-116. |
QIAN Wei, YI Rong, XIE Xiaofeng. Current status and development on hydrogen fuel cell applications for marine vehicles[J]. Guangdong Chemical Industry, 2022, 49(23): 114-116. | |
34 | 中华人民共和国海事局. 氢燃料电池动力船舶技术与检验暂行规则(2022)[EB/OL]. (2022-03-07)[2023-09-13].. |
Maritime Safety Administration of the People’s Republic of China. Interim rules on technology and inspection of hydrogen fuel cell powered ships(2022)[EB/OL]. (2022-03-07) [2023-09-13]. . | |
35 | 中国船级社. 船舶应用燃料电池发电装置指南 2022[EB/OL]. (2022-07-01)[2023-09-13]. . |
China Classification Society. A guide to fuel cell power generation devices for marine applications 2022[EB/OL]. (2022-07-01) [2023-09-13]. . | |
36 | 中国船级社. E-23 氢燃料电池[EB/OL]. (2022-04-14)[2023-09-13]. . |
China Classification Society. Hydrogen fuel cell[EB/OL]. (2022-04-14) [2023-09-13]. . | |
37 | 念达, 邓琪敏, 付遵涛. 相对湿度及其变化的年循环研究进展[J]. 地球科学进展, 2018, 33(7): 762-774. |
NIAN Da, DENG Qimin, FU Zuntao. Research progress of relative humidity and its changing annual cycle[J]. Advances in Earth Science, 2018, 33(7): 762-774. | |
38 | HE Yongning, XING Linfen, ZHANG Yeqiang, et al. Development and experimental investigation of an oil-free twin-screw air compressor for fuel cell systems[J]. Applied Thermal Engineering, 2018, 145: 755-762. |
39 | GOULD Benjamin D, BATURINA Olga A, SWIDER-LYONS Karen E. Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS[J]. Journal of Power Sources, 2009, 188(1): 89-95. |
40 | BATURINA O A, SWIDER-LYONS K E. Effect of SO2 on the performance of the cathode of a PEM fuel cell at 0.5—0.7V[J]. Journal of the Electrochemical Society, 2009, 156(12): B1423. |
41 | WALTERS Marius, WICK Maximilian, Sören TINZ, et al. Fuel cell system development: A strong influence on FCEV performance[J]. SAE International Journal of Alternative Powertrains, 2018, 7(3): 2018-1. |
42 | TOMINaoki, HASEGAWA Shigeki, FARNSWORTH Jared, et al. Development of air supply controller for FCV based on model-based development approach[J]. SAE International Journal of Advances and Current Practices in Mobility, 2021, 3(5): 2245-2256. |
43 | 国家市场监督管理总局, 国家标准化管理委员会. 燃料电池发动机性能试验方法: [S]. 北京: 中国标准出版社, 2023. |
State Administration for Market Regulation, Administration Standardization. Performance test methods for fuel cell system: [S]. Beijing: Standards Press of China, 2023. | |
44 | VASILYEV A, ANDREWS J, DUNNETT S J, et al. Dynamic reliability assessment of PEM fuel cell systems[J]. Reliability Engineering & System Safety, 2021, 210: 107539. |
45 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 往复式内燃机 排放测量 第4部分:不同用途发动机的稳态试验循环: [S]. 北京: 中国标准出版社, 2011. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Reciprocating internal combustion engines—Exhaust emission measurement—Part 4: Steady-state test cycles for different engine applications: [S]. Beijing: Standards Press of China, 2011. | |
46 | LUO Yueqi, JIAO Kui. Cold start of proton exchange membrane fuel cell[J]. Progress in Energy and Combustion Science, 2018, 64: 29-61. |
[1] | SHI Liu, HU Zhenzhong, LI Xian, SUN Yiming, TONG Shan, LIU Xianzhe, GUO Li, LIU Hao, PENG Bing, LI Shuo, LUO Guangqian, YAO Hong. Gas-pressurized torrefaction of biomass: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2494-2511. |
[2] | ZHU Taizhong, ZHANG Liang, HUANG Zequan, LUO Lingping, HUANG Fei, XUE Lixin. Preparation and characterization of gel polybenzimidazole proton exchange membrane with alkyl sulfonic acid side chains [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1962-1971. |
[3] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[4] | JIANG Chenguang, ZHANG Shengzhen, ZHANG Cuiqing, GUO Yi, SUN Yongwei. Optimization of the preparation process of 52# Fischer-Tropsch wax based on DFSS method [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1742-1753. |
[5] | QIAN Zhiguang, WANG Shixue, ZHU Yu, YUE Like. Start-up characteristics of high-temperature proton exchange membrane fuel cell stacks based on flat heat pipes [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1754-1763. |
[6] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[7] | WU Fengming, LI Shuaiqi, HE Shihui, SONG Wenji, FENG Ziping. Research progress on optimization of large temperature-lift vapor compression heat pump system [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1178-1198. |
[8] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
[9] | SU Qian, DENG Xiangtian, LIU Zhenxing. Model optimization of phase fraction in oil-gas-water three-phase flow using ultrasonic testing technique [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 791-799. |
[10] | SHAN Liang, HUA Xiajie, NIU Yufeng, ZHAO Tengfei, HONG Bo, KONG Ming. Optimization method for light-field feature extraction in flame temperature field reconstruction [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 823-829. |
[11] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[12] | WANG Xiong, YANG Zhenning, LI Yue, SHEN Weifeng. Optimization of methanol distillation process based on chemical mechanism and industrial digital twinning modeling [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 310-319. |
[13] | WANG Jinghan, LYU Jie, ZHAO Ding, LIN Wenye, SONG Wenji, FENG Ziping. BP neural network approach for heat generation rate estimation of power battery for electric vehicles [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 400-406. |
[14] | WANG Bo, ZHANG Chang’an, ZHAO Limin, YUAN Jun, SONG Yongyi. Industrial wastewater treatment technology based on boron-doped diamond electrodes:A review [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 501-513. |
[15] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |